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Abstract: Let (P,≤) be an atomic partially ordered set (briefly, a poset) with
a minimum element 0, and let I(P ) be the set of all nontrivial ideals of P . The

essential graph of P , denoted by Ge(P ), is an undirected, simple graph with the vertex

set I(P ) and two distinct vertices I, J ∈ I(P ) are adjacent in Ge(P ) if and only if
I ∪ J is an essential ideal of P . We study the connections between the graph-theoretic

properties of this graph and the algebraic properties of a poset. We prove that Ge(P )

is connected with diameter at most three. Furthermore, all posets are characterized
based on the diameters of their essential graphs. Also, all posets with planar Ge(P )

are classified. Among other results, the clique number and chromatic number of Ge(P )

are determined.

Keywords: poset, essential graph, diameter, planar, clique number.

AMS Subject classification: 06A07, 05C25

1. Introduction

Recently, a major part of research in algebraic combinatorics has been devoted to the

application of graph theory and combinatorics in abstract algebra. There are a lot of

papers which apply combinatorial methods to obtain algebraic results in poset theory

(for example see [2–5] and [7]).

Let (P,≤) be a poset with a least element 0. The set of all ideals of P is denoted by

J (P ) and I(P ) = J (P ) \ {{0}, P}. For every element x of P , the ideal (x] := {y ∈
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2 On the essential graph of a poset

P |y ≤ x}( the filter [x) := {y ∈ P |x ≤ y}) is called principal whose generator is x.

Let x, y ∈ P . We say that y covers x in P if x < y and no element in P lies strictly

between x and y. If y covers x, then we write x < y. Any cover of 0 in P is called an

atom. The set of all atoms of P is denoted by Atom(P ). The poset P is called atomic

if, for every non-zero element x ∈ P , we have (x] ∩ Atom(P ) 6= ∅. A nonzero ideal I

of P is called essential if I has a nonzero intersection with any nonzero ideal of P .

The set of all principal ideals generated by Atom(P ) and P \ Atom(P ) are denoted

by A(P ) and B(P ), respectively. For any undefined notation or terminology in poset

theory, we refer the reader to [8, 9].

Let G = (V,E) be a graph, where V = V (G) is the set of vertices and E = E(G) is

the set of edges. The degree of a vertex v is denoted by deg(v). The maximum degree

and the minimum degree of G are denoted by ∆(G) and δ(G), respectively. The set

of all adjacent vertices to v ∈ V is denoted by N(v). If u and v are two adjacent

vertices of G, then we write u − v. We say that G is a connected graph if there is a

path between each pair of distinct vertices of G. For two vertices x and y, let d(x, y)

denote their distance. The diameter of G is denoted by diam(G). A complete graph

of order n and a complete bipartite graph with par sizes m,n are denoted by Kn and

Km,n, respectively. A graph G is said to be planar if it can be drawn in the plane

such that its edges intersect only at their endpoints. The subdivision of G is a graph

obtained from G by subdividing some of the edges, that is, by replacing the edges

by paths having at most their endvertices in common. A clique of G is a maximal

complete subgraph of G and the number of vertices in the largest clique of G, denoted

by ω(G), is called the clique number of G. For a graph G, let χ(G) denote the vertex

chromatic number of G, i.e., the minimal number of colors which can be assigned to

the vertices of G in such a way that every two adjacent vertices have different colors.

Note that for every graph G, ω(G) ≤ χ(G). A graph G is said to be weakly perfect

if ω(G) = χ(G). The graph H = (V0, E0) is a subgraph of G if V0 ⊆ V and E0 ⊆ E.

Moreover, H is called an induced subgraph by V0, denoted by G[V0], if V0 ⊆ V and

E0 = {{u, v} ∈ E |u, v ∈ V0}. Also, a set S ⊆ V (G) is a dominating set if every

vertex in V (G) is either in S or is adjacent to a vertex in S. The domination number

of G denoted by γ(G) is the minimum cardinality among the dominating sets of G.

For any undefined notation or terminology in graph theory, we refer the reader to

[1, 10].

Throughout this paper P is a nontrivial atomic poset with a minimum element 0 and

Atom(P ) = {a1, a2, . . . , an, . . .} (at most countably infinite). The essential graph of

P , denoted by Ge(P ), is an undirected and simple graph with the vertex set I(P )

and two distinct vertices I, J ∈ I(P ) are adjacent in Ge(P ) if and only if I ∪ J is an

essential ideal of P . The idea of essential graph of a ring was first introduced and

studied in [6]. Motivated by [6], we define and study the essential graph of a poset. In

this paper, we study some connections between the graph-theoretic properties of this

graph and some algebraic properties of a poset. We prove that Ge(P ) is connected and

diam(Ge(P )) ≤ 3. Furthermore, all posets are characterized based on the diameters

of their essential graphs. Also, planar essential graphs are characterized. Finally,

some additional parameters of Ge(P ) are studied.
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2. Connectivity and Diameter of Ge(P )

In this section, it is shown thatGe(P ) is always a connected graph and diam(Ge(P )) ≤
3. Moreover, all posets are characterized based on the diameters of their essential

graphs. The following lemma plays a key role in this paper.

Lemma 1. Let (P,≤) be a poset and I, J ∈ I(P ). Then I and J are adjacent in Ge(P )
if and only if Atom(P ) ⊆ I ∪ J .

Proof. First suppose that I and J are adjacent in Ge(P ). If Atom(P ) * I ∪J , then

there exists a ∈ Atom(P ) such that a 6∈ I ∪ J . This implies that {0, a} * I ∪ J and

so I ∪ J is not an essential ideal of P , a contradiction.

Conversely, suppose that Atom(P ) ⊂ I ∪ J , for some I, J ∈ I(P ) with I 6= J and

J ′ is an arbitrary ideal of P . Since P is atomic, there exists a ∈ Atom(P ) such that

a ∈ J ′. This means that {0, a} ⊆ (I ∪ J) ∩ J ′ and thus I ∪ J is an essential ideal of

P . Hence I and J are adjacent in Ge(P ).

We are now ready to prove that Ge(P ) is connected with a diameter of at most 3.

Theorem 1. Let (P,≤) be a poset. Then Ge(P ) is connected and diam(Ge(P )) ≤ 3.

Proof. Let I and J be two distinct vertices of Ge(P ). We find a path of length at

most 3 between I and J . To see this, consider the following cases:

Case 1. P = Atom(P )∪ {0}. If I ∪ J = P , then by Lemma 1, I is adjacent to J . So

let I∪J 6= P . This implies that Atom(P ) * I∪J . If I ⊂ J , then put K = (P \I)∪{0}.
It is not hard to see that K is a proper ideal of P and K ∪ I = K ∪ J = P . Hence

by Lemma 1, K is adjacent to both of I and J . The situation J ⊂ I is similar. Let

I * J , J * I and put L1 = ((P \ I)∪ (I ∩ J)) and L2 = ((P \ J)∪ (I ∩ J)). We claim

that L1, L2 are proper ideals of P . Since P = Atom(P ) ∪ {0}, it is enough to show

that P 6= L1 and P 6= L2. Clearly, L1 = ((P \ I) ∪ (I ∩ J)) = Ic ∪ (I ∩ J) = Ic ∪ J .

Since I * J , there exists a ∈ I, such that a 6∈ Ic and a 6∈ J . This implies that

a 6∈ Ic ∪ J and thus Ic ∪ J 6= P . Similarly, P 6= L2 and so the claim is proved.

Obviously, L1 ∪ I = P and L2 ∪ J = P . By Lemma 1, I (J) is adjacent to L1 (L2).

Moreover, L1 ∪ L2 = (Ic ∪ (I ∩ J)) ∪ (Jc ∪ (I ∩ J)) = (Ic ∪ J) ∪ (Jc ∪ I) = P . Thus

by Lemma 1, L1 and L2 are adjacent to each other. Therefore, I − L1 − L2 − J is a

path of length 3 between I and J .

Case 2. P 6= Atom(P ) ∪ {0}. If I ∪ J = P , then by Lemma 1, there is nothing to

prove. So let I ∪ J 6= P and put K = Atom(P ) ∪ {0}. Clearly, K is a proper ideal of

P , (I∪K)∩L 6= {0} and (J ∪K)∩L 6= {0}, for every L ∈ I(P ). Therefore, I−K−J
is a path between I and J .

The following theorem gives a necessary and sufficient condition under which

diam(Ge(P )) = 1.
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Theorem 2. Let (P,≤) be a poset. Then Ge(P ) is complete if and only if one of the
following statements hold.
(1) |Atom(P )| = 1.
(2) |Atom(P )| = 2 and either P = Atom(P ) ∪ {0} or Atom(P ) ⊂ (x], for every x ∈
P \Atom(P ).

Proof. Suppose that Ge(P ) is complete and |Atom(P )| 6= 1, we show that (2) is hold.

Assume to the contrary, {a1, a2, a3} is a subset of Atom(P ). Then {0, a1}, {0, a1, a2} ∈
I(P ). This means that Atom(P ) * {0, a1}∪{0, a1, a2} and thus {0, a1} is not adjacent

to {0, a1, a2} in Ge(P ), a contradiction. So |Atom(P )| = 2. Suppose that P 6=
Atom(P ) ∪ {0} and Atom(P ) * (x], for some x ∈ P \ Atom(P ). Hence a1 6∈ (x] or

a2 6∈ (x]. With no loss of generality, assume that a2 6∈ (x]. By Lemma 1, {0, a1} is

not adjacent to (x], a contradiction.

Conversely, if |Atom(P )| = 1, then by Lemma 1, Ge(P ) is complete. If |Atom(P )| =
2 and P = Atom(P ) ∪ {0}, then Ge(P ) = K2. Finally, if |Atom(P )| = 2, P 6=
Atom(P )∪{0} and Atom(P ) ⊂ (x], for every x ∈ P \Atom(P ), then Atom(P ) ⊂ I∪J ,

for every two distinct vertices I, J ∈ I(P ). Now, by Lemma 1, Ge(P ) is complete.

Next, all posets whose essential graphs have diameter 3 are characterized.

Theorem 3. Let (P,≤) be a poset. Then diam(Ge(P )) = 3 if and only if P = Atom(P )∪
{0} and |Atom(P )| ≥ 3.

Proof. First suppose that diam(Ge(P )) = 3. If P 6= Atom(P ) ∪ {0}, then K =

Atom(P )∪{0} is a proper ideal of P and so by Lemma 1, K is adjacent to every other

vertex. This contradicts the hypothesis diam(Ge(P )) = 3. Hence P = Atom(P )∪{0}.
Also, this shows that |Atom(P )| ≥ 3.

Conversely, suppose that P = Atom(P ) ∪ {0} and |Atom(P )| ≥ 3. By Theorem 2,

diam(Ge(P )) ≥ 2. Let diam(Ge(P )) = 2 and I1 = {0, a1} and I2 = {0, a2} be two

vertices of Ge(P ). Then there exists K ∈ I(P ) such that Atom(P ) ⊂ K ∪ I1 and

Atom(P ) ⊂ K ∪ I2. Hence Atom(P ) ⊂ K, a contradiction. Thus d(I1, I2) ≥ 3, i.e.,

diam(Ge(P )) ≥ 3. It follows from Theorem 1 that diam(Ge(P )) = 3.

In light of Theorems 2 and 3, we state the last result of this section.

Theorem 4. Let (P,≤) be a poset. Then diam(Ge(P )) = 2 if and only if one of the
following statements holds.
(1) P 6= Atom(P ) ∪ {0}, |Atom(P )| = 2 and Atom(P ) * (x], for some x ∈ P \Atom(P ).
(2) P 6= Atom(P ) ∪ {0} and |Atom(P )| ≥ 3.
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3. Planar Essential Graphs of Posets

One of the most of important invariant in graph theory is the planarity. Our focus

in this section is on the planarity of essential graphs of posets. First, we need a

celebrated theorem due to Kuratowski.

Theorem 5. [1, Theorem 10.30] A graph is planar if and only if it contains no subdivision
of either K5 or K3,3.

In what follows, we first study the case P = Atom(P ) ∪ {0}.

Theorem 6. Let (P,≤) be a poset and P = Atom(P ) ∪ {0}. Then Ge(P ) is planar if
and only if |Atom(P )| ≤ 3.

Proof. Suppose that Ge(P ) is planar. If |Atom(P )| ≥ 4, then we consider the

following cases.

Case 1. |Atom(P )| ≥ 5. Let S = {Ii ∈ I(P )| Ii = P \ {ai}}. Lemma 1 implies that

Ge(P )[S] is complete. Hence Ge(P ) contains a subdivision of K5, a contradiction.

Case 2. |Atom(P )| = 4. Put I1 = P \ {a2}, I2 = {0, a1, a3}, I3 = {0, a1, a4},
J1 = P \ {a1}, J2 = {0, a2, a3}, J3 = {0, a2, a4}, L1 = P \ {a3} and L2 = P \ {a4}.
Then by Lemma 1, it is not hard to check that the vertices of the set {I1, I2, I3}, the

vertices of the set {J1, J2, J3} together with the paths I2 − L1 − J2 and I3 − L2 − J3
form a subdivision of K3,3, a contradiction.

Conversely, suppose that |Atom(P )| ≤ 3. Indeed, we have the following cases.

Case 1. |Atom(P )| = 1. In this case Ge(P ) = K1 and thus it is planar.

Case 2. |Atom(P )| = 2. In this case Ge(P ) = K2 and thus it is planar.

Case 3. |Atom(P )| = 3. In this case the following figure shows that Ge(P ) is

planar. ss
J
J
J
JJ
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Ge(P ) with |Atom(P )| = 3

Next we study the case P 6= Atom(P ) ∪ {0}. First, we show that if |Atom(P )| ≥ 4,

then Ge(P ) is not planar.
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Theorem 7. Let (P,≤) be a poset and P 6= Atom(P ) ∪ {0}. If |Atom(P )| ≥ 4, then
Ge(P ) is not planar.

Proof. Put Ii = (Atom(P )\{ai})∪{0}, for every 1 ≤ i ≤ 4 and I5 = Atom(P )∪{0}.
Clearly, Ii is a proper ideal of P , for every 1 ≤ i ≤ 5. The subgraph induced by the

set S = {I1, I2, I3, I4, I5} is complete, by Lemma 1. Thus Ge(P ) is not planar.

Remaining results of this section are devoted to investigate the cases |Atom(P )| = 1,

|Atom(P )| = 2 and |Atom(P )| = 3.

Theorem 8. Let (P,≤) be a poset, P 6= Atom(P )∪{0} and |Atom(P )| = 1. Then Ge(P )
is planar if and only if I(P ) ≤ 4.

Proof. The result follows from Theorems 2 and 5.

Remark 1. Let (P,≤) be a poset with P 6= Atom(P ) ∪ {0}, |Atom(P )| = 2 and M =
{0 6= x ∈ P \Atom(P )| (x] ∪Atom(P ) 6= P}. Then the following statements hold.
(1) If |M | = 0, then the van diagram of P is one of the following figures.
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Theorem 9. Let P 6= Atom(P ) ∪ {0} be a poset with |Atom(P )| = 2 and let M = {0 6=
x ∈ P \Atom(P )| (x] ∪Atom(P ) 6= P}. Then the following statements hold.
(1) If |M | = 0, then Ge(P ) is planar.
(2) If |M | = 1, then Ge(P ) is not planar if and only if (x] 6= P , for some x ∈ P \(Atom(P )∪
M).
(3) If |M | ≥ 2, then Ge(P ) is not planar.

Proof. (1) Suppose that |M | = 0. Then clearly, |P | = 4 and thus by part (1) of

Remark 1, one may easily see that |V (Ge(P ))| ≤ 4. Therefore Ge(P ) is planar.

(2) Suppose that |M | = 1. Then by part (2) of Remark 1, the van diagram of

P is one of the figures (i), (ii), (iii), (iv), (v). If the van diagram of P is one of

(ii), (iii), (iv), (v), then |I(P )| ≤ 5 and Ge(P ) is not complete. Thus Ge(P ) is planar,

by Kuratowski’s Theorem. If the van diagram of P is figure (i), then let

I1 = {0, a1},
I2 = {0, a2},
I3 = {0, a1, a2},
I4 = {0, a1, a2, x1},
I5 = {0, a2, x1},
I6 = {0, a2, x1, x2}.
Clearly, I1, I2, I3, I4, I5, I6 are proper ideals of P . By Lemma 1, the vertices of the

set {I2, I5, I6} and the vertices of the set {I1, I3, I4} form K3,3 and thus Ge(P ) is not

planar.

(3) Suppose that |M | ≥ 2 and let

I1 = {0, a1},
I2 = {0, a2},
I3 = {0, a1, a2},
I4 = (x1] ∪Atom(P ),

I5 = (x2] ∪Atom(P ),

where x1, x2 ∈ M . By Lemma 1, Ge(P ) contains K5 and thus Ge(P ) is not planar.

The next result completes the study of planarity in Ge(P ).

Theorem 10. Let (P,≤) be a poset with |Atom(P )| = 3 and let M = {0 6= x ∈
P \ Atom(P )| (x] ∪ Atom(P ) 6= P}. If P 6= Atom(P ) ∪ {0}, then the following statements
hold.
(1) |M | = 0 if and only if P = {0, a1, a2, a3, x}, where x ∈ P \Atom(P ).
(2) If |M | = 0, then Ge(P ) is planar if and only if |(x] ∩ Atom(P )| = 3, where x ∈ P \
(Atom(P )).
(3) If |M | ≥ 1, then Ge(P ) is not planar.

Proof. (1) It is clear.

(2) Suppose thatGe(P ) is planar and |(x]∩Atom(P )| 6= 3, for some x ∈ P\(Atom(P )).

Consider the following cases:
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Case 1. |(x]∩Atom(P )| = 1. With no loss of generality, suppose that (x]∩Atom(P ) =

{a1}. Let

I1 = {0, a1, a3},
I2 = {0, a2, a3},
I3 = {0, a1, a2, a3},
I4 = {0, a1, a2, x},
I5 = {0, a1, a3, x},
I6 = {0, a1, a2}.
Clearly, every Ii, 1 ≤ i ≤ 6, is a proper ideal of P . It is not hard to see that

I1, I2, I3, I4, I5

together with the path

I1 − I6 − I5

form a subdivision of K5, a contradiction.

Case 2. |(x]∩Atom(P )| = 2. With no loss of generality, suppose that (x]∩Atom(P ) =

{a1, a2}. Let

I1 = {0, a1, a2}
I2 = {0, a1, a3}
I3 = {0, a2, a3}
I4 = {0, a1, a2, a3}
I5 = {0, a1, a2, x}
I6 = {0, a3}
Clearly, every Ii, 1 ≤ i ≤ 6, is a proper ideal of P . Then the vertices

I1, I2, I3, I4, I5

together with the path

I1 − I6 − I5

form a subdivision of K5, a contradiction. Thus by Cases 1 and 2, |(x]∩Atom(P )| = 3.

Conversely, suppose that |(x] ∩ Atom(P )| = 3. Then the van diagram of P is as

follows:

t0���@
@@
t ta1 a3

tx
�

��
@
@@ta2

and I(P ) = {I1, I2, I3, I4, I5, I6, I7}, where

I1 = {0, a1},
I2 = {0, a2},
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I3 = {0, a3},
I4 = {0, a1, a2},
I5 = {0, a1, a3},
I6 = {0, a2, a3},
I7 = {0, a1, a2, a3}.
Now, the following figure shows that Ge(P ) is planar.
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(3) Suppose that |M | ≥ 1 and let

I1 = {0, a1, a2},
I2 = {0, a1, a3},
I3 = {0, a2, a3},
I4 = {0, a1, a2, a3},
I5 = (x] ∪Atom(P ),

where x ∈M . By Theorem 1, Ge(P ) contains K5 and thus Ge(P ) is not planar.

4. Some Further Results on Ge(P )

In this section, we first study the coloring of Ge(P ). It is shown that Ge(P ) is

weakly perfect and the clique number of Ge(P ) is given. Moreover, the domination

number of Ge(P ) is studied. Finally, the maximum and minimum degree of Ge(P )

are determined.

First, the clique number of Ge(P ) is determined, if P = Atom(P ) ∪ {0}.

Theorem 11. Let (P,≤) be a poset and P = Atom(P ) ∪ {0}. Then

ω(Ge(P )) = χ(Ge(P )) = |Atom(P )|.

Proof. Let S = {I ∈ I(P )| I = P \ {ai}, for some ai} and Ii, Ij ∈ S with i 6= j.

Since Ii ∪ Ij = P , we deduce from Lemma 1, Ii is adjacent to Ij . Hence Ge(P )[S] is

a complete graph and so

χ(Ge(P )) ≥ ω(Ge(P )) ≥ |Atom(P )|.

To complete the proof, we show that χ(Ge(P )) ≤ |Atom(P )|. To see this, define the

coloring f : V (Ge(P ))→ {i| i ≥ 1} with f(I) = min{i| ai /∈ I}, where I ∈ V (Ge(P )).

Now, we show that f is a proper coloring on V (Ge(P )). Suppose to the contrary, I

and J are two adjacent vertices and f(I) = f(J) = i. Thus ai /∈ I ∪ J , i.e., I and J

are not adjacent, a contradiction.
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It is worth mentioning that one may consider Ge(P ) as a complete multipartite graph

based on the previous result.

Next, we study ω(Ge(P )), in the case where P 6= Atom(P ) ∪ {0}.

Theorem 12. Let (P,≤) be a poset and P 6= Atom(P ) ∪ {0}. If M = {I ∈
I(P )| Atom(P ) ⊆ Atom(P )}, then

ω(Ge(P )) = χ(Ge(P )) = |Atom(P )|+ |M |.

Proof. Let S = {I ∈ I(P )| I = P \{ai}, for some ai} and C = S∪M . By Lemma 1

and Theorem 11, C is a maximal clique of Ge(P ). Obviously, every vertex contained

in C needs a different color. In a similar manner to the proof of Theorem 11, one can

color vertices out of C.

The domination number of Ge(P ) is studied in the next result.

Theorem 13. Let (P,≤) be a poset. Then the following statements hold.
(1) γ(Ge(P )) = 1 if and only if one of the following statements hold.
(i) |Atom(P )| = 1.
(ii) P = {0, a1, a2}.
(iii) P 6= Atom(P ) ∪ {0}.
(2) γ(Ge(P )) = |Atom(P )| if and only if P = Atom(P ) ∪ {0} and |Atom(P )| ≥ 3 or
P 6= Atom(P ) ∪ {0} and |Atom(P )| = 1.

Proof. (1) Clearly, if (i) or (ii) holds, then γ(Ge(P )) = 1. Also, if (iii) holds, then

the vertex I = Atom(P )∪{0} is adjacent to every other vertex. Hence γ(Ge(P )) = 1.

Conversely, suppose that γ(Ge(P )) = 1. Thus diam(Ge(P )) ≤ 2. Now, the proof

follows from by Theorems 2 and 4.

(2) If P 6= Atom(P ) ∪ {0} and |Atom(P )| = 1, then by Theorem 2, γ(Ge(P )) =

|Atom(P )| = 1. So let P = Atom(P ) ∪ {0} and |Atom(P )| ≥ 3. Let Ii = {0, ai}
and Ji = P \ {ai}, for very i ≥ 1. Clearly, deg(Ii) = 1 and Ii is adjacent to Ji.

This implies that every minimum dominating set of Ge(P ) must contain the set

S = {Ji ∈ I(P )| 1 ≤ i ≤ n}. So

γ(Ge(P )) ≥ |S| = |Atom(P )|.

Now, it is straightforward to show that N [S] = V (Ge(P )) and thus γ(Ge(P )) =

|Atom(P )|.
The converse is easily obtained.

Suppose that P = Atom(P )∪{0}. To determine the maximum and minimum degrees

in Ge(P ), we need the following result.
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Theorem 14. Let (P,≤) be a poset and P = Atom(P ) ∪ {0}. Then the following
statements hold.
(1) If |Atom(P )| = n, for some positive integer n, then |I(P )| = 2n − 2.
(2) If |I| = m, for some positive integer m, then deg(I) = 2m−1 − 1.

Proof. (1) Since P = Atom(P ) ∪ {0}, the number of ideals generated by r atoms is

equal to
(
n
r

)
and so

|I(P )| = Σn−1
r=1

(
n

r

)
= 2n − 2.

(2) If |I| = m, then the number of atoms contained in I is m − 1. By Lemma 1,

(P \ I) ⊆ J , for every J adjacent to I. Thus the number of proper ideals containing

(P \ I) is equal to

deg(I) = Σm−2
r=0

(
m− 1

r

)
= 2m−1 − 1.

We conclude this paper with the following corollary.

Corollary 1. Let (P,≤) be a poset and P = Atom(P )∪ {0}. If |Atom(P )| = n for some
positive integer n, then the following statements hold.
(1) ∆(Ge(P )) = 2n−1 − 1.
(2) δ(Ge(P )) = 1.

Proof. The proof follows from Theorems 2 and 14.
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