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Abstract: For an arbitrary invariant ρ(G) of a graph G the ρ-edge adding stability

number easρ(G) is the minimum number of edges of the complement G whose addition

to G results in a graph H ⊇ G with ρ(H) 6= ρ(G). If such an edge set does not exist,
then we set easρ(G) = ∞. In the first part of this paper we give some general results

for easρ(G). We prove among others a Gallai’s theorem type result for invariants that
are based on the ρ-edge adding stability number.
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1. Introduction

Let G = (V (G), E(G)) be a finite simple graph and I be the class of all these graphs.

An empty graph is a graph with empty edge set. The graph G−E′ with E′ ⊆ E(G)

is the graph (V (G), E(G) \ E′). The graph G + E′′ with E′′ ⊆
(
V (G)

2

)
is the graph

(V (G), E(G) ∪ E′′). We consider invariants of graphs and restrict ourselves to non-

negative invariant values.

Definition 1. A (graph) invariant ρ(G) is a function ρ : I → R+
0 ∪ {∞} with

ρ(G1) = ρ(G2) if G1 is isomorphic to G2. An invariant is real-valued if its codomain is
R+

0 . An invariant ρ(G) is monotone increasing if H ⊆ G implies ρ(H) ≤ ρ(G), and mono-
tone decreasing if H ⊆ G implies ρ(H) ≥ ρ(G); ρ(G) is monotone if it is monotone increasing
or monotone decreasing. If the conditions hold for certain classes of subgraphs (for exam-
ple, induced or spanning subgraphs), then we say that ρ(G) is monotone (increasing or
decreasing) with respect to the class.
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2 Edge adding stability of graphs

For example, the maximum degree ∆(G) of a graph G is monotone increasing. The

minimum degree δ(G) is not monotone, but monotone increasing with respect to

spanning subgraphs. The independence number α(G) is not monotone, but it is

monotone increasing with respect to induced subgraphs and monotone decreasing

with respect to spanning subgraphs.

It is an interesting topic to determine the stability of an arbitrary invariant ρ(G) of a

graph G with respect to specific graph operations, that is, to determine if (or when)

the value of the invariant ρ(H) differs from the value of ρ(G) where H is obtained

by performing (successively) the given operation on G. This topic was introduced

in the 1980s (see e.g. [6, 9, 10, 17]) and again gained interest recently. For example,

the stability with respect to removing vertices was studied e.g. in [2, 5, 15], and the

stability with respect to subdividing edges in [12, 14].

The stability with respect to removing edges from G leads to the following invariant

which was discussed in several papers, for example in [1, 3, 4, 6, 7, 11–17].

Definition 2. The ρ-edge (removing) stability number esρ(G) of a graph G is the mini-
mum number of edges of G whose removal results in a graph H ⊆ G with ρ(H) 6= ρ(G). If
such an edge set does not exist, then we set esρ(G) =∞.

If instead of removing edges we add edges between non-adjacent vertices, then we

obtain the following invariant. The complement G of a graph G = (V,E) is the graph

G =
(
V,
(
V
2

)
\ E
)
.

Definition 3. The ρ-edge adding stability number easρ(G) ofG is the minimum number of
edges of the complement G whose addition to G results in a graph H ⊇ G with ρ(H) 6= ρ(G).
If such an edge set does not exist, then we set easρ(G) =∞.

We present general results for the edge adding stability number. If ρ(G)+ρ(G) = f(n)

for every graph G where ρ(G) is an arbitrary invariant and f a function of the order

n = n(G) of G, then it holds that easρ(G) = esρ(G). We extend this result to the

sum of two invariants and to other operations. Moreover, we obtain exact results for

the edge adding stability number of the join of disjoint graphs.

Gallai proved in 1959 [8] results on independence (edge independence) and vertex

covering (edge covering) of graphs. We prove a corresponding result for invariants

that are based on the edge adding stability number easρ(G).

2. General results for the edge adding stability number

In this section we provide some general results for the edge adding stability number.

Proposition 1. Let H be a spanning supergraph of G obtained from G by adding k edges.
Then easρ(G) ≤ easρ(H) + k. Moreover, if ρ(G) 6= ρ(H), then easρ(G) ≤ k.
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Proof. Let H = G+E′ where E′ ⊆ E(G) with |E′| = k. If ρ(G) 6= ρ(H) = ρ(G+E′),

then easρ(G) ≤ |E′| = k ≤ easρ(H) + k.

Therefore, assume in the following that ρ(G) = ρ(H). If ρ(H) cannot be changed by

edge additions then easρ(H) =∞, and the assertion is trivial. Otherwise, let E′′ be a

set of edges of H such that |E′′| = easρ(H) and ρ(H+E′′) 6= ρ(H). Set E′′′ = E′∪E′′
with |E′′′| = |E′|+ |E′′| = k + easρ(H). It follows that ρ(G) = ρ(H) 6= ρ(H +E′′) =

ρ(G+ E′′′) which implies easρ(G) ≤ |E′′′| = easρ(H) + k.

We are interested in connections between the invariants easρ(G) and esρ(G). Con-

sidering the complements of graphs, removing an edge of G corresponds to adding an

edge to G. This implies that G− E′ = G + E′ for a set E′ ⊆ E(G). Therefore, it is

possible to obtain results for the edge adding stability number from already known

results on the edge stability number.

Example 1. For a complete graph Kn of order n it holds that easρ(Kn) =∞ by definition
since there are no edges that can be added. For an empty graph Nn ∼= Kn of order n it
holds that esρ(Kn) =∞ by definition since there are no edges that can be removed. Hence,
easρ(Kn) = esρ(Kn) =∞ independently of the invariant ρ.

Example 2. The order n(G) of a graph G does not change by edge deletions or additions,
or in other words, n(G) is constant for graphs with the same vertex set. By definitions we
have easn(G) = easn(G) = esn(G) = esn(G) =∞ for every graph G.

Example 3. The size m(G) of a graph G does change by any possible edge addition or

deletion. Therefore, easm(G) = esm(G) =

{
1 if G not complete,

∞ if G complete.

Example 4. For the degree of a vertex v of a graph G it holds that dG(v)+dG(v) = n−1.
A vertex has minimum degree in G if and only if it has maximum degree in G, and vice
versa. Therefore, δ(G) + ∆(G) = ∆(G) + δ(G) = n− 1.
If ∆(G) = n − 1 and thus δ(G) = 0, then eas∆(G) = esδ(G) = ∞ by definitions. If
∆(G) < n − 1, then it suffices to add one edge incident to a vertex of maximum degree in
G in order to increase ∆(G). On the other hand, δ(G) > 0 and it suffices to remove one
edge incident to a vertex of minimum degree in G in order to reduce δ(G) which implies
eas∆(G) = esδ(G) = 1.
Therefore, eas∆(G) = esδ(G) and esδ(G) = eas∆(G) by considering the complements.

It is possible to generalize the last example by considering two graph invariants with

either constant sum or a sum that only depends on the order of the graph. Note that

the order does not change by edge additions or edge deletions.

Theorem 1. Let ρ and σ be two graph invariants and f be a function of the order
n = n(G) of a graph G.

(1) If ρ(G) + σ(G) = f(n) for every graph G, then esρ(G) = esσ(G) and easρ(G) =
easσ(G).
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(2) If ρ(G) + σ(G) = f(n) for every graph G, then esρ(G) = easσ(G) and easρ(G) =
esσ(G).

Proof. Let G be a graph of order n = n(G).

(1) If one of the invariants, say ρ(G), does not change by edge deletions, then

ρ(G − E′) = ρ(G) for any set E′ ⊆ E(G) which implies σ(G − E′) = f(n) −
ρ(G − E′) = f(n) − ρ(G) = σ(G), that is, also the other invariant does not

change by edge deletions. By definition, esρ(G) = esσ(G) =∞.

Otherwise, there is a set E′ ⊆ E(G) of edges such that |E′| = esρ(G) and

ρ(G−E′) 6= ρ(G), hence σ(G−E′) = f(n)− ρ(G−E′) 6= f(n)− ρ(G) = σ(G)

which implies esσ(G) ≤ |E′| = esρ(G). By exchanging ρ and σ we also obtain

esρ(G) ≤ esσ(G), that is, esρ(G) = esσ(G).

The proof of easρ(G) = easσ(G) runs analogously to the above proof.

(2) If ρ(G) does not change by edge deletions, then σ(G + E′) = σ(G− E′) =

f(n) − ρ(G − E′) = f(n) − ρ(G) = σ(G) for any set E′ ⊆ E(G), that is,

σ(G) does not change by edge additions, and vice versa. In this case we have

esρ(G) = easσ(G) =∞.

Otherwise, there is a set E′ ⊆ E(G) of edges such that |E′| = esρ(G) and

ρ(G−E′) 6= ρ(G), hence σ(G+E′) = σ(G− E′) = f(n)− ρ(G−E′) 6= f(n)−
ρ(G) = σ(G) which implies easσ(G) ≤ |E′| = esρ(G). On the other hand, there

is a set E′′ ⊆ E(G) of edges such that |E′′| = easσ(G) and σ(G+ E′′) 6= σ(G),

hence ρ(G−E′′) = f(n)−σ(G− E′′) = f(n)−σ(G+E′′) 6= f(n)−σ(G) = ρ(G).

Therefore, esρ(G) ≤ |E′′| = easσ(G), and equality follows.

By exchanging ρ and σ as well as G and G we obtain easρ(G) = esσ(G).

If we consider just one invariant, that is, ρ(G) = σ(G), then the assertion of Theo-

rem 1 (1) is obvious, while (2) implies that if ρ(G) + ρ(G) = f(n) for every graph G,

then esρ(G) = easρ(G) and easρ(G) = esρ(G).

Example 5. Returning to above Example 4, it is possible to determine the invariant
easδ(G) from the already known es∆(G): es∆(G) = ∞ if ∆(G) = 0 and es∆(G) = |V∆| −
α′(G[V∆]) if ∆(G) > 0, where V∆ is the set of vertices of G of maximum degree ∆(G) and
α′(G) is the edge independence number or matching number of G (see [11]). Therefore, by
Theorem 1(2), easδ(G) = es∆(G), that is, easδ(G) = ∞ if G is complete and easδ(G) =
|Vδ| − α′(G[Vδ]) otherwise, where Vδ is the set of vertices of G of minimum degree δ(G).

Theorem 1 is stated for the sum of two invariants. Obviously, this can be replaced

e.g. by the difference ρ(G)−σ(G) and by other operations. Moreover, the conditions

of equality (e.g. ρ(G) + σ(G) = f(n) for every graph G) are too strong. The equality

is only required in the proof for subgraphs G− E′ or supergraphs G+ E′ of a given

graph G, that is, for graphs with the same vertex set as G and hence of the same

order as G. Therefore, we generalize the latter theorem as follows.
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Theorem 2. Let ρ and σ be two graph invariants, G be a graph of order n = n(G), and
hn : D → R be a bijection with D,R ⊆ R+

0 ∪ {∞}.

(1) If σ(H) = hn(ρ(H)) for every spanning subgraph H = G− E′ of G, E′ ⊆ E(G), then
esρ(G) = esσ(G).

(2) If σ(H) = hn(ρ(H)) for every spanning supergraph H = G + E′ of G, E′ ⊆ E(G),
then easρ(G) = easσ(G).

(3) If σ(H) = hn(ρ(H)) for every spanning subgraph H = G− E′ of G, E′ ⊆ E(G), then
esρ(G) = easσ(G).

(4) If σ(H) = hn(ρ(H)) for every spanning supergraph H = G + E′ of G, E′ ⊆ E(G),
then easρ(G) = esσ(G).

Proof. Let G be a graph of order n = n(G).

(1) If ρ(G) does not change by edge deletions, then ρ(G − E′) = ρ(G) for every

set E′ ⊆ E(G) which implies σ(G − E′) = hn(ρ(G − E′)) = hn(ρ(G)) = σ(G),

that is, also σ(G) does not change by edge deletions. We get the converse result

by considering ρ(H) = h−1n (σ(H)) where h−1n is the inverse of hn. Therefore,

esρ(G) = esσ(G) =∞ by definition.

Otherwise, there is a set E′ ⊆ E(G) of edges such that |E′| = esρ(G) and

ρ(G − E′) 6= ρ(G), hence σ(G − E′) = hn(ρ(G − E′)) 6= hn(ρ(G)) = σ(G) by

the injectivity of hn. This implies esσ(G) ≤ |E′| = esρ(G).

On the other hand, there is a set E′′ ⊆ E(G) of edges such that |E′′| = esσ(G)

and σ(G−E′′) 6= σ(G), hence ρ(G−E′′) = h−1n (σ(G−E′′)) 6= h−1n (σ(G)) = ρ(G)

by the injectivity of h−1n . This implies esρ(G) ≤ |E′′| = esσ(G) and thus

esρ(G) = esσ(G).

(2) The proof of easρ(G) = easσ(G) runs analogously to the above proof of (1).

(3) Let E′ ⊆ E(G) be an arbitrary set of edges. If ρ(G) does not change by edge

deletions, then σ(G + E′) = σ(G− E′) = hn(ρ(G − E′)) = hn(ρ(G)) = σ(G),

that is, σ(G) does not change by edge additions. Conversely, if σ(G) does not

change by edge additions, then ρ(G−E′) = h−1n (σ(G− E′)) = h−1n (σ(G+E′)) =

h−1n (σ(G)) = ρ(G), that is, ρ(G) does not change by edge deletions. Therefore,

esρ(G) = easσ(G) =∞ by definition.

Otherwise, there is a set E′ ⊆ E(G) of edges such that |E′| = esρ(G) and

ρ(G−E′) 6= ρ(G), hence σ(G+E′) = σ(G− E′) = hn(ρ(G−E′)) 6= hn(ρ(G)) =

σ(G) by the injectivity of hn which implies easσ(G) ≤ |E′| = esρ(G). On the

other hand, there is a set E′′ ⊆ E(G) of edges such that |E′′| = easσ(G) and

σ(G + E′′) 6= σ(G), hence ρ(G − E′′) = h−1n (σ(G− E′′)) = h−1n (σ(G + E′′)) 6=
h−1n (σ(G)) = ρ(G) by the injectivity of h−1n . Therefore, esρ(G) ≤ |E′′| =

easσ(G), and equality follows.

(4) The proof of easρ(G) = esσ(G) runs analogously to the above proof of (3) (it

results from (3) by exchanging ρ and σ, hn and h−1n , G and G, H and H).
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Note that Theorem 1 follows from Theorem 2 by using the bijection hn(x) = f(n)−x.

This implies that σ(G) = hn(ρ(G)) = f(n)− ρ(G), that is, ρ(G) + σ(G) = f(n).

In Theorem 2 spanning subgraphs and supergraphs of a given graph are considered.

If we have general conditions for all graphs (as in Theorem 1) or for every graph of a

given order n, then we obtain general conclusions. We state this as follows, omitting

the proof which runs analogously to the above one.

Theorem 3. Let ρ and σ be two graph invariants and hn : D → R be a bijection with
D,R ⊆ R+

0 ∪ {∞} and n ∈ N.

(1) If σ(G) = hn(ρ(G)) for every graph G of order n, then esρ(G) = esσ(G) and easρ(G) =
easσ(G) for every graph G of order n.

(2) If σ(G) = hn(ρ(G)) for every graph G of order n, then esρ(G) = easσ(G) and
easρ(G) = esσ(G) for every graph G of order n.

In 1959 Gallai proved the following results which are nowadays known as Gallai’s

Theorem [8]. Let G be a graph of order n(G) without isolated vertices, α(G) be

the independence number, that is, the maximum number of mutually non-adjacent

vertices of G, β(G) the vertex covering number, that is, the minimum number of

vertices of G such that every edge of G is incident to at least one of these vertices,

α′(G) the edge independence number or matching number, that is, the maximum

number of mutually non-adjacent edges of G, and β′(G) the edge covering number,

that is, the minimum number of edges of G such that every vertex of G is incident to

at least one of these edges. Then (1) α(G) + β(G) = n(G) and (2) α′(G) +

β′(G) = n(G).

By Theorem 1 or 3 and (1) it follows that esα(G) = esβ(G) and easα(G) = easβ(G).

These theorems cannot be directly applied to (2), but it follows from Theorem 2(2)

that easα′(G) = easβ′(G) for every graph G without isolated vertices since adding

edges to a graph without isolated vertices does not create any isolated vertices. Note

that we cannot directly use Theorem 2(1) since removing edges may create subgraphs

H = G−E′ with isolated vertices for which the equality α′(H) +β′(H) = n(H) does

not hold anymore.

Example 6. The clique number ω(G) is the maximum number of pairwise adjacent
vertices in G. Obviously, ω(G) = α(G), thus the Theorem of Gallai implies that ω(G) +
β(G) = α(G)+β(G) = n(G). By Theorem 1 and the above remarks it follows that easω(G) =
esβ(G) = esα(G) and esω(G) = easβ(G) = easα(G).

The join H1 ∨H2 of two disjoint graphs H1 and H2 is the graph composed by a copy

of H1 and a copy of H2 in which each vertex of H1 is connected to all vertices of H2.

Theorem 4. If ρ(G) is a real-valued invariant with ρ(H1 ∨H2) = ρ(H1) + ρ(H2) for the
join of any two graphs H1, H2, then easρ(H1 ∨H2) = min{easρ(H1), easρ(H2)}.
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Proof. If H1 and H2 both are complete, then also H1∨H2 is complete and easρ(H1∨
H2) = easρ(H1) = easρ(H2) = ∞ follows by definition. More generally, if it is not

possible to change ρ(H1) and ρ(H2) by edge additions, then it is also not possible to

change ρ(H1∨H2) = ρ(H1)+ρ(H2) by edge additions, which implies easρ(H1∨H2) =

easρ(H1) = easρ(H2) =∞.

In all other cases it is possible to change at least one of the invariants ρ(H1), ρ(H2)

by edge additions, and therefore also ρ(H1 ∨H2) = ρ(H1) + ρ(H2). Without loss of

generality, assume that easρ(H1) ≤ easρ(H2) and easρ(H1) < ∞. Let E′ ⊆ E(H1)

such that |E′| = easρ(H1) and ρ(H1 + E′) 6= ρ(H1). Then ρ((H1 ∨ H2) + E′) =

ρ((H1 +E′)∨H2) = ρ(H1 +E′)+ρ(H2) 6= ρ(H1)+ρ(H2) = ρ(H1∨H2) which implies

that easρ(H1 ∨H2) ≤ |E′| = easρ(H1) = min{easρ(H1), easρ(H2)}.
Consider now H1∨H2 and let E′′′ ⊆ E(H1 ∨H2) such that |E′′′| = easρ(H1∨H2) and

ρ(H1 ∨H2 +E′′′) 6= ρ(H1 ∨H2). Since H1 ∨H2 = H1 ∪H2, E′′′ = E′ ∪E′′ with E′ ⊆
E(H1) and E′′ ⊆ E(H2). Moreover, ρ(H1 ∨H2 +E′′′) = ρ((H1 +E′)∨ (H2 +E′′)) =

ρ(H1 +E′) + ρ(H2 +E′′) 6= ρ(H1) + ρ(H2) = ρ(H1 ∨H2). This implies ρ(H1 +E′) 6=
ρ(H1) or ρ(H2 + E′′) 6= ρ(H2), therefore |E′| ≥ easρ(H1) or |E′′| ≥ easρ(H2) which

implies easρ(H1 ∨H2) = |E′′′| = |E′|+ |E′′| ≥ min{easρ(H1), easρ(H2)}.

Example 7. It holds that ω(H1 ∨ H2) = ω(H1) + ω(H2) for the clique number and
χ(H1 ∨ H2) = χ(H1) + χ(H2) for the chromatic number. Therefore, Theorem 4 implies
easω(H1∨H2) = min{easω(H1), easω(H2)} and easχ(H1∨H2) = min{easχ(H1), easχ(H2)}.

In a certain sense, Theorem 4 corresponds to Theorem 11 of [11] on the edge

stability number of union of graphs for additive invariants (invariants such that

ρ(H1 ∪H2) = ρ(H1) + ρ(H2) for disjoint graphs H1, H2) which states that esρ(H1 ∪
H2) = min{esρ(H1), esρ(H2)}. Note that it is not possible to remove edges between

the graphs H1 and H2 of the union H1∪H2 and it is not possible to add edges between

the graphs H1 and H2 of the join H1 ∨H2, so removing edges from H1 ∪H2 (adding

edges to H1 ∨H2) means removing edges from (adding edges to) H1 or H2, and this

keeps the structure of the graphs unchanged.

Iteratively applying Theorem 4 to the join G = H1 ∨ · · · ∨Hk of k ≥ 2 graphs gives

easρ(G) = min{easρ(Hi) : 1 ≤ i ≤ k}.
It is possible to transfer Theorem 12 of [11] on the edge stability number of the union

of graphs for maxing invariants (invariants such that ρ(H1∪H2) = max{ρ(H1), ρ(H2)}
for disjoint graphs H1, H2) as follows.

Theorem 5. Let ρ(G) be a monotone decreasing invariant with respect to spanning
subgraphs and with ρ(H1 ∨H2) = max{ρ(H1), ρ(H2)} for any two graphs H1, H2. Let G =
H1 ∨ · · · ∨ Hk, k ≥ 2, and s ∈ {1, . . . , k} such that ρ(Hi) = ρ(G) if and only if 1 ≤ i ≤ s.
Then easρ(G) =

∑s
i=1 easρ(Hi).

Proof. If there is a graph Hj , 1 ≤ j ≤ s, such that ρ(Hj) cannot be changed by edge

additions, then ρ(G) = ρ(Hj) = ρ(G+E′) for every E′ ⊆ E(G), since the invariant is



8 Edge adding stability of graphs

monotone decreasing with respect to spanning subgraphs (that is, adding edges does

not increase the invariant). Therefore, easρ(G) =∞.

Otherwise, let E′ = E′1 ∪ · · · ∪ E′s with E′i ⊆ E(Hi), |E′i| = easρ(Hi), and ρ(Hi +

E′i) 6= ρ(Hi) = ρ(G) for i = 1, . . . , s. Because of the property of the invariant,

ρ(G + E′) = max{ρ(Hi + E′i) : 1 ≤ i ≤ s} ∪ {ρ(Hi) : s + 1 ≤ i ≤ k} 6= ρ(G) which

implies easρ(G) ≤ |E′| =
∑s
i=1 easρ(Hi). If an edge set E′′ with less than |E′| edges is

added to G, then there is a subgraph Hj , 1 ≤ j ≤ s, to which less than easρ(Hj) edges

are added, which implies ρ(Hj + E′′) = ρ(Hj) and thus ρ(G+ E′′) = ρ(Hj) = ρ(G).

Therefore, easρ(G) = |E′| =
∑s
i=1 easρ(Hi).

Example 8. For the independence number it holds that α(H1 ∨ H2) =
max{α(H1), α(H2)}. Moreover, adding edges does not increase the independence num-
ber, that is, α(G) is monotone decreasing with respect to spanning subgraphs. There-
fore, Theorem 5 implies easα(H1 ∨ H2) = easα(H1) + easα(H2) if α(H1) = α(H2) and
easα(H1 ∨H2) = easα(H1) if α(H1) > α(H2).

3. Theorem-of-Gallai type results

Let G be a graph of order n(G) without isolated vertices. Gallai’s Theorem [8] states

that (1) α(G) + β(G) = n(G) and (2) α′(G) + β′(G) = n(G) (see above).

Analogous Theorem-of-Gallai type results were proved in [15] for invariants based

on the vertex stability (stability with respect to removing vertices) and in [13] for

invariants based on the edge stability number esρ(G) of a graph G.

In [13] the invariants α′ρ(G) and β′ρ(G) are defined as follows. If ρ(G) is an invariant,

then α′ρ(G) is the maximum number of edges of a spanning subgraph H of G with

ρ(H) 6= ρ(G). If such a subgraph does not exist (that is, if ρ(H) is constant for all

spanning subgraphs H of G), then we set α′ρ(G) =∞.

Let β′ρ(G) be the minimum number of edges of G that cover all nonempty spanning

subgraphs H of G with ρ(H) = ρ(G), that is, each such subgraph must contain at

least one edge of the covering set.

If esρ(G) <∞, then esρ(G) = m(G)−α′ρ(G) where m(G) is the size of G. Moreover,

if ρ(G) is monotone with respect to spanning subgraphs and esρ(G) < ∞, then

α′ρ(G) + β′ρ(G) = m(G), and therefore esρ(G) = β′ρ(G) (see [13]).

We can transfer these results if we consider the operation of adding edges between

non-adjacent vertices.

Definition 4. If ρ(G) is an invariant, then α′′ρ(G) is defined to be the minimum number
of edges of a spanning supergraph H of G with ρ(H) 6= ρ(G). If such a supergraph does
not exist (that is, if ρ(H) is constant for all spanning supergraphs H of G), then we set
α′′ρ(G) =∞.
Let β′′ρ (G) be the minimum number of edges of a set E ⊆ E(G) such that for each non-
complete spanning supergraph H of G with ρ(H) = ρ(G) there is an edge in E which is not
contained in H.
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In the definitions of α′ρ(G) and α′′ρ(G) we consider specific graphs “closest” to the

graph G, therefore, the number of edges is maximal for spanning subgraphs while it

is minimal for spanning supergraphs.

It holds that 0 ≤ β′′ρ (G) ≤ m(G). If ρ(H) is constant for all spanning supergraphs H

of G, then easρ(G) = α′′ρ(G) = ∞ by the definitions and β′′ρ (G) = m(G) (including

the case that G is complete) by considering the complete graphs without an edge

e ∈ E(G).

In the following we require that ρ(H) is not constant for all spanning supergraphs H

of G which is equivalent to easρ(G) <∞.

Lemma 1. If easρ(G) <∞, then easρ(G) = α′′ρ(G)−m(G).

Proof. Since ρ(G) can be changed by edge additions, there are sets E′ ⊆ E(G) with

ρ(G+ E′) 6= ρ(G). The size of G+ E′ is minimal if and only if |E′| is minimal, that

is, |E′| = easρ(G).

This implies α′′ρ(G) = m(G+E′) = m(G)+ |E′| = m(G)+easρ(G), that is, easρ(G) =

α′′ρ(G)−m(G).

Theorem 6. If ρ(G) is monotone with respect to spanning supergraphs and easρ(G) <∞,
then α′′ρ(G)− β′′ρ (G) = m(G).

Proof. Note that easρ(G) <∞ implies α′′ρ(G) <∞ and that G is not complete.

Let G′ = (V (G), E′) be a spanning supergraph of G with E′ ) E(G), |E′| = α′′ρ(G),

and ρ(G′) 6= ρ(G). Then the difference E′′ = E′ \ E(G) has the property that each

spanning supergraph H of G with ρ(H) = ρ(G) does not contain all edges of E′′, that

is, at least one edge is missing. Suppose not, then there is a spanning supergraph

H of G with ρ(H) = ρ(G) that contains all edges of E′′, that is, E(H) ⊇ E′ and

H is a spanning supergraph of G′. But ρ(G) is monotone with respect to spanning

supergraphs, so either ρ(G) < ρ(G′) ≤ ρ(H), or ρ(G) > ρ(G′) ≥ ρ(H), that is,

ρ(H) 6= ρ(G), a contradiction.

This implies β′′ρ (G) ≤ |E′′| = α′′ρ(G) − m(G) by the minimality of β′′ρ (G), that is,

α′′ρ(G)− β′′ρ (G) ≥ m(G).

Conversely, let E′′ ⊆ E(G) be a set of β′′ρ (G) edges such that each spanning supergraph

H of G with ρ(H) = ρ(G) does not contain an edge of E′′. The graph G′ = G+ E′′

is a spanning supergraph of G with all edges of the selected set E′′ which implies

ρ(G′) 6= ρ(G). By the minimality, α′′ρ(G) ≤ m(G′) = m(G) + β′′ρ (G), that is, α′′ρ(G)−
β′′ρ (G) ≤ m(G) and thus equality follows.

Corollary 1. If ρ(G) is monotone with respect to spanning supergraphs and easρ(G) <∞,
then easρ(G) = β′′ρ (G).

Proof. By Lemma 1 and Theorem 6, easρ(G) = α′′ρ(G)−m(G) = β′′ρ (G).
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These results imply that only one of the invariants easρ(G), α′′ρ(G), β′′ρ (G) needs to

be determined in order to know also the other two invariants.

Example 9. Consider the chromatic number χ(G) of a graph G which is a monotone
increasing invariant. Lemma 1 and Corollary 1 state that easχ(G) = α′′χ(G)−m(G) = β′′χ(G).
If G is a bipartite graph with ∆(G) ≥ 2, then adding a single edge between two neighbors
of a vertex results in a K3 which gives a supergraph with chromatic number 3. Therefore,
easχ(G) = β′′χ(G) = 1 and α′′χ(G) = m(G) + 1.
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vertex stability number of graphs, European J. Combin. 102 (2022), Article ID:

103504.

https://doi.org/10.1016/j.ejc.2021.103504.

[3] S. Akbari, J. Haslegrave, M. Javadi, N. Nahvi, and H. Niaparast, Tight bounds

on the chromatic edge stability index of graphs, Discrete Math. 347 (2024), no. 4,

Article ID: 113850.

https://doi.org/10.1016/j.disc.2023.113850.
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