
تعداد نشریات | 5 |
تعداد شمارهها | 116 |
تعداد مقالات | 1,355 |
تعداد مشاهده مقاله | 1,360,842 |
تعداد دریافت فایل اصل مقاله | 1,312,308 |
A spectral analysis of the Schultz index | ||
Communications in Combinatorics and Optimization | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 16 تیر 1404 | ||
نوع مقاله: Original paper | ||
شناسه دیجیتال (DOI): 10.22049/cco.2025.30370.2442 | ||
نویسندگان | ||
Angie L. Galán-Cipagauta؛ Juan Carlos Hernández-Gómez؛ Gerardo Reyna-Hernández؛ Jesús Romero-Valencia* | ||
Faculty of Mathematics, Universidad Autónoma de Guerrero, Acapulco, México | ||
چکیده | ||
Topological indices are descriptors that assign a number to each molecular graph, often well correlated to some properties. In particular, the Schultz index has stood out for its high discrimination capacity between different molecular structures, being a key tool in the study of their physicochemical properties. In this paper, we introduce a modification of the classical adjacency matrix making use of the Schultz index, incorporating both the degree of the vertices and the distance between each pair of them. We perform a spectral analysis of this index and identify some of its significant properties. Particularly, we focus on determining upper and lower bounds for the eigenvalues of this matrix, contributing to the understanding of its algebraic structure and its relationship with graph parameters. | ||
کلیدواژهها | ||
Topological indices؛ Schultz index؛ Matrix of a graph؛ Spectrum of a graph | ||
آمار تعداد مشاهده مقاله: 3 |