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Abstract: A signed graph Σ = (G, σ) is a graph G together with a signature function

σ which assigns 1 or −1 on the edges of G. Seidel matrix of an unsigned graph is

already defined and researchers investigated some of its spectral and other properties.
Considering the recently introduced notion of signed distance in signed graphs and that

of the distance compatible signed graphs, we define distance induced Seidel matrices for

such signed graphs and analyze their spectrum mainly for some classes of unbalanced
distance compatible signed graphs, as balanced signed graphs possess the same distance

induced Seidel spectrum as that of its underlying graph. We also deal with the distance

compatibility issue in the line graph of a distance compatible signed graph and discuss
the corresponding distance induced Seidel spectrum in this regard.
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1. Introduction

In this article, we deal with the distance induced Seidel matrices for the distance

compatible signed graphs and study some of their properties, especially their spectral

characteristics. Formally, a signed graph Σ = (G, σ) is a graph G = (V,E) together

with a signature or signing function σ : E → {−1, 1} that assigns −1 or 1 to each of
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the edges. Those edges with the labels 1 are called the positive edges and naturally

the edges with −1 on them are the negative edges. A graph G is treated as a signed

graph with all its edges as positive. Signed graphs have many applications, mainly

to model the signed social networks to analyze how well such a system will work

when the friendship or rivalry existing among the objects in the network. Social

balance theory is a well established research area, instances of which can be found

in [1, 5, 11–13] to name a few, where signed graphs play their vital role in analysing

it. Using the concept of signed distance in signed graphs and the associated notion of

distance compatibility [4], we deal with the distance induced Seidel matrices and the

corresponding spectrum of some unbalanced distance compatible signed graphs as we

found that the distance induced Seidel spectrum of balanced signed graphs coincide

with the Seidel spectrum of the underlying graph. This paper also deals with the

distance compatibility of the line graph of a signed graph and correspondingly takes

into account some of their distance induced Seidel spectral properties.

2. Distance induced Seidel matrix

It was van Lint and Seidel who introduced Seidel matrices for (unsigned) graphs in

their seminal paper [10]. Seidel matrices for graphs have several applications, exam-

ples of some of which can be had from [7–9]. Here we introduce distance induced

Seidel matrices for distance compatible signed graphs. Before we define a distance

compatible signed graph, we need notions of signed distance in signed graphs recently

introduced by Shahul Hameed et al. [4]. We assume from now on that all the un-

derlying graphs are connected, finite and simple. Given a signed graph Σ = (G, σ),

we define the sign σ(P(u,v)) of a path P(u,v) : uv1v2 · · · vn−1v with the initial vertex

u = v0 and the end vertex v = vn as σ(P(u,v)) =
n−1∏
i=0

σ(vivi+1). i.e., it is the product

of the signs on the edges in the path. Now we have an array of necessary definitions

that follows, all of which are taken from [4].

There may be more than one shortest path between two vertices u and v in a given

signed graph. We denote the set of all the shortest paths P(u,v) as P(u,v) and define

σmax(u, v) = 1, if the sign of at least one shortest path joining u and v is positive;

otherwise it is −1 . Similarly, σmin(u, v) = −1, if the sign of at least one shortest

path joining u and v is negative; otherwise it is 1. When the sign of all shortest paths

joining u and v is the same, we say that the vertices u and v are distance compatible

vertices. Moreover, when all pairs of vertices in a signed graph are distance compat-

ible, we call such a signed graph a distance compatible signed graph. Simply put, a

distance compatible signed graph is the one in which all the shortest paths between

any two pairs of vertices have the same sign; either they are all positive paths or all of

them are negative paths. Note that the geodesic graphs, i.e., graphs having a unique

shortest path between any pairs of vertices, are distance compatible.

Now, after leaving the above discussion there for a while, let us delve into another

important application of signed graphs in social psychology and in other fields, namely
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balance theory and the associated ideas, the details of which can be had from [13].

In a signed graph Σ = (G, σ), the sign σ(C) of a cycle C is the product of the sign

of the edges in that cycle. Σ is called a balanced signed graph if every cycle C in it

has the sign σ(C) = 1. Also a signed graph Σ = (G, σ) is said to be anti-balanced if

its negative −Σ = (G,−σ) is balanced. There are various characterizations to verify

whether a signed graph is balanced or not. It is shown in [4] that every balanced signed

graph is distance compatible, but the converse need not always be true. For instance,

an odd unbalanced cycle, being geodesic, is distance compatible. If the underlying

graph is bipartite, then the signed graph built on such a graph will be balanced if and

only if it is distance compatible [4]. Now we need a few more definitions before we

deal with the distance induced Seidel matrix for a distance compatible signed graph

using which we analyse the state of balance and unbalance in such signed graphs.

Consider a distance compatible signed graph Σ = (G, σ) having order n. For this dis-

tance compatible signed graph we denote the common value of σmax(u, v) = σmin(u, v)

by σ(u, v). If u and v are adjacent, we denote the same by σ(uv) or σ(u, v). Define

the complete signed graph Kn(Σ) associated with Σ as the signed graph with the

adjacency matrix A(Kn(Σ)) = (σ(u, v))u,v∈V (G). With the help of this Kn(Σ), we

define the distance induced Seidel matrix denoted by S(Σ) as:

S(Σ) = A(Kn(Σ))− 2A(Σ) (2.1)

Note that in the case of an unsigned graph G, the Seidel matrix will be nothing but

J − I − 2A(G), the usual Seidel matrix S(G) of G.

To move on, we need a very important operation in signed graphs called switch-

ing which is defined as follows. By switching a signed graph Σ = (G, σ), we

mean that it gives rise to a signed graph Σζ = (G, σζ) where ζ : V → {−1, 1} is

called the switching function and the signature function σζ(uv) satisfies the equa-

tion σζ(uv) = ζ(u)σ(uv)ζ(v). Note that the sign of a path in the switched signed

graph satisfy σζ(P(u,v)) = ζ(u)σ(P(u,v))ζ(v). A switching function ζ provides a self-

invertible diagonal matrix T = diag(ζ(u))u∈V (Σ). Let us call it the switching matrix

associated with ζ. Two signed graphs are said to be switching equivalent if one of

them can be obtained from the other by a switching.

Consider the following two results, which we recall very frequently for the discussion

that follows.

Lemma 1 ([11]). A signed graph is balanced if and only if it is switching equivalent to
the underlying graph.

By adjacency spectrum or simply spectrum of a signed graph we mean the multiset

of eigenvalues of its adjacency matrix counting multiplicities. We use the notation

of a two-row matrix form to denote the spectrum where the top row indicates the

spectral values and the second row gives the corresponding multiplicities. Two signed

graphs are said to be cospectral if they have the same spectrum with respect to their



4 On distance induced Seidel matrices for signed graphs

adjacency matrices. For convenience, let us call the distance-induced Seidel matrix

of a distance-compatible signed graph the S-matrix and the corresponding spectrum

the S-spectrum. When two signed graphs have the same spectrum corresponding to

their S-matrices, we call them S-cospectral. The following is a significant theorem [1]

that deals with the cospectrality of a signed graph and its underlying graph, of course

with respect to their adjacency matrices.

Theorem 1 ([1]). A signed graph Σ = (G, σ) is balanced if and only if Σ and G are
cospectral.

It is interesting to see that the S-matrix, S(Σ) = A(Kn(Σ))−2A(Σ) in Equation (2.1)

is actually the adjacency matrix of a signed complete graph. We denote this complete

signed graph by K∗n(Σ) or simply by K∗n, if no confusion arises. i.e., S(Σ) = A(K∗n(Σ)).

We deal with this K∗n(Σ) in some detail in Section 4. Indeed,

S(Σ)(i, j) =


0 if ui = uj

σ(ui, uj) if ui � uj in Σ

−σ(uiuj) if ui ∼ uj in Σ.

Now we provide two results regarding the S-matrices of distance compatible signed

graphs, where the latter one deals with balanced signed graphs.

Lemma 2. The S-matrices of two switching equivalent distance compatible signed graphs
are similar. i.e., a switching preserves S-spectrum.

Proof. Let Σ1 and Σ2 be two switching equivalent distance compatible signed

graphs. Then using the switching matrix T associated with the switching func-

tion, A(Σ2) = TA(Σ1)T−1 and since σζ(P(u,v)) = ζ(u)σ(P(u,v))ζ(v), A(Kn(Σ2)) =

TA(Kn(Σ1))T−1. Therefore,

S(Σ2) = A(Kn(Σ2))− 2A(Σ2)

= T
(
A(Kn(Σ1))− 2A(Σ1)

)
T−1

= TS(Σ1)T−1.

Theorem 2. If a distance compatible signed graph Σ = (G, σ) is balanced then Σ and G
are S-cospectral.

Proof. This follows easily from Lemma 1 and Lemma 2.

The converse need not be true since the unbalanced odd cycle C−7 , for example, has

the same S-spectrum as that of C7 (see the formula in Theorem 3).
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3. S-spectrum of some unbalanced signed graphs

In this section, first we explicitly provide a formula for the computation of eigenvalues

of the S-matrix of an unbalanced odd cycle. We take n = 2k + 1 ≥ 3 and denote the

unbalanced cycle of this order as C−n . Since a switching preserves the S-spectrum,

we take the unbalanced cycle to have only one negative sign such that σ(vnv1) = −1

and all the other edges are assigned as positive when the cycle Cn is represented as

Cn : v1v2 · · · vnv1. We use the following lemma for computational purposes in the

theorem that follows.

Lemma 3 ([6]).
k∑
r=1

cos(rθ) =
1

2

( sin
(
(2k + 1)θ/2

)
sin(θ/2)

− 1
)
.

The next theorem provides a formula for computing the S-spectrum of the unbalanced

odd cycle C−n .

Theorem 3. For an odd unbalanced cycle C−
n of order n = 2k + 1 ≥ 3, S-spectrum is

given by (
3 + (−1)k (−1)j csc

(
(2j + 1) π

2n

)
− 4 cos

(
(2j + 1)π

n

)
− 1

1 2 (j = 0, 1, 2, . . . , k − 1)

)
. (3.1)

Proof. The S-matrix here is S(C−n ) = A(Kn(C−n )) − 2A(C−n ) of the distance com-

patible odd signed cycle C−n which is a real symmetric matrix that simplifies to

S(C−n ) =


0 −1 1 · · · 1 1 −1 · · · −1 1

−1 0 −1 1 · · · 1 1 · · · · · · −1

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 −1 · · · · · · · · · · · · −1 0


To find the eigenvalues of this matrix which are real numbers, we proceed as follows.

We choose ρ = eiθ and the eigenvector corresponding to the eigenvalue λ as X =

[ρ, ρ2, . . . , ρn]T . Thus, from equation S(Σ)X = λX, λ =
∑k
r=1 ciρ

r −
∑k
r=1 ciρ

n−r,

where c1 = −1 and ci = 1 for i = 2, 3, . . . , k. Choosing now ρn = −1 so that

ρ = eiθj = e
(2j+1)iπ

n for j = 0, 1, . . . , n− 1, and hence,

λj =

k∑
r=1

ci
[
ρr + ρ−r

]
= 2

k∑
r=1

ci cos(rθj)

= 2

k∑
r=1

cos(rθj)− 4 cos(θj)
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= 2

k∑
r=1

cos(rθj)− 4 cos(θj)

=
sin
(
(2k + 1)θj/2

)
sin(θj/2)

− 1− 4 cos(θj)

Now for j = k, θk = π and λk = 3 + (−1)k. The remaining eigenvalues are paired as

λ2k = λ0, λ2k−1 = λ1, · · · , λk+1 = λk−1. Thus for j = 0, 1, . . . k − 1,

λj =
sin
(
(2k + 1)θj/2

)
sin(θj/2)

− 1− 4 cos(θj)

= (−1)j csc
(
(2j + 1)

π

2n

)
− 4 cos

(
(2j + 1)

π

n

)
− 1.

The above formula brings out an important corollary, given below.

Corollary 1. Among all odd unbalanced signed cycles C−
n , only C−

3 and C−
5 have the

S-spectrum coinciding with the adjacency spectrum of the corresponding all-positive complete
graph Kn.

Proof. It is well known that the spectrum of all positive complete graph Kn is(
n− 1 −1

1 n− 1

)
. As such using the formula in (3.1), the value 3 + (−1)k = 3 +

(−1)(n−1)/2 coincides with n − 1 only when n = 3 and n = 5, which completes the

proof.

Next, as an important example, we compute the S-spectrum of an unbalanced signed

wheel (Wn+1, σ) = (Cn ∨K1, σ) where n = 2k+ 1 is odd, and the signature σ is such

that σ(e) = −1 if e ∈ E(Cn) and 1 otherwise. We deal with the line graph of this

wheel and its S-spectrum in Section 5.

Theorem 4. The S-spectrum of the signed wheel (Wn+1, σ) = (Cn ∨K1, σ), n = 2k + 1,
is (

n −1
1 n

)
.

Proof. Here S(Wn+1, σ) = S, say for convenience, is the block matrix given by

S =

[
0 −J1×n

−Jn×1 (J − I)n×n

]
(n+1)

The characteristic polynomial,

det(xI − S) = det

[
x J1×n

Jn×1 (x+ 1)In − Jn×n

]
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Without loss of generality, we assume ((x + 1)In − Jn×n)−1 exist. Then by Schur’s

complement method of determinant we can write it as

det
(

(x+ 1)In − Jn×n
)

det
(
x− J1×n

(
(x+ 1)In − Jn×n

)−1
Jn×1

)
= det

(
(x + 1)In − Jn×n

)(
x − n

x− n+ 1

)
= (x + 1)n (x − n), which completes the

proof.

As pointed out in Corollary 1, only C−5 and C−3 have the S-spectrum coinciding with

the adjacency spectrum of the all positive complete graph Kn. But in the case of

signed wheels of special types which are considered in the above theorem, irrespective

of the order, all such signed wheels do exhibit this peculiar phenomenon. Note that

the signed wheels under discussion are all anti-balanced. Thus the above two examples

open up a few more problems for further exploration which we do in the next section.

4. Signed graphs for which K∗
n are balanced

In the case of a signed graph Σ = (G, σ), K∗n(Σ) has −Σ = (G,−σ) as its subgraph.

Therefore, when K∗n(Σ) is balanced, −Σ must be balanced or in other words, Σ must

be anti-balanced. But the anti-balance in Σ alone need not ensure the balance in

K∗n(Σ). In fact, Corollary 1 provides many counterexamples in this regard in the

form of unbalanced signed odd cycles C−n when n 6= 3 and n 6= 5. Now we provide

a characterization of a signed graph Σ for which K∗n is balanced. We begin with a

simple lemma for which the proof is omitted since it is straight forward from the

notion of anti-balance.

Lemma 4. For every anti-balanced complete signed graph Σ, K∗
n(Σ) is balanced.

Theorem 5. Let Σ = (G, σ) be a distance compatible (non complete) signed graph. Then
K∗
n is balanced if and only if Σ is anti-balanced and G is of diameter two.

Proof. First we assume that K∗n is balanced. This means that its subgraph −Σ

is balanced, i.e., Σ is anti-balanced. Let us denote the signature of an edge uv by

σ∗(uv). Then,

σ∗(uv) =

{
−σ(uv) if u ∼ v in Σ

σ(u, v) if u � v in Σ

Let ζ be the switching function that switches the K∗n to the all complete graph Kn

using its balance. Then ζ(u)σ∗(uv)ζ(v) = 1 for all edges uv in K∗n. If possible suppose

that the diameter of G is k > 2 and take two vertices u and v in G such that, the

distance, d(u, v) = k. Let P (u, v) : uu1u2 · · ·uk−1v be a shortest path joining u and
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v in Σ. Then

1 = ζ(u)σ∗(uv)ζ(v) = ζ(u)σ(uu1)ζ(u1)σ(u1u2) · · ·σ(uk−1v)ζ(v)

=
[
ζ(u)σ(uu1)ζ(u1)

][
ζ(u1)σ(u1u2)ζ(u2)

]
· · · ×[

ζ(uk−1)σ(uk−1v)ζ(v)
]

= (−1)k
[
ζ(u)σ∗(uu1))ζ(u1)

][
ζ(u1)σ∗(u1u2)ζ(u2)

]
· · · ×[

ζ(uk−1)σ∗(uk−1v)ζ(v)
]

= (−1)k,

since the product after (−1)k amounts to 1 due to the assumption of the switching

equivalency of K∗n. Now (−1)k = 1 holds only if k is an even number. Keeping this

in mind, if we assume that k > 2, P (u, , uk−1) being a shortest path of length k − 1,

proceeding as above,

ζ(u)σ∗(uuk−1)ζ(uk−1) = (−1)k−1 = −1, a contradiction.

This implies k ≤ 2. But Σ being built on a non-complete underlying graph, this

implies that k = 2.

Conversely, assume that Σ is anti-balanced and G is of diameter 2. The signature of

every edge uv in −Σ is −σ(uv). The graph −Σ is balanced by assumption. Thus there

exists a switching function ζ that switches −Σ to G; that is, ζ(u)
(
− σ(uv)

)
ζ(v) = 1

for every u ∼ v in Σ. Let uv be any edge in K∗n but not in −Σ. Then u � v in Σ

leading to the existence of a vertex u′ such that P(u,v) : uu′v has distance d(u, v) = 2.

Hence σ∗(uv) = σ(uu′)σ(u′v). As such,

ζ(u)σ∗(u, v)ζ(v) = ζ(u)
[
σ(uu′)σ(u′v)

]
ζ(v)

=
[
ζ(u)

(
− σ(uu′)

)
ζ(u′)

][
ζ(u′)

(
− σ(u′v)

)
ζ(v)

]
=
[
ζ(u)σ∗(uu′)ζ(u′)

][
ζ(u′)σ∗(u′v)ζ(v)

]
= 1.

This proves that ζ switches K∗n to Kn and hence the balance.

5. Distance compatibility in the line graph of a signed graph

There are various ways of defining a line graph of a signed graph, the details of which

are given in [2]. We follow the definition given below, taken from [2].

Definition 1. Let Σ = (G, σ) be a signed graph. A vertex-edge orientation, or simply
orientation, on Σ is a function η : V (G)× E(G)→ {1, 0,−1} satisfying the conditions

i. η(u, e) = 0 when u is not an end vertex of the edge e;

ii. η(u, e) = 1 or −1 if u is an end vertex of the edge e;
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iii. η(u, e)η(v, e) = −σ(e) if e = uv.

The vertex-edge incidence matrix of Σ corresponding to the orientation η is denoted

by Bη such that (u, e) entry is equal to η(u, e). The adjacency matrix of the line graph

Λ(Σ) of Σ, denoted by A(Λ(Σ)), will be then equal to BTη Bη − 2I, irrespective of the

orientation chosen. We remark that the signature function σL on Λ(Σ) is defined

by using the orientation η on Σ is σL(ei, ej) = η(u, ei)η(u, ej), where u is the vertex

common to ei and ej and zero otherwise. The following figure Fig 1 contains a signed

graph Σ, K∗n(Σ), and the line graph Λ(Σ) for illustrating these concepts.

e1

e2

e3

e4

e5

(a) Σ (b) K∗
n(Σ)

e1

e2

e3e4

e5

(c) Λ(Σ)

Figure 1. An illustration for the line graph of a signed graph

We recall the following facts about the line graphs:

i. The line graph of a cycle graph is a cycle grpah;

ii. The line graph of a star graph is a complete graph;

iii. The line graph of a tree is a block graph.

Lemma 5. Line graph of a signed tree is always distance compatible.

Proof. Line graph of a signed tree is a a signed block graph and we have that every

signed block graph is distance compatible.

Lemma 6. Let Λ(G) be the line graph of a connected graph G. Let e � f in Λ(G) and
P(e,f) : e0e1 . . . ek be any shortest path joining e and f , where we denote e0 = e, ek = f and
ei = uiui+1 for some vertices ui in V (G), i = 0, 1, 2, · · · , k . Then the path u1u2 . . . uk is a
shortest path joining u1 and uk in G.

Proof. We prove by contradiction method. If possible suppose u1u2 . . . uk is not a

shortest path joining u1 and uk in G, then there is another a path u′1u
′
2u
′
3 . . . u

′
m,

where u′1 = u1 and u′m = uk with m < k. Let e′i = u′iu
′
i+1 for i = 1, 2, · · · ,m − 1.

This gives another a path joining e and f,Q(e,f) : e0e
′
1e
′
2 . . . e

′
m−1ek of length smaller

than the given one and hence a contradiction.
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Theorem 6. If Σ = (G, σ) is a distance compatible signed graph, then so is the line graph
Λ(Σ) = (Λ(G), σL).

Proof. Let e, f be any two non adjacent vertices in Λ(Σ). If there exist only one

shortest path joining them, there is nothing to prove. Otherwise, we arbitrarily pick

two shortest paths P(e,f) : e = u0u1, u1u2, u2u3, . . . , uk−1uk, ukuk+1 = f and Q(e,f) :

e = u0u1, u1u
′
2, u
′
2u
′
3, . . . , u

′
k−1uk, ukuk+1 = f . We need to show that σL(P(e,f)) =

σL(Q(e,f)).

Now, σL(P(e,f)) = σL(u0u1, u1u2)σL(u1u2, u2u3) · · ·σL(uk−1uk, ukuk+1)

=
[
η(u1, u0u1)η(u1, u1u2)

][
η(u2, u1u2)η(u2, u2u3)

]
· · · ×

η(uk−1, uk−1uk)
[
η(uk, uk−1uk)η(uk, ukuk+1)

]
= η(u1, u0u1)

[
η(u1, u1u2)η(u2, u1u2)

][
η(u2, u2u3)η(u3, u2u3)

]
· · · ×[

η(uk−1, uk−1uk)η(uk, uk−1uk)
]
η(uk, ukuk+1)

= η(u1, u0u1)
[
− σ(u1u2)

][
− σ(u2u3)

]
· · · ×[

− σ(uk−1uk)
]
η(uk, ukuk+1)

Thus,

σL(P(e,f)) = (−1)(k−1)
[
σ(u1u2)σ(u2u3) · · ·σ(uk−1uk)

][
η(u1, u0u1)η(uk, ukuk+1)

]
.

Similarly,

σL(Q(e,f)) = (−1)(k−1)
[
σ(u1u

′
2)σ(u′2u

′
3) · · ·σ(u′k−1uk)

][
η(u1, u0u1)η(uk, ukuk+1)

]
.

Since Σ is distance compatible, by Lemma 6,

σ(u1u2)σ(u2u3) . . . σ(uk−1uk) = σ(u1u
′
2)σ(u′2u

′
3) . . . σ(u′k−1uk)

leading to the equality σL(P(e,f)) = σL(Q(e,f)). Hence, Λ(Σ) is also distance com-

patible.

Lemma 7. Let Σ = (G, σ) be any given signed graph. Let η1, η2 be two orientations for
Σ, then the line graph (Λ(G), σ1), (Λ(G), σ2) with respect to the two orientations η1, η2 are
switching equivalent.

Proof. Define ζ for any edge uu′, ζ(uu′) = η1(u, uu′)σ(uu′)η2(u′, uu′). Then, for

any two adjacent edges uu′ and u′v, it is easy to compute ζ(uu′)σ1(uu′, u′v)ζ(u′v) =

σ2(uu′, u′v). For,

ζ(uu′)σ1(uu′, u′v)ζ(u′v) =
[
η1(u, uu′)σ(uu′)η2(u′, uu′)

]
σ1(uu′, u′v)×[

η1(u′, u′v)σ(u′v)η2(v, u′v)
]

=
[
η1(u, uu′)σ(uu′)η2(u′, uu′)

][
η1(u′, uu′)η1(u′, u′v)

]
×[

η1(u′, u′v)σ(u′v)η2(v, u′v)
]

=
[
η1(u, uu′)η1(u′, uu′)

][
η2(u′, uu′)η2(v, u′v)

]
×[

σ(uu′)σ(u′v)
]
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=
[
− σ(uu′)

][
σ(uu′)σ(u′v)

]
×[

η2(u′, uu′)η2(u′, u′v)η2(u′, u′v)η2(v, u′v)
]

= −σ(u′v)
[
− σ2(uu′, u′v)σ(u′v)

]
= σ2(uu′, u′v).

The following lemma is a restatement of the results in [2].

Lemma 8. Let Σ = (G, σ) be any given connected signed graph. Then

i. All triangles that arise from star of Σ are positive in Λ(Σ).

ii. Every even cycle of Σ keeps its signature in Λ(Σ) and every odd cycle of Σ reverses
its signature in Λ(Σ).

iii. Λ(Σ) is anti-balanced if and only if Σ is a positive cycle.

iv. Λ(Σ) is balanced if and only if Σ is anti-balanced.

We use the notation K∗m(Λ(Σ)) for the complete graph determined by the S-matrix

of the line graph Λ(Σ), where m is the number of edges in Λ(Σ).

Theorem 7. Let Σ be a distance compatible signed graph of order n and size m. Then
K∗
m(Λ(Σ)) is switching equivalent to Km if and only if Σ is switching equivalent to Cn, for

some n ≤ 5.

Proof. By Theorem 5 and Lemma 4, K∗m(Λ(Σ)) is switching equivalent to Km if

and only if Λ(Σ) is anti-balanced and of diameter less than or equal to 2. But by

Lemma 8, Λ(Σ) is anti-balanced if and only if Σ is a positive cycle. The positive cycle

of diameter less than or equal to 2 is switching equivalent to Cn, for some n ≤ 5.

5.1. S-spectrum of the line graph of a signed graph

In this section we deal with some results involving S-spectrum of the line graph of a

distance compatible signed graph.

Theorem 8. Let Σ = (G, σ) be a distance compatible, anti-balanced signed graph. Then
Λ(Σ) and Λ(G) are S-cospectral.

Proof. By Lemma 8, if Σ is anti-balanced then Λ(Σ) is balanced. By Theorem 2, as

Λ(Σ) is balanced, Λ(G) and Λ(Σ) are S-cospectral.

As the proof of the results in the following lemma are simple, we omit them by stating

the results only.

Lemma 9. Let I be the identity matrix and J be the all one matrix of order n, a and b
are constants, then
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i. det
[
(aI + bJ)

]
= an−1(a+ nb).

ii. (aI + bJ)−1 = 1
a(a+nb)

[(a+ nb)I − bJ ].

iii. Jk×m(xI − J)m×mJm×k = m(x−m)Jk×k.

Theorem 9. The S-spectrum of the line graph Λ(Σ) of every signed star Σ = (K1,n, σ)
is (

1 −(n− 1)
n− 1 1

)
.

Proof. Let Σ be the given signed star having m number of positive edges and

k number of negative edges, where m + k = n. We arrange the edges as

e1, e2, · · · , em, em+1, · · · , en for which the first m edges are positive and the last k

edges are negative. Also consider an orientation of each edge in Σ towards the center

vertex. Then σL(ei, ej) is positive when σ(ei) = σ(ej) and negative otherwise. Then

the line graph Λ(Σ) of the signed star Σ = (K1,n, σ) is the complete graph whose

adjacency matrix is the block matrix

A(Λ(Σ)) =

[
(J − I)m×m −Jm×k
−Jk×m (J − I)k×k

]
n×n

.

Then the Seidel matrix is, S(Λ(Σ)) = −A(Λ(Σ)) and by Schur’s complement method

of determinant,

det(xI − S) = det

[(
(x− 1)I + J

)
m×m −Jm×k

−Jk×m
(
(x− 1)I + J

)
k×k

]
n×n

= det
[
(x− 1)I + J

]
m×m×

det
[(

(x− 1)I + J
)
k×k − Jk×m

(
(x− 1)I + J

)−1

m×mJm×k
]

= (x− 1)m−1(x+m− 1)det
[ (x− 1)(x+m− 1)I + (x− 1)J

(x+m− 1)

]
=

(x− 1)m−1

(x+m− 1)k−1
det
[
(x− 1)(x+m− 1)I + (x− 1)J

]
k×k

=
(x− 1)m−1

(x+m− 1)k−1
(x− 1)k(x+m− 1)k−1(x+m+ k − 1)

= (x− 1)m+k−1(x+m+ k − 1)

= (x− 1)n−1(x+ n− 1).

Hence, the spectral values are 1 (n-1 times) and −(n− 1).

Next we consider the signed wheel Wσ
n+1 = (Cn∨K1, σ), σ(e) = −1 if e ∈ E(Cn) and

1 otherwise and find the S-spectrum of its line graph. An example of a signed wheel

is given in Fig. 2. Before that we go through some basic results on circulant matrices

which are needed for the computation of the spectrum.
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v0

v1

v2

v3 v4

v5

Figure 2. A signed wheel Wσ
6

Lemma 10 ([3]). (i). Sum, product and inverse(if it exist) of circulant matrices is
circulant.

(ii). Let A = circ(x1, x2, · · · , xn), then AT = circ(x1, xn, xn−1, · · · , x2).

(iii). The eigenvalues of the circulant matrix circ(c1, c2, · · · , cn) is {c1 + c2ωj + c3ω
2
j + · · ·+

cnω
n−1
j , ωj = e

2πij
n , j = 1, 2, . . . , n and i =

√
−1 }.

(iv). 1 + ωj + ω2
j + · · ·+ ωn−1

j = 0, j 6= n.

(v). det circ(c1, c2, · · · , cn) =
n∏
j=1

f(ωj), where f(x) = c1 + c2x+ c3x
2 + · · ·+ cnx

n−1.

(vi). det circ(ac1, ac2, · · · , acn) = an det circ(c1, c2, · · · , cn).

Lemma 11. Let A = circ(x1, x2, · · · , xn) and B = circ(y1, y2, · · · , yn), then AB =
circ(z1, z2, · · · , zn), where zk =

∑k
j=1 xjy(k+1−j) +

∑n
j=k+1 xjy(n+k+1−j).

Lemma 12. The adjacency matrix of the line graph of the signed wheel is

A
(
Λ(Wσ

n+1

)
=

[
A B
BT C

]
2n

,

where A,B and C are n × n circulant matrices circ(0, 1, 1, · · · 1), circ(1, 0, 0, · · · , 0, 1) and
circ(0, 1, 0, 0, · · · , 0, 1) respectively.

Proof. Let u0 be the center vertex and u1u2u3 · · ·unu1 be the cycle of the wheel

Wσ
n+1. Let u0uj = ej , j = 1, 2, · · · , n and ujuj+1 = en+j , j = 1, 2, · · · , n − 1 and

unu1 = e2n. Then, by the definition of the wheel σ(ej) = 1, σ(en+j) = −1, j =

1, 2, · · · , n. Choose the orientation µ, µ(uj , ej) = 1 = µ(uj , en+j) = 1, j = 1, 2, · · · , n.

Now, σ(ei, ej) = µ(u, ei)µ(u, ej) = 1 if ei ∼ ej with common vertex u, otherwise

it is zero. Then it is clear that signature function on the line graph of the wheel,
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if ei ∼ ej , σ
L is σL(eiej) = 1 for 1 ≤ i, j ≤ n, i 6= j. Also, σL(ejen+j) = 1 for

1 ≤ j ≤ n and σL(ejej−n) = 1 = σL(ejej−n+1) = σL(e2n, e1) for n+ 1 ≤ j ≤ 2n− 1

σL(ejej+1) = 1 = σL(e2n, en+1) for n + 1 ≤ j ≤ 2n − 1 and hence the adjacency

matrix is the given block matrix.

Lemma 13. The S-matrix of the line graph of the signed wheel is

S(Λ(Wσ
n+1)) =

[
C1 C2

CT2 C3

]
2n

,

where C1, C2 and C3 are n × n circulant matrices circ(0,−1,−1, · · · − 1),
circ(−1, 1, 1, · · · , 1,−1) and circ(0,−1, 1, 1, · · · , 1,−1) respectively.

Proof. The line graph of the wheel graph is a positive (unsigned) graph, as we

noticed and hence its associated complete graph is K2n. Thus the S-matrix of the

line graph is J − I − 2A(Λ(Wσ
n+1)). If we use the form of A(Λ(Wn+1)) in Lemma 12,

then this will lead to the given block matrix.

Theorem 10. The characteristic polynomial of the S-matrix of the line graph of the

signed wheel Wσ
n+1 is f(x) = (x − 3)n−1

(
x + 2 − an

)(
x + 2 + an

) n−1∏
j=1

(
x + 3 + 4 cos( 2πj

n
)
)
,

where an =
√

2n2 − 14n+ 25.

Proof. The characteristic polynomial of the S-matrix of the line graph of the special

signed wheel is

det(xI−S) =

[
xI − C1 −C2

−CT2 xI − C3

]
(2n)

= det(xI−C1) det
(
xI−(C3+CT2 (xI−C1)−1C2)

)
.

We note that all the blocks are circulant matrices of order n and using Lemma 9 and

Lemma 11 it is easy to compute

det(xI − C1) = (x− 1)n−1(x+ n− 1) and(
xI − (C3 + CT2 (xI − C1)−1C2)

)
= circ

(
r1(x), r2(x), r3(x), · · · , r3(x), r2(x)

)
,where

r1(x) =
x3 + (n− 2)x2 + (1− 2n)x+ (16− 7n)

(x− 1)(x+ n− 1)
, r2(x) =

x2 + 2x− 4n+ 13

(x− 1)(x+ n− 1)
and r3(x)

=
−x2 − 2(n− 5)x+ (2n+ 7)

(x− 1)(x+ n− 1)
. By Lemma 10, det

(
xI − (C3 + CT2 (xI − C1)−1C2)

)
=

n∏
j=1

(
r1 + r2ωj + r3ω

2
j + r3ω

3
j + · · ·+ r3ω

n−2
j + r2ω

n−1
j

)
=

n∏
j=1

(
r1 + r2(ωj + ωn−1

j ) + r3(ω2
j + ω3

j + · · ·+ ωn−2
j )

)
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=
(
r1 + 2r2 + (n− 3)r3

) n−1∏
j=1

(
r1 + 2r2 cos(

2πj

n
)− r3(1 + 2 cos(

2πj

n
))
)

=
(x2 + 4x+ 14n− 2n2 − 21)

(x+ n− 1)

n−1∏
j=1

(
(r1 − r3) + 2(r2 − r3) cos(

2πj

n
)
)

=
(x2 + 4x+ 14n− 2n2 − 21)

(x+ n− 1)

n−1∏
j=1

( (x+ 3)(x− 3)

(x− 1)
+ 4

(x− 3)

(x− 1)
cos(

2πj

n
)
)

=
(x2 + 4x+ 14n− 2n2 − 21)(x− 3)n−1

(x+ n− 1)(x− 1)n−1

n−1∏
j=1

(
(x+ 3) + 4 cos(

2πj

n
)
)

=
(x+ 2 + an)(x+ 2− an)(x− 3)n−1

(x+ n− 1)(x− 1)n−1

n−1∏
j=1

(
x+ 3 + 4 cos(

2πj

n
)
)

Thus f(x) = det(xI − C1) det
(
xI − (C3 + CT2 (xI − C1)−1C2)

)
= (x− 1)n−1(x+ n− 1)

(x+ 2 + an)(x+ 2− an)(x− 3)n−1

(x+ n− 1)(x− 1)n−1

n−1∏
j=1

(
x+ 3 + 4 cos(

2πj

n
)
)

= (x− 3)n−1
(
x+ 2− an

)(
x+ 2 + an

) n−1∏
j=1

(
(x+ 3 + 4 cos(

2πj

n
)
)
.

Remark 1. S-spectrum of the line graph of the signed wheel Wσ
n+1 is

(
3,−2± an,−(3 +

4 cos( 2πj
n

)), j = 1, 2, · · · , n − 1
)

with multiplicity of the eigenvalues depending on the value
of n.

6. Conclusion

In this introductory paper, we discussed at some length about the distance induced

Seidel matrices of certain signed graphs. We propose to have a separate paper

dealing with the properties of signed graphs for which K∗n are anti-balanced and, of

course, studying the properties of K∗n(G) for an unsigned connected graph G itself

will be interesting. We postpone this analysis to a later stage.
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