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Abstract: The aim of this article is to develop necessary and sufficient optimal-
ity conditions for nonsmooth mathematical programs with equilibrium constraints

(MPEC). We introduce a nonsmooth variant of the standard ∂T -Abadie constraint

qualification (∂T -ACQ(B1,B2)) and propose ∂T -generalized alternatively stationary
conditions using the tangential subdifferential framework. Building on these new con-

ditions, we derive first-order optimality criteria under ∂T -ACQ(B1,B2). Additionally,

we establish sufficient optimality conditions within a framework of generalized convexity
assumptions. The effectiveness and applicability of these conditions are demonstrated

through several examples.
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1. Introduction

Mathematical programs with equilibrium constraints (MPECs) have been the subject

of deep research due to their rich applications in areas such as economics, multilevel

games, engineering design, and transportation planning, among others. For insights
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2 Mathematical programming problem with equilibrium constraints

into these applications and the latest developments in theory and algorithms, see

[2, 16, 24]. A serious drawback of MPECs is that their general structure is overly

complicated to guarantee the satisfaction of standard constraint qualifications (CQs),

like the Mangasarian-Fromovitz CQ or Slater CQ, at feasible points. To address this

challenge, researchers have proposed various modifications to existing CQ, which has

led to the introduction of new stationarity concepts tailored to MPECs. Interest

in this area has continued to grow, as reflected in a steady rise in related research

contributions [1, 4–8, 14, 22, 33].

Recent advancements in the fields of variational analysis, optimal control, and non-

smooth optimization have inspired the development of more generalized models and

solution concepts, particularly in settings involving vector inequalities, multiple cost

functions, and interval-valued frameworks. Various contributions have established

foundational results and efficiency criteria by leveraging structural properties of the

underlying functionals and generalized convexity notions, often motivated by appli-

cations in physics and engineering systems [11, 26–29]. These developments provide

valuable insights and tools that can potentially be extended to more complex math-

ematical structures, such as those involving equilibrium constraints or nonsmooth

variational inequalities.

This investigation focuses on the subsequent mathematical program with equilibrium

constraints (MPEC) of the form:

(MPEC) :


Minimize Γ(z)

s. t.


c(z) ≤ 0, d(z) = 0,

T (z) ≥ 0, ζ(z) ≥ 0,

T (z)T ζ(z) = 0,

where Γ : Rn −→ R, c : Rn −→ Rl, d : Rn −→ Rm, T : Rn −→ Rp and ζ : Rn −→ Rp
are given functions, n, l,m, p ∈ N.
The tangential subdifferential [18–20, 32], a generalized derivative concept that en-

compasses both the Gâteaux derivative and the convex subdifferential, was first intro-

duced and applied to derive optimality conditions for nonlinear programming in [23].

Subsequent studies have expanded its applications in various optimization problems.

For instance, Tung [31] utilized the tangential subdifferential to establish strong KKT

optimality conditions for Pareto efficient and weakly efficient solutions in semi-infinite

multiobjective programming. Later, Jennane and Kalmoun [12] derived optimality

conditions for multiobjective semi-infinite programming with switching constraints

using tangential subdifferentials. Gadhi and Odha [9] developed necessary optimality

conditions by leveraging tangential subdifferentials in conjunction with optimal value

reformulation and the partial calmness property. Since the tangential subdifferential

generalizes both the Clarke subdifferential [3] and the Michel-Penot subdifferential

[21], optimality conditions formulated in terms of tangential subdifferentials yield

broader results than those based on more restrictive subdifferentials. In particular,
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the findings obtained via tangential subdifferentials extend and unify previous re-

sults derived using Clarke subdifferentials by Luu and Hang [17] and Michel-Penot

subdifferentials by Khanh and Tung [13].

In this work, our objective is to establish necessary and sufficient optimality re-

sults for nonsmooth MPECs, using the concept of tangential subdifferentials. To

achieve this, we have introduced nonsmooth versions of the constraint qualification

∂T -ACQ(B1,B2) for a surrogate problem, utilizing the tangential subdifferential

framework. Additionally, we have proposed a ∂T -generalized alternatively station-

ary concept in terms of tangential subdifferentials and demonstrated that it serves

as a first-order necessary optimality condition under ∂T -ACQ(B1,B2). Furthermore,

we focus on sufficient optimality conditions, showing that ∂T -generalized alternatively

stationary can also serve as a global sufficient optimality condition under certain gen-

eralized convexity assumptions. To clarify our findings, we provide various examples.

This study was motivated by the apparent lack of research on mathematical programs

with equilibrium constraints (MPECs) employing the tangential subdifferential, a gap

we identified after an extensive literature review. Previous works onMPECs primar-

ily focus on cases where the involved functions are either continuously differentiable

or locally Lipschitz. To the best of our knowledge, this is the first investigation to

establish optimality conditions for MPECs using the tangential subdifferential. The

feasible set of anMPEC is not necessarily convex, even when the underlying functions

are convex, rendering classical convex analysis techniques inadequate. Moreover, the

local Lipschitz continuity or differentiability of these functions is not always assured.

Consequently, we exploreMPECs for a broader class of functions, specifically tangen-

tially convex functions, addressing a notable gap in existing literature. The findings

of this study provide new theoretical insights and represent a significant contribution

to the field.

The article is structured as follows: In Section 2, we provide some preliminaries and

review key definitions. Section 3 introduces the generalized alternatively stationary

concept and demonstrates that it is a necessary optimality condition forMPECs. In

Section 4, we establish sufficient optimality conditions under assumptions of pseudo-

convexity and quasiconvexity. Finally, we conclude our work in Section 5.

2. Definitions and preliminaries

In this section, we state a few definitions, notations and results, which we will refer

to later in the article. In what follows throughout this work Rn denotes the standard

n-dimensional Euclidean space. We write the inner product as 〈·, ·〉. Let E be a

nonempty subset of Rn. We define the convex hull of E to be coE, interior of E to be

intE, convex cone (including the origin) of E to be posE, cone of E to be coneE and

the closure of E to be clE.

Let E ⊆ Rn and z̄ ∈ clE. The contingent cone and the negative polar cone of E at z̄

are defined, respectively, as follows

• T(z̄,C) :=
{
δ ∈ Rn : ∃ un ↓ 0, ∃ {δn} ⊆ Rn, δn → δ, z̄ + unδn ∈ C

}
.
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• C◦ :=
{
δ ∈ Rn : 〈δ, z〉 ≤ 0, ∀ z ∈ C

}
.

The Fréchet normal cone N (z̄,C) to a set C at a point z̄ is defined as

N (z̄,C) =
(
T(z̄,C)

)◦
=
{
z∗ ∈ Rn : 〈z∗, δ〉 ≤ 0, ∀ δ ∈ T(z̄,C)

}
.

Note that while the tangent cone T(z̄,C) is always closed, it is not necessarily convex.

However, if C is a convex set, then T(z̄,C) is convex, and

N (z̄,C) =
{
z∗ ∈ Rn : 〈z∗, z− z̄〉 ≤ 0, ∀ z ∈ C

}
.

Let ϕ : Rn → R and z̄ ∈ Rn be given. The directional derivative of ϕ at z̄ in the

direction δ ∈ Rn is defined by

ϕ′(z̄, δ) = lim
t↓0

ϕ(z̄ + tδ)− ϕ(z̄)

t
.

In the next definition, the class of functions referred to as “tangentially convex” is

defined, which was first proposed by Pshenichnyi [23] and termed by Lemaréchal [15].

Definition 1. ([15, 23]): A function ϕ : Rn → R is tangentially convex at z̄ ∈ ϕ−1(R)
if its directional derivative ϕ′(̄z, δ) exists, is finite for all directions δ ∈ Rn and the function
δ 7→ ϕ′(̄z, δ) is convex.

Based on the definition of a tangentially convex function, Pshenichnyi [23] introduced

the concept of its associated subdifferential, known as the tangential subdifferential

(see also [18]).

Definition 2. ([18, 23]): Let ϕ : Rn → R be a tangentially convex function at
z̄ ∈ ϕ−1(R). It is said that the nonempty compact convex set ∂Tϕ(̄z) ⊂ Rn is the tangential
subdifferential of ϕ at z̄, if, for every δ ∈ Rn, one has

ϕ′(̄z; δ) = max
z∈∂Tϕ(z̄)

〈z, δ〉, (2.1)

which is equivalent to

∂Tϕ(̄z) =
{
z ∈ Rn : 〈z, δ〉 ≤ ϕ′(̄z; δ), ∀δ ∈ Rn

}
.

Remark 1. Note that the definition of the tangential subdifferential is also equivalent
to ∂Tϕ(̄z) = ∂ϕ′(̄z, ·)(0), where ∂ denotes the subdifferential of a convex function in convex
analysis. Additionally, according to Definition 2, if ϕ is tangentially convex at z̄ ∈ ϕ−1(R),
then its tangential subdifferential at z̄ is nonempty, as follows from the sublinearity of ϕ′(̄z; ·).
Furthermore, from equation (2.1), ϕ′(̄z; ·) acts as the support functional of the tangential
subdifferential ∂Tϕ(̄z) of ϕ at z̄.
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It can be noted that, among the various calculus rules applicable to tangential subd-

ifferentials of tangentially convex functions, additivity is one of them. Specifically, if

ϕ1 and ϕ2 are tangentially convex functions at a common point z̄, then the following

holds

∂T
(
ϕ1 + ϕ2

)
(z̄) = ∂

(
ϕ1 + ϕ2

)′
(z̄, ·)(0) = ∂

(
ϕ′1(z̄, ·) + ϕ′2(z̄, ·)

)
(0)

= ∂ϕ′1(z̄, ·)(0) + ∂ϕ′2(z̄, ·)(0) = ∂Tϕ1(z̄) + ∂Tϕ2(z̄)

demonstrating that the tangential subdifferential of the sum of two tangentially convex

functions is the sum of their individual tangential subdifferentials at the common point

z̄.

Now, we recall the definitions of Dini-convexity, Dini-pseudoconvexity and Dini-

quasiconvexity of a function formulated in terms of tangential subdifferential. The

aforesaid definitions have been derived by Tung [31].

Definition 3. [31] Let S ⊂ Rn be a nonempty convex set and q̄ ∈ S be given. Further,
assume that ϕ : S → R is a tangentially convex at q̄. Then:

• ϕ is Dini-convex at q̄ on S if the relation

ϕ(q)− ϕ(q̄) ≥
〈
ϑ, q − q̄

〉
, ∀ ϑ ∈ ∂Tϕ(q̄)

hold for all q ∈ S.

• ϕ is Dini-pseudoconvex at q̄ on S if the relation

ϕ(q) < ϕ(q̄) =⇒
〈
ϑ, q − q̄

〉
< 0, ∀ ϑ ∈ ∂Tϕ(q̄)

hold for all q ∈ S.

• ϕ is Dini-quasiconvex at q̄ on S if the relation

ϕ(q) ≤ ϕ(q̄) =⇒
〈
ϑ, q − q̄

〉
≤ 0, ∀ ϑ ∈ ∂Tϕ(q̄)

hold for all q ∈ S.

3. Necessary optimality condition

To derive the necessary optimality conditions forMPEC, we introduce new concepts

of stationary points using tangential subdifferential. To do this, let G represent the

collection of feasible points in MPEC.

G :=
{
z ∈ Rn : c(z) ≤ 0, d(z) = 0, T (z) ≥ 0, ζ(z) ≥ 0, T (z)T ζ(z) = 0

}
.
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Let z̄ ∈ G, and let

P :=
{

1, . . . , l
}
, Q :=

{
1, . . . ,m

}
, R :=

{
1, . . . , p

}
and

Ic(z̄) :=
{
i ∈ P : ci(z̄) = 0

}
.

Consider the sets

A :=
{
i ∈ R : Ti(z̄) = 0, ζi(z̄) > 0

}
,

B :=
{
i ∈ R : Ti(z̄) = 0, ζi(z̄) = 0

}
,

D :=
{
i ∈ R : Ti(z̄) > 0, ζi(z̄) = 0

}
.

The set B is referred to as the degenerate set. When B is empty, the vector z̄ is said

to satisfy strict complementarity condition [33]. In this section, we assume that B is

a nonempty set and we define P(B) as the collection of all disjoint bipartitions of B;

that is

P(B) :=
{

(B1,B2) : B1 ∪B2 = B, B1 ∩B2 = ∅
}
.

We now refer to the nonlinear program MPEC(B1,B2) as defined by Ye [33], con-

cerning the partition (B1,B2) of B.

MPEC(B1,B2) :


Minimize Γ(z)

s. t.


c(z) ≤ 0, d(z) = 0,

Ti(z) ≥ 0, i ∈ B1, ζi(z) ≥ 0, i ∈ B2,

Ti(z) = 0, i ∈ A ∪B2, ζi(z) = 0, i ∈ D ∪B1.

It is clear that z̄ ∈ G is a local optimal solution of the MPEC if and only if it is a

local optimal solution of the MPEC for every partition (B1,B2) in P(B).

The following lemma is instrumental in proving one of the main results presented in

this article.

Lemma 1. Let A1 be a non-empty convex cone and A2 be a non-empty, convex and
compact set. If

max
v∈A2

〈v, δ〉 ≥ 0, ∀ δ ∈ A◦1,

then 0 ∈ clA1 +A2.
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Proof. On the contrary, suppose that 0 /∈ clA1 +A2. Hence, the sets clA1 and A2

are disjoint. Using the separation theorem (Theorem 6.10) [10], there exist a non-zero

vector h∗ ∈ Rn and a real number α ∈ R such that

〈h∗, β〉 < α ≤ 〈h∗, γ〉 ∀ β ∈ A2, γ ∈ −clA1.

Thus,

〈h∗, β〉 < α ≤ 〈h∗, γ〉 ∀ β ∈ A2, γ ∈ −A1. (3.1)

Since −A1 is a cone, we can set γ = 0 to get

〈h∗, β〉 < 0 ∀ β ∈ A2.

By the compactness assumption of A2, we get

max
β∈A2

〈h∗, β〉 < 0.

Since A1 is cone and if we let γ = −γ′, γ′ ∈ A1, therefore, we have

ργ ∈ −A1, ∀ ρ ∈ N\{0}.

By (3.1), it follows that
α

ρ
≤ 〈h∗, γ〉.

Letting ρ→∞, we obtain

0 ≤ 〈h∗, γ〉.

Then, for all γ′ ∈ A1, one has

〈h∗, γ′〉 ≤ 0,⇒ h∗ ∈ A◦1.

Since h∗ ∈ A◦1, this leads to a contradiction and completes the proof of this lemma.

Now, we defne the ∂T -Abadie constraint qualifcation (∂T -ACQ(B1,B2)) forMPEC.

Definition 4. Let z̄ ∈ G and (B1,B2) be a partition of B 6= ∅. Assume that ci, i ∈
Ic(̄z), di,−di, i ∈ Q, Ti,−Ti, i ∈ A ∪ B, ζi,−ζi, i ∈ D ∪ B are tangentially convex at z̄. We
say that ∂T -ACQ(B1,B2) holds at z̄ ∈ G if

Θ(̄z)◦ ⊆ T
(
z̄,G
)
,
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where

Θ(̄z) :=

( ⋃
i∈Ic(z̄)

∂T ci(̄z)

)
∪

( ⋃
i∈Q

∂T di(̄z)

)
∪

( ⋃
i∈Q

∂T (−di)(̄z)

)

∪

( ⋃
i∈A∪B2

(
∂TTi(̄z) ∪ ∂T (−Ti)(̄z)

))
∪

( ⋃
i∈D∪B1

(
∂T ζi(̄z) ∪ ∂T (−ζi)(̄z)

))

∪

( ⋃
i∈B1

∂T (−Ti)(̄z)

)
∪

( ⋃
i∈B2

∂T (−ζi)(̄z)

)
.

In the following definition, we introduce a generalized concept of alternative station-

arity expressed in terms of the tangential subdifferential.

Definition 5. A feasible point z̄ ofMPEC is called a ∂T -generalized alternatively station-
ary (∂T -GA-stationary) point if there exists a vectors λ = (λc, λd, λT , λζ) ∈ Rl × Rm × R2p

and µ = (µd, µT , µζ) ∈ Rm × R2p such that the following conditions are satisfied:

0 ∈ ∂TΓ(̄z) +

l∑
i=1

λci ∂
T ci(̄z) +

∑
i∈Q

µdi ∂
T di(̄z) +

∑
i∈Q

λdi ∂
T (−di)(̄z) +

p∑
i=1

λTi ∂
T (−Ti)(̄z)

+

p∑
i=1

λζi ∂
T (−ζi)(̄z) +

p∑
i=1

µTi ∂
TTi(̄z) +

p∑
i=1

µζi ∂
T ζi(̄z), (3.2)

with

λci ci(̄z) = 0, ∀ i ∈ P (3.3)

and



λci ≥ 0, ∀ i ∈ P, λdi ≥ 0, µdi ≥ 0, ∀ i ∈ Q,
λTi = 0, µTi = 0, ∀ i ∈ D,

λζi = 0, µζi = 0, ∀ i ∈ A,
λTi , λ

ζ
i , µ
T
i , µ

ζ
i ≥ 0, ∀ i ∈ R,

µTi = 0 or µζi = 0, ∀ i ∈ B.

(3.4)

We are now prepared to demonstrate the primary result of this article, which estab-

lishes that ∂T -generalized alternatively stationary is a necessary condition for opti-

mality.

Theorem 1. Let z̄ ∈ G be a local optimal solution of MPEC. Assume that Γ is locally
Lipschitz and tangentially convex at z̄, that ci, i ∈ Ic(̄z), di,−di, i ∈ Q, Ti,−Ti, i ∈ A ∪
B, ζi,−ζi, i ∈ D∪B are tangentially convex at z̄. Additionally, suppose that the set posΘ(̄z)
is closed and that there exists a partition (B1,B2) of B such that ∂T -ACQ(B1,B2) is
satisfied at z̄. Then, z̄ is a ∂T -generalized alternatively stationary point.
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Proof. Since z̄ ∈ G is a local optimal solution ofMPEC, there exists a neighborhood

U of z̄ such that

Γ(z̄) ≤ Γ(z), ∀ z ∈ G ∩ U.

Let δ ∈ T(z̄,G) be arbitrary. By definition there exist un → 0+ and δn → δ such that

z̄ + unδn ∈ G for all n. For n large enough, z̄ + unδn ∈ U. Since z̄ is a local optimal

solution of Γ over G, therefore, we have

Γ(z̄ + unδn)− Γ(z̄)

un
≥ 0.

Note that

Γ(z̄ + unδn)− Γ(z̄)

un
=

Γ(z̄ + unδn)− Γ(z̄ + unδ)

un
+

Γ(z̄ + unδ)− Γ(z̄)

un
.

Since Γ is locally Lipschitz, therefore, as n→∞

Γ(z̄ + unδn)− Γ(z̄ + unδ)

un
→ 0

we get

Γ′(z̄, δ) = lim
n→∞

Γ(z̄ + unδ)− Γ(z̄)

un

= lim
n→∞

Γ(z̄ + unδn)− Γ(z̄)

un
≥ 0

≥ 0.

Thus, we have shown that Γ′(z̄, δ) ≥ 0, for all δ ∈ T(z̄,G). Hence, by the Definition 2

of tangential subdifferential

max
ξ∈∂T Γ(z̄)

〈
z, δ
〉
≥ 0, for all δ ∈ T(z̄,G).

Here ∂TΓ(z̄) is a tangential subdifferential of Γ at z̄.

Since ∂T -ACQ(B1,B2) holds at z̄ ∈ G, we have

max
ξ∈∂T Γ(z̄)

〈
z, δ
〉
≥ 0, for all δ ∈ Θ(z̄)◦.

Since Θ(z̄) ⊆ posΘ(z̄), we get

max
ξ∈∂T Γ(z̄)

〈
z, δ
〉
≥ 0, for all δ ∈

(
posΘ(z̄)

)◦
.
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Since ∂TΓ(z̄) is compact, we can conclude, as stated in Lemma 1, that

0 ∈ ∂TΓ(z̄) + cl posΘ(z̄).

The closedness of posΘ(z̄) implies

0 ∈ ∂TΓ(z̄) + posΘ(z̄).

Thus,

0 ∈ ∂TΓ(z̄) +
∑

i∈Ic(z̄)

pos ∂T ci(z̄) +
∑
i∈Q

pos ∂T di(z̄) +
∑
i∈Q

pos ∂T (−di)(z̄)

+
∑

i∈A∪B2

pos ∂TTi(z̄) +
∑

i∈A∪B

pos ∂T (−Ti)(z̄)

+
∑

i∈D∪B1

pos ∂T ζi(z̄) +
∑

i∈D∪B

pos ∂T (−ζi)(z̄).

Consequently, we can find scalars λci ≥ 0, i ∈ Ic(z̄), µdi ≥ 0, λdi ≥ 0, i ∈ Q, µTi ≥
0, i ∈ A ∪B2, λ

T
i ≥ 0, i ∈ A ∪B, µζi ≥ 0, i ∈ D ∪B1 and λζi ≥ 0, i ∈ D ∪B, such

that

0 ∈ ∂TΓ(z̄) +
∑

i∈Ic(z̄)

λci ∂
T ci(z̄) +

∑
i∈Q

µdi ∂
T di(z̄) +

∑
i∈Q

λdi ∂
T (−di)(z̄)

+
∑

i∈A∪B2

µTi ∂
TTi(z̄) +

∑
i∈A∪B

λTi ∂
T (−Ti)(z̄)

+
∑

i∈D∪B1

µζi ∂
T ζi(z̄) +

∑
i∈D∪B

λζi ∂
T (−ζi)(z̄).

Setting

λTi = 0, ∀ i ∈ D, λζi = 0, ∀ i ∈ A,

µTi = 0, ∀ i ∈ D ∪B1, µ
ζ
i = 0, ∀ i ∈ A ∪B2.

Thus, z̄ is a ∂T -GA-stationary point, and the proof is complete.

To demonstrate the necessary optimality conditions derived in Theorem 1, we provide

an example of MPEC.

Example 1. Consider the following problem

(EXMPEC) :


Minimize Γ(z1, z2)

s. t.


c(z1, z2) ≤ 0, d(z1, z2) = 0,

T (z1, z2) ≥ 0, ζ(z1, z2) ≥ 0,

T (z1, z2)T ζ(z1, z2) = 0,
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where Γ(z1, z2) = z1 + |z1| − 2 max(z2, z
3
2), c(z1, z2) = |z2|, d(z1, z2) = 0

T (z1, z2) =


− 1

2
, z1 ≥ 0, z2 < 0

− 1
4
, z1 < 0, z2 < 0

z1, z1 ∈ R, z2 ≥ 0,

ζ(z1, z2) =


− 1

4
, z1 < 0, z2 ≥ 0

− 1
2
, z1 < 0, z2 < 0

z2, z1 ≥ 0, z2 ∈ R.

We have G =
{

(z1, z2) : z1 ∈ R+, z2 = 0
}
, A = D = ∅, B = {1}, P = {1}, Q = {1} and

z̄ = (0, 0) ∈ G is an optimal solution of (EXMPEC).
Observe that,

∂TΓ(0, 0) =
[
0, 2

]
×
[
− 2, 0

]
, ∂T c(0, 0) = {0} ×

[
− 1, 1

]
, ∂T d(0, 0) =

{
(0, 0)

}
∂T (T )(0, 0) =

{
(1, 0)

}
and ∂T (ζ)(0, 0) =

{
(0, 1)

}
are the tangential subdifferentials of Γ, c, d, T , ζ at (0, 0).
In choosing B1 = {1}, B2 = ∅, we have

Θ(0, 0) =
(
{0} ×

[
− 1, 1

])
∪
{

(0, 1), (0,−1), (−1, 0)
}
.

Then,

Θ(0, 0)◦ = R+ × {0}.

Since T
(
(0, 0), G

)
= R+ × {0}, we deduce that Θ(0, 0)◦ ⊆ T

(
(0, 0), G

)
.

The set posΘ(0, 0) is closed. In fact, a straightforward calculation demonstrates this

posΘ(0, 0) = R− × R.

Taking λc = 5
2
, µd = λd = µζ = 0, µT = 1

4
, λT = 7

4
and λζ = 1

2
, since ( 3

2
,−2) ∈ ∂TΓ(0, 0),

we get

0 ∈ ∂TΓ(0, 0) + λc ∂T c(0, 0) + µd ∂T d(0, 0) + λd ∂T (−d)(0, 0) + µT ∂TT (0, 0)

+ λT ∂T (−T )(0, 0) + µζ ∂T ζ(0, 0) + λζ ∂T (−ζ)(0, 0).

4. Sufficient optimality conditions

In this section, we analyze and prove the sufficiency of the necessary optimality con-

ditions of Karush-Kuhn-Tucker type established in the previous section. Since we es-

tablish the aforementioned sufficient optimality conditions for the consideredMPEC
problem under generalized convexity, which is formulated in terms of tangential sub-

differentials of the involved functions.

Let z̄ ∈ G be a feasible point that satisfies the ∂T -GA-stationary condition. Define

the set Ω as follows:
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Figure 1. The graph of the objective function Γ(z1, z2) = z1 + |z1| − 2 max(z2, z
3
2) of (EXMPEC) consid-

ered in Example 1.

Ω := A+ ∪D+ ∪B+ ∪B+
T ∪B+

ζ ,

where

A+ :=
{
i ∈ A : µTi > 0

}
, D+ :=

{
i ∈ D : µζi > 0

}
,

B+ :=
{
i ∈ B : µTi > 0 and µζi > 0

}
, B+
T :=

{
i ∈ B : µTi = 0 and µζi > 0

}
,

and B+
ζ :=

{
i ∈ B : µTi > 0 and µζi = 0

}
.

Here, µT and µζ are the multipliers associated with the point z̄ that satisfies the

∂T -generalized alternatively stationary condition.

Now, we derive and prove the sufficient conditions for a feasible solution to be globally

optimal in the considered optimization problem MPEC under the Dini generalized

convexity assumptions.

Theorem 2. Let z̄ ∈ G be a feasible solution of MPEC and ∂T -generalized alternatively
stationary condition holds at z̄. Suppose that Γ is Dini-pseudoconvex at z̄ on G, that ci, i ∈
Ic(̄z), ±di, i ∈ Q,−Ti, i ∈ A ∪B and −ζi, i ∈ D ∪B are Dini-quasiconvex at z̄ on G. If Ω
is empty, then z̄ is a global optimal solution of MPEC.

Proof. By contrary, suppose that z̄ ∈ G is not a global optimal solution of MPEC.
Hence, by Definition, there exists z0 ∈ G such that

Γ(z0)− Γ(z̄) < 0.
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By (3.2), we get η ∈ ∂TΓ(z), %i ∈ ∂T ci(z̄), σi ∈ ∂T di(z̄), θi ∈ ∂T (−di)(z̄), xi ∈
∂T (−Ti)(z̄), x∗i ∈ ∂TTi(z̄), yi ∈ ∂T (−ζi)(z̄) and y∗i ∈ ∂T ζi(z̄) such that

0 = η +

l∑
i=1

λci%i +
∑
i∈Q

µdi σi +
∑
i∈Q

λdi θi +

p∑
i=1

λTi xi +

p∑
i=1

λζi yi

+

p∑
i=1

µTi x∗i +

p∑
i=1

µζi y
∗
i .

Then,

0 =
〈
η, z0 − z̄

〉
+

l∑
i=1

λci
〈
%i, z0 − z̄

〉
+
∑
i∈Q

µdi
〈
σi, z0 − z̄

〉
+
∑
i∈Q

λdi
〈
θi, z0 − z̄

〉
+

p∑
i=1

λTi
〈
xi, z0 − z̄

〉
+

p∑
i=1

λζi
〈
yi, z0 − z̄

〉
+

p∑
i=1

µTi
〈
x∗i , z0 − z̄

〉
+

p∑
i=1

µζi
〈
y∗i , z0 − z̄

〉
. (4.1)

Since Γ is Dini-pseudoconvex at z̄ on G, we get〈
η, z0 − z̄

〉
< 0, ∀ η ∈ ∂TΓ(z).

Consequently,

l∑
i=1

λci
〈
%i, z0 − z̄

〉
+
∑
i∈Q

µdi
〈
σi, z0 − z̄

〉
+
∑
i∈Q

λdi
〈
θi, z0 − z̄

〉
+

p∑
i=1

λTi
〈
xi, z0 − z̄

〉
+

p∑
i=1

λζi
〈
yi, z0 − z̄

〉
+

p∑
i=1

µTi
〈
x∗i , z0 − z̄

〉
+

p∑
i=1

µζi
〈
y∗i , z0 − z̄

〉
> 0. (4.2)

Since z0 ∈ G, we have

ci(z0) ≤ 0 = ci(z̄), i ∈ Ic(z̄),

di(z0) = 0 = di(z̄), i ∈ Q,

(−Ti)(z0) ≤ 0 = (−Ti)(z̄), i ∈ A ∪B,

(−ζi)(z0) ≤ 0 = (−ζi)(z̄), i ∈ D ∪B.

By the Dini-quasiconvexity of ci, i ∈ Ic(z̄),−Ti, i ∈ A ∪B and −ζi, i ∈ D ∪B at z̄

on G, we obtain 〈
%i, z0 − z̄

〉
≤ 0, i ∈ Ic(z̄),
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xi, z0 − z̄

〉
≤ 0, i ∈ A ∪B,〈

yi, z0 − z̄
〉
≤ 0, i ∈ D ∪B.

Using the Dini-quasiconvexity of ±di, i ∈ Q, we obtain〈
σi, z0 − z̄

〉
≤ 0, i ∈ Q,

〈
θi, z0 − z̄

〉
≤ 0, i ∈ Q.

Then, 〈 ∑
i∈Ic(z̄)

λci %i, z0 − z̄

〉
≤ 0, as λci ≥ 0, i ∈ Ic(z̄),

〈 ∑
i∈A∪B

λTi xi, z0 − z̄

〉
≤ 0, as λTi ≥ 0, i ∈ A ∪B,

〈 ∑
i∈D∪B

λζi yi, z0 − z̄

〉
≤ 0, as λζi ≥ 0, i ∈ D ∪B.

〈∑
i∈Q

µdi σi, z0 − z̄

〉
≤ 0, as µdi ≥ 0, i ∈ Q, (4.3)

〈∑
i∈Q

λdi θi, z0 − z̄

〉
≤ 0, as λdi ≥ 0, i ∈ Q. (4.4)

• By (3.3), we have λci = 0, ∀ i /∈ Ic(z̄). Consequently,〈
l∑
i=1

λci %i, z0 − z̄

〉
≤ 0. (4.5)

• By (3.4), we have λTi = 0, ∀ i ∈ D and ζi = 0, ∀ i ∈ A. Consequently,〈
p∑
i=1

λTi xi, z0 − z̄

〉
≤ 0, (4.6)

〈
p∑
i=1

λζi yi, z0 − z̄

〉
≤ 0. (4.7)

• Since Ω is empty, we deduce that µTi = 0 and µζi = 0, ∀ i ∈ R. Then

p∑
i=1

µTi
〈
x∗i , z0 − z̄

〉
+

p∑
i=1

µζi
〈
y∗i , z0 − z̄

〉
= 0. (4.8)
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Combining (4.3), (4.4), (4.5), (4.6), (4.7) and (4.8), we obtain

l∑
i=1

λci
〈
%i, z0 − z̄

〉
+
∑
i∈Q

µdi
〈
σi, z0 − z̄

〉
+
∑
i∈Q

λdi
〈
θi, z0 − z̄

〉
+

p∑
i=1

λTi
〈
xi, z0 − z̄

〉
+

p∑
i=1

λζi
〈
yi, z0 − z̄

〉
+

p∑
i=1

µTi
〈
x∗i , z0 − z̄

〉
+

p∑
i=1

µζi
〈
y∗i , z0 − z̄

〉
≤ 0.

We reach a contradiction with (4.2), thereby concluding the proof.

In Theorem 2, we demonstrated that the ∂T -generalized alternatively stationary con-

dition, under the assumption of generalized convexity, also serves as a global sufficient

optimality condition when the set Ω = ∅. It is important to note that this condition,

in its current form, was initially explored in [33] Theorem 2.3 for smooth mathemati-

cal programs with equilibrium constraints, and was later extended to the nonsmooth

context by Ansari et al. [1].

We now present the example of an nonsmooth MPEC to demonstrate the sufficient

optimality conditions established in this section.

Example 2. Consider the following problem:

(EXMPEC) :


Minimize Γ(z1, z2)

s. t.


c(z1, z2) ≤ 0, d(z1, z2) = 0,

T (z1, z2) ≥ 0, ζ(z1, z2) ≥ 0,

T (z1, z2)T ζ(z1, z2) = 0,

where

Γ(z1, z2) =


z1 − z2 if z1 ≥ 0, z2 ≤ 0,

−z1
z22+1

+
√
−z1 + 1

2
if z1 < 0, z2 ∈ R,

z21 + z22 + 1 if z1 ≥ 0, z2 > 0,

c(z1, z2) = z22 + z2, d(z1, z2) = 0, ζ(z1, z2) = z2,

T (z1, z2) =

{
z1 if z2 ≥ 0,

z2 + 1 otherwise.

We have G =
{

(z1, z2) : z1 ∈ R+, z2 = 0
}
, A = D = ∅, B = {1}, P = {1}, Q = {1} and

z̄ = (0, 0) ∈ G is a feasible point of (EXMPEC).
Observe that,

∂TΓ(0, 0) =
{

(1, −1)
}
, ∂T c(0, 0) =

{
(0, 1)

}
, ∂T d(0, 0) =

{
(0, 0)

}
∂T (T )(0, 0) =

{
(1, 0)

}
and ∂T (ζ)(0, 0) =

{
(0, 1)

}
are the tangential subdifferentials of Γ, c, d, T , ζ at (0, 0).



16 Mathematical programming problem with equilibrium constraints

Figure 2. The graph of the objective function Γ(z1, z2) of (EXMPEC) considered in Example 2.

• Note that Γ is Dini-pseudoconvex at (0, 0), that c, ±d, −T and −ζ are Dini-quasiconvex
at (0, 0).

• For λc = 4
3
, λT = 1, µd = λd = 0 and λζ = 1

3
, we have

0 ∈ ∂TΓ(0, 0) + λc ∂T c(0, 0) + µd ∂T d(0, 0) + λd ∂T (−d)(0, 0)

+ λT ∂T (−T )(0, 0) + λζ ∂T (−ζ)(0, 0).

• Moreover, since µTi = 0 for all i ∈ A, µζi = 0 for all i ∈ D, and µζi = µTi = 0 for all i ∈ B,
it follows that Ω = ∅. Therefore, (0, 0) is a ∂T -generalized alternatively stationary point.
Consequently, (0, 0) is an optimal solution to the problem.

5. Conclusion

In this article, we have investigated the necessary and sufficient optimality conditions

for nonsmooth mathematical programs with equilibrium constraints (MPECs) us-

ing the concept of tangential subdifferentials. Our approach introduces nonsmooth

versions of the constraint qualification ∂T -ACQ(B1,B2) for a surrogate problem,

grounded in tangential subdifferentials, and establishes a ∂T -generalized alternatively

stationary (∂T -GA-stationary) concept as a first-order necessary optimality condition.

Through this framework, we have shown that ∂T -GA-stationarity can also serve as a

global sufficient optimality condition under certain generalized convexity assumptions.

As far as we know, no existing research has exploredMPECs using the framework of

tangential subdifferentials. This gap in the literature makes our findings particularly
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significant, the results we present are entirely new contributions to the field. By

approaching the problem from this previously unexplored perspective, we provide

fresh insights that deepen the understanding of MPECs and lay the groundwork for

future developments.

This study lays the groundwork for several promising directions of future research

across various areas of mathematics. The key research questions, current limitations,

and possible extensions are outlined below:

• The sufficiency results depend on generalized convexity assumptions which, al-

though broader than classical convexity, may still not cover all nonsmooth or non-

convex real-world settings.

• This study is confined to finite-dimensional spaces. Extending the analysis to

infinite-dimensional settings, such as Banach spaces, would require a different ap-

proach due to the complexities of nonsmooth analysis in such environments.

• Explore duality theory for MPECs in the tangential subdifferential framework.

In particular, formulating Mond-Weir-type and Wolfe-type dual problems could

provide a deeper understanding of the primal-dual relationship in nonsmooth

equilibrium-constrained settings. Establishing weak, strong, and converse duality

results under generalized Dini-convexity and tangential subdifferential conditions

would be a valuable direction for further advancement.

Data availability Data sharing is not applicable to this article as no data sets were

generated or analyzed during the current study.

Disclosure statement No potential conflict of interest was reported by the au-

thor(s).
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optimization problems based on interval-valued symmetric invexity, Chaos Solit.

Fractals. 174 (2023), Article ID: 113834

https://doi.org/10.1016/j.chaos.2023.113834.

[12] M. Jennane and E.M. Kalmoun, On nonsmooth multiobjective semi-infinite pro-

gramming with switching constraints using tangential subdifferentials, Stat., op-

tim. inf. comput. 11 (2023), no. 1, 22–28.

https://doi.org/10.19139/soic-2310-5070-1704.

[13] P.Q. Khanh and L.T. Tung, On optimality conditions and duality for multiobjec-

tive optimization with equilibrium constraints, Positivity 27 (2023), no. 4, Article

ID: 49

https://doi.org/10.1007/s11117-023-01001-8.

[14] B. Kohli, Necessary and sufficient optimality conditions using convexifactors

for mathematical programs with equilibrium constraints, RAIRO Oper. Res. 53

(2019), no. 5, 1617–1632.

https://doi.org/10.1051/ro/2018084.
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Appendix

(A1): A feasible point z̄ is said to be a local optimal solution ofMPEC, if there exists

a neighborhood U of z̄ such that

Γ(z̄) ≤ Γ(z0), ∀ z0 ∈ G ∩ U.

(A2): A feasible point z̄ is said to be a global optimal solution of MPEC, if there

exists z0 ∈ G such that

Γ(z0)− Γ(z̄) < 0.

In optimization problems, a local optimal solution is a point where the objective

function reaches its best value in a small surrounding region. On the other hand,

a global optimal solution is the absolute best point across the entire feasible

range. While every global optimum is also a local one, the reverse is not always

true, especially in non-convex problems, where multiple local optima can exist

without all being globally optimal.

(A3): The class of tangentially convex functions is quite broad. It includes all convex

functions with open domains, as well as any function that is Gateaux differen-

tiable at a point z, since in that case, the directional derivative ϕ′(z̄, ·) becomes

linear. In fact, a function with an open domain that is Gateaux differentiable

everywhere is tangentially convex at every point in its domain, even if it is not

convex itself. Interestingly, the set of tangentially convex functions at a given

point forms a real vector space. This means, for example, that adding a convex

function to a differentiable one gives us a tangentially convex function—which

is usually neither convex nor differentiable. Another example is the product of

two nonnegative tangentially convex functions.
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(A4): It can be noted that, among the various calculus rules applicable to tangential

subdifferentials of tangentially convex functions.

• [25] If ϕ is tangentially convex function at z̄, then the following holds

∂T
(
αϕ
)
(z̄) = α∂Tϕ(z̄), ∀α ∈ R+.

• [30] If ϕ1 and ϕ2 are tangentially convex functions at a common point z̄

with ϕ1(z̄) ≥ 0, ϕ2(z̄) ≥ 0, then the following holds

∂T
(
(ϕ1 ϕ2)(z̄)

)
= ϕ1(z̄) ∂Tϕ2(z̄) + ∂Tϕ1(z̄)ϕ2(z̄)

demonstrating that the tangential subdifferential of the product of two

tangentially convex functions (evaluated at a point where both are non-

negative) is given by a Leibniz-type rule involving their individual tangen-

tial subdifferentials.

(A5): Algorithm 1 An algorithm for finding the ∂T -generalized alternatively

stationary point of the problem MPEC
Step 1. Provide Problem Data

Start by supplying the input data for the given MPEC problem:

• Input Γ, ci, i ∈ P, di, i ∈ Q, Ti, i ∈ R and ζi, i ∈ R.

Step 2. Identify the Feasible Set

• Construct the feasible region as follows:

G :=
{
z ∈ Rn : c(z) ≤ 0, d(z) = 0, T (z) ≥ 0, ζ(z) ≥ 0, T (z)T ζ(z) = 0

}
.

Step 3. Select a Feasible Point

• If the feasible set G is empty, terminate the algorithm.

• Otherwise, choose any point z̄ ∈ G, and update the feasible set by remov-

ing this point: G = G \ {z̄}.
Step 4. Check tangential convexity of the functions

• Verify whether each functions Γ, ci, i ∈ Ic(z̄), di,−di, i ∈ Q, Ti,−Ti, i ∈
A ∪B, ζi,−ζi, i ∈ D ∪B are tangentially convex at the point z̄.

• If all functions are tangentially convex at z̄, proceed to Step 5.

• If any function fails this condition, return to Step 3.

Step 5. Verify tangential subdifferentiability

• Compute the tangential subdifferential of each function at z̄.

Step 6. Check the ∂T -ACQ(B1,B2) Condition

• If the ∂T -Abadie constraint qualifcation (∂T -ACQ(B1,B2)) holds at z̄,

proceed to the next step.
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• If not, return to Step 3.

Step 7. Test ∂T -generalized alternatively stationary Conditions

Determine if there exist multipliers Choose the multipliers λci ≥ 0, i ∈
Ic(z̄), µdi ≥ 0, λdi ≥ 0, i ∈ Q, µTi ≥ 0, i ∈ A ∪B2, λ

T
i ≥ 0, i ∈ A ∪B, µζi ≥

0, i ∈ D ∪B1 and λζi ≥ 0, i ∈ D ∪B such that condition (3.2) is satisfied.

• If such multipliers can be found, then z̄ is ∂T -generalized alternatively

stationary point of MPEC.
• If not, return to Step 3.

Algorithm 2 An algorithm for finding global optimal solution of the problem

MPEC
(A6): Step 1. Provide Problem Data

Start by supplying the input data for the given MPEC problem:

• Input Γ, ci, i ∈ P, di, i ∈ Q, Ti, i ∈ R and ζi, i ∈ R.

Step 2. Identify the Feasible Set

• Construct the feasible region as follows:

G :=
{
z ∈ Rn : c(z) ≤ 0, d(z) = 0, T (z) ≥ 0, ζ(z) ≥ 0, T (z)T ζ(z) = 0

}
.

Step 3. Select a Feasible Point

• If the feasible set G is empty, terminate the algorithm.

• Otherwise, choose any point z̄ ∈ G, and update the feasible set by removing this point:

G = G \ {z̄}.

Step 4. Check tangential convexity of the functions

• Verify whether each functions Γ, ci, i ∈ Ic (̄z), di,−di, i ∈ Q, Ti,−Ti, i ∈ A ∪ B, ζi,−ζi, i ∈
D ∪B are tangentially convex at the point z̄.

• If all functions are tangentially convex at z̄, proceed to Step 5.

• If any function fails this condition, return to Step 3.

Step 5. Verify tangential subdifferentiability

• Compute the tangential subdifferential of each function at z̄.

Step 6. Check Index Set Emptiness
Confirm that the following combined index set is empty:

• Ω := A+ ∪D+ ∪B+ ∪B+
T ∪B+

ζ = ∅.

Step 7. Test ∂T -generalized alternatively stationary Conditions
• Verify whether the ∂T -generalized alternatively stationary condition holds at the point z̄.

Step 8. Verify Generalized Convexity Conditions

At the point z̄, confirm the following:

• The objective function Γ is Dini-pseudoconvex .

• The constraint functions ci, i ∈ Ic (̄z), ±di, i ∈ Q,−Ti, i ∈ A ∪ B and −ζi, i ∈ D ∪ B are

Dini-quasiconvex.

If these conditions are not met, the problem cannot be solved using the current framework-return
to Step 3.

Step 9. Output the Solution

The point z̄ obtained through this process is a global optimal solution of the problem MPEC.
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