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Abstract: The minimum lateness scheduling problem seeks to create a schedule

that minimizes the largest lateness of the system. This paper deals with the challenge
of increasing the processing time of jobs in a minimum cost such that the minimum

lateness attains a given bound. It is called the minimum cost problem of downgrading

minimum lateness scheduling. Additionally, the modifying costs are represented as
intervals, and we apply the minmax regret criterion to address this uncertainty. Our

contribution is an O(n2) algorithm for solving the corresponding robust problem.
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1. Introduction

The scheduling problem is an important topic in optimization theory, with numerous

applications in production, management, computer systems, etc. Generally, schedul-

ing theory focuses on the challenge of sequencing a finite set of jobs utilizing a system
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2 The minimum cost problem

with constrained resources. For concepts and algorithms, readers can refer to Brucker

[8] and Pinedo [21], or the surveys by Lawler [17], Lenstra [18], and Xiong et al. [25]

among other relevant literature.

Recently, there has been growing interest in modifying parameters to improve net-

work behavior with respect to a given objective. This has led to the study of a

class of problems known as up- and downgrading optimization. Specifically, the up-

grading (downgrading) optimization problem involves adjusting parameters within a

budget to minimize (maximize) the optimal objective. The seminal work on down-

grading optimization in networks is by Fulkerson and Harding [13], who aimed to

maximize the shortest path through edge length modifications. Since then, other up-

and downgrading combinatorial optimization problems have been extensively investi-

gated; for example, see [11, 12, 24] for studies on degrading various types of spanning

tree problems by modifying edge lengths on graphs, or refer to [9, 10] for research on

upgrading combinatorial optimization with a bottleneck function in a general setting,

where network optimization is a special case.. The up- and downgrading location

problem has been also focused. Gassner [14, 15] introduced the up- and downgrading

1-median and 1-center on the plane and on networks. She also developed combina-

torial algorithms that solve the corresponding problems in polynomial time. Then,

Sepasian [23] studied the upgrading 1-center problem on weighted trees and proposed

an O(n2) algorithm. Plastria [22] developed a polynomial-time algorithm to solve

the up- and downgrading 1-median problem on the plane endowed by the Euclidean

norm. Afrashteh et al. [1] investigated the upgrading selective obnoxious p-median

problem on trees and solved the problem in polynomial time for both cases p = 1 and

p > 1. The upgrading vertex cover problem was considered by Baldomero-Naranjo

et al. [6]. They devised a polynomial time algorithm for the problem. The literature

on the up/downgrading optimization problem primarily focuses on its deterministic

version, where all data are precisely known. A natural open question is how to extend

these problems to a more general, nondeterministic setting.

In practice, input data often contain uncertainties due to a lack of information or

changes in the environment. Decision-makers aim to protect against the worst-case

scenarios in such situations. Solutions are typically evaluated against the optimal

solution that could have been achieved if the actual values of the uncertain parameters

were known. To address these challenges, the robust optimization technique has been

introduced in [7, 16]. Robust optimization seeks solutions for scenarios where the

parameters are imprecise, uncertain, and generally incompletely known. A popular

robust optimization model aims to find a solution that minimizes the largest deviation

from the optimum to consider the worst-case across all scenarios in the uncertainty

set (regret criterion). For minmax regret combinatorial optimization with models

and algorithms, we can see [2, 4, 5, 19, 20] and references therein. Anh et al. [3]

recently studied the problem of downgrading the makespan objective with interval

cost coefficients and devised polynomial-time algorithms to solve it. The relevant

models considered the problems under finitely many scenarios or interval data, and

one technique used was the analysis of worst-case scenarios, which leads to maximum

regret.
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In cybersecurity and system resilience, where delaying certain tasks can mitigate risks,

counteract adversarial actions, or allow critical preparations. For instance, in defen-

sive scheduling against cyber-attacks, an attacker might aim to optimize task comple-

tion to minimize lateness, while a defender may increase processing times strategically

to ensure a minimum delay, buying time for system defense mechanisms. Another

relevant application arises in manufacturing and supply chain management, where

adjusting job processing times can help manage workload distribution and enforce

production constraints. In situations where delays beyond a threshold are necessary

(e.g., controlled release of products, inventory balancing, or maintenance schedul-

ing), companies may modify processing times at minimal cost to meet operational

requirements. These applications can be modeled as a minimum cost problem for

downgrading minimum lateness scheduling. Furthermore, the cost of modifying the

processing time for a job depends on many factors and is not deterministic, but is

estimated within an interval. This leads to uncertainty in costs. Hence, we apply the

min-max regret criterion to obtain a reasonable solution.

This paper is organized as follows. The introduction section is dedicated to the

literature review. Section 2 introduces the basic concepts of the minimum lateness

problem and presents the deterministic downgrading minimum lateness problem. We

propose a linear-time algorithm to solve this problem, where the due dates are already

sorted. In Section 3, we address the robust downgrading minimum lateness problem,

formulating it as n linear programming problems, where n is the number of jobs. Since

each subproblem can be solved in linear time, this results in an O(n2) algorithm that

solves the robust problem. Finally, we summarize the results of the paper and provide

an outlook in Section 4.

2. The minimum cost problem of downgrading minimum late-
ness scheduling

2.1. Classical minimum lateness scheduling problem

Let us introduce the (single machine) minimum lateness scheduling problem (MLSP).

Given n jobs J1, J2, . . . , Jn with corresponding processing times p1, p2, . . . , pn and due

dates d1, d2, . . . , dn. A schedule π is a permutation of 1, 2, . . . , n. Specifically, it is the

sequence of jobs processed by the machine in such an order Jπ(1), Jπ(2), . . . , Jπ(n).

The completion time of job Jπ(i) is

Cπ(i) =

i∑
j=1

pπ(j)

for i = 1, . . . , n. If the completion time of job Jπ(i) exceeds the deadline, its lateness

is measured by the gap between its completion time and the corresponding due date,

say

Lπ(i) = max{0, Cπ(i) − dπ(i)},
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and the lateness of schedule π is the maximum lateness across all jobs,

Lπ =
n

max
i=1

Lπ(i).

The goal of the MLSP is to identify a schedule π that minimizes the maximum lateness

of all jobs. Let us denote Π by the set of all schedules, the MLSP is stated as min
π∈Π

Lπ.

The optimal schedule of the MLSP is characterized as in the following result.

Theorem 1 (Jackson’s rule [8]). The optimal schedule π∗ of the MLSP satisfies

dπ∗(1) ≤ dπ∗(2) ≤ . . . ≤ dπ∗(n).

Due to Jackson’s rule, we process the jobs in the sequence of non-decreasing due

dates and the optimal solution π∗ does not depend on the processing times. From

here onwards, we assume without loss of generality that

d1 ≤ d2 ≤ . . . ≤ dn.

This means that the identity permutation, π(i) = i ∀i = 1, . . . , n, presents the

optimal schedule.

Let π∗ be an optimal schedule of the MLSP, the minimum lateness is Lπ∗ =
n

max
i=1

Lπ∗(i).

Example 1. Let us consider the input of the MLSP as in Table 1, where the due dates
are already sorted according to the indices.

i 1 2 3 4 5 6

pi 4 2 4 3 2 1

di 6 8 10 11 12 14

Table 1. An instance of the MLSP in Example 1

By Jackson’s rule, the identity schedule is the optimal one. We can compute the completion
time and the lateness of each job as in Table 2.

i 1 2 3 4 5 6

Ci 4 6 10 13 15 16

Li 0 0 0 2 3 2

Table 2. Completion time and lateness of each job

According to Table 2, the minimum lateness is 3.
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2.2. Deterministic minimum cost problem of downgrading minimum
lateness scheduling

Let an instance of the MLSP be given with due dates that are already sorted. Based

on the motivation outlined in the previous section, the scheduling system should be

degraded to a minimum lateness time ∆ for maintenance or cybersecurity purposes.

This means the lateness of all jobs should be downgraded to a value ∆, which is larger

than minπ∈Π Lπ, by augmenting the processing times of jobs. Precisely, the processing

time of each job Ji is increased by xi, with a cost of wi per unit of augmentation for

i = 1, . . . , n. The modified processing time of job Ji is denoted as p̃i = pi + xi.

Subsequently, the completion time with respect to the new processing times is given

as C̃i =
∑i
j=1 p̃j , and the corresponding lateness is L̃i = max{0, C̃i − di}, i =

1, . . . , n. Then, we state the minimum cost problem of downgrading minimum lateness

scheduling (MCDMLS) as:

• The modified minimum lateness is at least ∆, i.e.,
n

max
i=1

L̃i ≥ ∆.

• The cost
∑n
i=1 wixi is minimized with xi ≥ 0 for i = 1, . . . , n.

According to the previous statement and Jackson’s rule, the minimum lateness can be

attained by scheduling jobs in ordering 1, 2 . . . , n. Moreover, the inequality
n

max
i=1

L̃i ≥

∆ holds if there exists an index i ∈ {1, 2, . . . , n} such that L̃i ≥ ∆. The MCDMLS

can be formulated as

(MC) min

n∑
i=1

wixi

s.t. x ∈
n⋃
i=1

Xi.

Here, x is a vector in Rn and the set Xi is identified as

Xi =
{
x = (xj) ∈ Rn : p̃j = pj + xj ∀j = 1, . . . , n,

C̃i =

i∑
j=1

p̃j ∀i = 1, . . . , n,

L̃i ≥ C̃i − di, L̃i ≥ ∆, L̃i ≥ 0,

xj ≥ 0 ∀i = 1, . . . , n.
}

for i = 1, . . . , n.

A special property concerning the optimal solution of (MC) is presented below.

Proposition 1. An optimal solution to (MC) exists where the processing time of exactly
one job is augmented.
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Proof. Let k =
n

arg max
i=1

L̃i be the index corresponding to the maximum lateness of

all jobs. We know that the minimum lateness equals the threshold, i.e., L̃k = ∆. As

L̃k = C̃k − dk = Ck − dk +

k∑
j=1

xj ,

the optimal cost equals the optimal value of the problem

min


k∑
j=1

wjxj : Ck − dk +

k∑
j=1

xj = ∆, xj ≥ 0 ∀j = 1, . . . , k

 .

By setting ∆k = ∆ + dk − Ck, we simplify the problem as

min


k∑
j=1

wjxj :

k∑
j=1

xj = ∆k, xj ≥ 0 ∀j = 1, . . . , k

 .

Let i0 = arg min {wj : j = 1, . . . , k}, then the optimal solution is wi0∆k. Hence, the

optimal solution of (MC) is x∗ with x∗i0 = ∆k and x∗j = 0 for j 6= i0. This proves the

proposition.

By Proposition 1, we focus on the modification xj := ∆j for j = 1, . . . , n for

each candidate optimal solution. One can compute all candidate optimal objective

mini=1,...,j wi∆
j for j = 1, . . . , n and take the smallest one that is the optimal objec-

tive. The detailed computation is presented in Algorithm 1.

Algorithm 1 Solves the MCDMLS
Input: Jobs Ji corresponding to the due dates di with d1 ≤ d2 ≤ . . . ≤ dn and processing times

pi for i = 1, . . . , n. Downgrading level ∆ and costs w1, w2, . . . , wn.
Compute Cj =

∑j
l=1 pl and ∆j := ∆ + dj − Cj for j = 1, . . . , n.

Set λ := w1, V al := λ∆1.
for i=2,. . .,n do

Set λ := min{λ,wi} and V al := min{V al, λ∆i}.
end for
Output: The optimal objective value V al = wj0∆i0 and the corresponding optimal solution x∗

with x∗j0 = ∆i0 and x∗j = 0 for j 6= j0.

Theorem 2. Algorithm 1 solves the MCDMLS in linear time, assuming that the due
dates are sorted in advance.

Proof. For any index i in {1, . . . , n}, we find minij=1{wj∆i} = λ∆i. The smallest

value among them is the optimal value of the MCDMLS. Hence, the algorithm is

correct. Next, let us examine the complexity of the algorithm. We can compute Cj
and ∆j for j = 1, . . . , n in linear time by reduction. Then, we update λ and V al in

constant time in each iteration. Therefore, Algorithm 1 runs in linear time.
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We illustrate Algorithm 1 by an example as follows.

Example 2. We consider an instance of the MCDMLS with processing times and due
dates given in Example 1. Moreover, augmentation costs are in Table 3.

i 1 2 3 4 5 6

wi 4 2 3 3 4 4

Table 3. Augmentation costs of jobs in Example 2

Assume that downgrading level ∆ equals 15. Then, we compute ∆i for i = 1, . . . , 6 as Table
4.

i 1 2 3 4 5 6

∆i 17 17 15 13 12 13

Table 4. Computation of ∆i for i = 1, . . . , 6

Applying Algorithm 1, we can solve the corresponding MCDMLS as in the following itera-
tions.

Iter. 1 2 3 4 5 6

λ 4 2 2 2 2 2

Val 68 34 30 26 24 24

Table 5. Computation of λ and V al in each iteration

Hence, the optimal objective is 24 with optimal solution (x∗1, x
∗
2, x

∗
3, x

∗
4, x

∗
5, x

∗
6) =

(0, 12, 0, 0, 0, 0).

3. The robust minimum cost problem of downgrading mini-
mum lateness scheduling

In real-life situations, the costs relative to augmenting processing times are not exactly

known with no distribution function. Then, the concept of robust optimization is

employed to yield reasonable solutions. The so-called minmax regret criterion is to

minimize the maximum loss with respect to the optimal solution across all scenarios.

In this paper, we consider the robust (minmax regret) MCDMLS (RobMCDMLS)

with interval costs, i.e., wi ∈ [wi, wi]. Any assignment of costs to a specified vector

in
n∏
i=1

[wi, wi] is called a scenario. This means a scenario s ∈ S corresponds to

wsi ∈ [wi, wi] for i = 1, . . . , n. Let S be the set of all scenarios and let the set of all
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feasible solutions be F =
⋃n
i=1 Fi, where

Fi =

x ∈ Rn : Ci − di +

i∑
j=1

xj ≥ ∆, xj ≥ 0 ∀j = 1, . . . , n

 .

For a solution x ∈ F and a scenario s ∈ S, we associate the regret function

Rs(x) =

n∑
i=1

wsixi − V als.

Here,
∑n
i=1 w

s
ixi is the objective value at x and V als is the optimal value with respect

to scenario s in S. Let us assume that V als = wsi0∆k with i0 ≤ k and i0, k ∈
{1, . . . , n}. Then, we can write

Rs(x) =
∑n
i=1 w

s
i xi − wsi0∆k

=
∑
i6=i0 w

s
i xi + wsi0(xi0 −∆k).

We analyze the two cases:

Case 1: If xi0 ≥ ∆k, we set wsi = wi for i = 1, . . . , n to attain

max
s∈S

Rs(x) =

n∑
i=1

wixi − wi0∆k.

Case 2: If xi0 < ∆k, we set wsi = wi for i = 1, . . . , n, i 6= i0 and wsi0 = wi0 to attain

max
s∈S

Rs(x) =
∑
i6=i0 wixi − wi0∆k + wi0xi0

=
∑n
i=1 wixi −

(
(wi0 − wi0)xi0 + wi0∆k

)
.

For any index i ∈ {1, . . . , n}, we denote by ki := arg minj=i,...,n ∆j . We can find ki
for i = 1, . . . , n in linear time. Then, the maximum regret R(x) = max

s∈S
Rs(x) can be

expressed as in the formulation

R(x) =
n

max
i=1

{∑n
j=1 wjxj − wi∆ki ,

∑n
j=1 wjxj −

(
δixi + wi∆

ki
)}

=
∑n
j=1 wjxj −

n
min
i=1

{
wi∆

ki , δixi + wi∆
ki
}
,

where δi = wi − wi for i = 1, . . . , n. Hence, the RobMCDMLS is state as min
x∈F

R(x)

and it is formulated as the program

(RobMC) min

n∑
j=1

wjxj − ξ

s.t. ξ ≤ wj∆kj ∀j = 1, . . . , n,

ξ ≤ δjxj + wj∆
kj ∀j = 1, . . . , n,

x ∈ F .
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As ξ ≤ wj∆
kj for all j = 1, . . . , n, we can set ξ =

n
min
j=1

wj∆
kj and attain ξ ≤ ξ. Let

αj = wj∆
kj , we can reformulate (RobMC) as

(RobMC’) min

n∑
j=1

wjxj − ξ

s.t. xj ≥
ξ − αj
δj

∀j = 1, . . . , n,

x ∈ F ,
0 ≤ ξ ≤ ξ.

Let us fix a value ξ ∈
[
0, ξ
]

and denote by

I<(ξ) = {j ∈ {1, . . . , n} : αj < ξ}

and

I<i (ξ) = {j ∈ {1, . . . , i} : αj < ξ} .

Then, we first set xξj :=
ξ − αj
δj

for j ∈ I<(ξ) and consider the objective

∑
j∈I<(ξ)

wjx
ξ
j +

n∑
j=1

wjyj − ξ,

where y = (yi) ∈ Fξ and Fξ =
⋃n
i=1 F

ξ
i with

Fξi =

y : Ci − di +
∑

j∈I<i (ξ)

xξj +

i∑
j=1

yj ≥ ∆, yj ≥ 0 ∀j = 1, . . . , n

 .

We specify an index i and get the subproblem of (RobMC’) as follows:

(Pi) min

n∑
j=1

wjxj − ξ

s.t. xj ≥
ξ − αj
δj

∀j = 1, . . . , n,

Ci − di +

i∑
j=1

xj ≥ ∆,

xj ≥ 0 ∀j = 1, . . . , n,

0 ≤ ξ ≤ ξ.
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Let us denote

∆i(ξ) = ∆− Ci + di −
∑

j∈I<i (ξ)

xξj = ∆i −
∑

j∈I<i (ξ)

xξj .

We also find ξi such that ∆i(ξi) = 0. Then, as ∆i(ξ) ≥ 0, we get ξ ≤ ξi for all

i = 1, . . . , n. This updates the value ξ by ξ = mini=1,...,n{ξ, ξi}. We solve

min


i∑

j=1

wjyj : y ∈ Fξi

 ,

where

Fξi =

y :

i∑
j=1

yj ≥ ∆i(ξ), yj ≥ 0 ∀j = 1, . . . , n

 .

and get the optimal objective wiξ∆
i(ξ). Then, the corresponding objective value of

(Pi) can be presented as below.

Costi(ξ) =
∑

j∈I<(ξ)

wjx
ξ
j + wiξ∆

i(ξ)− ξ.

Let us sort the elements in the set {0, α1, α2, . . . , αn, ξ} ∩
[
0, ξ
]

non-decreasingly in

order to get the set of breakpoints

B = {z1, . . . , zm}

with z1 < z2 < . . . < zm and m ≤ n+ 1.

For ξ ∈ [zj , zj+1], we characterize the function Costi(ξ). We can write

Costi(ξ) =
∑

j∈I<(zj+1)

wj
ξ − αj
δj

+
i

min
q=1

wq∆
i(ξ)− ξ.

The function
∑
j∈I<(zj+1) wj

ξ − αj
δj

is linear as the set I<(zj+1) is fixed. Similarly,

we also get the linearity of ∆i(ξ) = ∆i −
∑
j∈I<i (zj+1)

ξ − αj
δj

. Hence, the function

Costi(ξ) is linear for ξ in ξ ∈ [zj , zj+1].

We attain the following result concerning the optimal value of (RobMC’).

Proposition 2. The optimal objective of the (RobMC’) is attained at zj for j ∈
{1, . . . ,m}.
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Proof. The problem (RobMC’) is equal to min
ξ∈[0,ξ]

Costi(ξ). As the function Costi(ξ)

is linear for ξ ∈ [zj , zj+1], the local minimizer of min
ξ∈[zj ,zj+1]

Costi(ξ) is attain at either

zj or zj+1. Hence, the result of the proposition is proved.

Due to Proposition 2, we can compute the objective value at each breakpoint z1, . . . ,

zm. Then, we take the smallest value among them, that is also the optimal objective.

For details, we refer to Algorithm 2.

Algorithm 2 Solves the Robust MCDMLS

Input: An instance of the Robust DMLP with sequence of due dates d1 ≤ d2 ≤
. . . ≤ dn.

Compute αj , δj , ξ for j = 1, . . . , n.

Find the set {z1, z2, . . . , zm}.
Compute Ai =

∑
j∈I<(zi)

wjx
zi
j and ∆k(zi) for i = 1, . . . ,m and k = 1, . . . , n.

Find the sets I<(zi), I
<
j (zi) for j=1,. . ., n.

for i=2,. . .,m do

Compute Cost(zi) = Ai +
n

min
j=1

wj∆
kj (zi)− zi.

end for

Output: The optimal value V al = arg minmi=1 Cost(zi) and the corresponding

optimal solution

x∗j :=


V al − αj

δj
, if αj < V al,

0, if αj ≥ V al,

and x∗j0 := x∗j0 + ∆kj0 (V al) with j0 = arg minnj=1 wj∆
kj (V al).

Theorem 3. The Robust MCDMLS can be solved in O(n2) time.

Proof. The correctness of the algorithm is due to comparing all candidate values

and taking the smallest one. We computes all I<(zi), I
<
j (zi) in O(n2) time. Then,

we can update Ai and ∆k(zi) for k = 1, . . . , n in O(n2) time. In the for loop of the

algorithm, we compute
n

min
j=1

wj∆
kj (zi) in linear time in each iteration. Finally, the

corresponding optimal solution can be computed in linear time. Therefore, the total

complexity of Algorithm 2 is O(n2).

The following example illustrates Algorithm 2.

Example 3. Given processing times and due dates of jobs as in Example 1. We consider
the uncertain costs as in Table 6.
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i 1 2 3 4 5 6

wi 3 2 2 3 4 4

wi 4 4 6 4 5 6

Table 6. Interval costs concerning augmentations of processing times

We next compute δi and αi as in Table 7.

i 1 2 3 4 5 6

δi 1 2 4 1 1 2

αi 36 24 24 36 48 52

Table 7. Computation of δi and αi

Moreover, ξ = 408/11 then B = {0, 24, 36, 408
11
}. Note that ∆5( 408

11
) = 0 . We also compute

I<(z1) = I<i (z1) = ∅, I<(z2) = ∅, I<(z3) = {2, 3}, I<(z4) = {1, 2, 3, 4}, . . .

In detail, the sets Ij(zi) for i = 1, . . . , 4 and j = 1, . . . , 6 are given in Table 8

i
j

1 2 3 4 5 6

1 ∅ ∅ ∅ ∅ ∅ ∅
2 ∅ ∅ ∅ ∅ ∅ ∅
3 ∅ {2} {2, 3} {2, 3} {2, 3} {2, 3}
4 {1} {1, 2} {1, 2, 3} {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4}

Table 8. The sets I<j (zi) for i = 1, . . . , 4 and j = 1, . . . , 6

i Ai ∆1(zi) ∆2(zi) ∆3(zi) ∆4(zi) ∆5(zi) ∆6(zi)

1 0 17 17 15 13 12 13

2 0 17 17 15 13 12 13

3 42 17 11 6 4 3 4

4 600/11 175/11 103/11 45/11 1 0 1

Table 9. Computation in each iteration

We can compute Cost(z1) = 48, Cost(z2)= 24, Cost(z3) = 18, Cost(z4) = 17.45. It shows
that ξ = 408/11 is the optimal solution with optimal objective 17.45. This yields an optimal
solution

(x∗1, x
∗
2, x

∗
3, x

∗
4, x

∗
5, x

∗
6) = (12/11, 72/11, 36/11, 12/11, 0, 0).
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4. Conclusions

This paper addresses the problem of augmenting the processing time of jobs such

that the lateness of an optimal schedule reaches a level ∆. Moreover, the augmenting

cost with respect to each job can take any value in an interval. We call the problem

the robust minimum cost problem of downgrading minimum lateness scheduling. We

first develop a linear time algorithm for the deterministic problem by leveraging the

characteristic of an optimal solution, provided that due dates are already sorted.

For the robust problem, we decompose it into sub-problems and solve all of them in

O(n2) time. In this paper, we do not impose specific bounds on modifying variables.

Adding such a constraint can lead to NP-hardness. Future research on the problem

of up-/downgrading scheduling with other objectives, such as makespan, lateness,

tardiness,... is a promising topic.
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