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Abstract: In this paper, we present a novel perspective on vertex-degree-based
topological indices. Established degree–based topological indices are based on adja-

cent vertices. One could contemplate including all pairs of vertices. Recently, Gutman

introduced the Sombor indices. Here, we introduce the extended versions of the Som-
bor indices including all pairs of vertices in the Sombor indices formula. We explore

the fundamental mathematical properties of these extended indices, establish upper

and lower bounds in terms of some graph parameters, and find the sharp bounds.
Additionally, we determine the extremal chemical trees with maximum and minimum

extended Sombor index. Moreover, the role of extended Sombor indices in describing

structure–property relationships is demonstrated.
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1. Introduction

Let G be a simple finite graph with vertex set V (G) and edge set E(G). The order

and size of G are respectively denoted by n(G) and m(G). The edge between any

two vertices u and v in G is written by uv (or vu). The degree of a vertex u in G is

denoted by du(G) and the set of its neighbors is denoted byNu(G). The maximum and

minimum degree of G are respectively denoted by ∆(G) and δ(G). If ∆(G) = δ(G),

then G is called a regular graph. In graph G, a vertex with degree 1 is called a

pendant vertex. A degree sequence is the list of vertex degrees in non-increasing

order. A graph is called an acyclic graph if it has no cycles. A connected acyclic
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2 Extended Sombor Indices

graph is called a tree. A tree in which all vertices have a maximum degree 4 is called

a chemical tree. A chemical tree is the graphical representation of the carbon-atom

structure of an alkane. Chemical trees have been extensively studied in the literature

[5, 18, 20]. The complement graph G of G has the set of vertices V (G) and uv ∈ E(G)

if and only if uv 6∈ E(G). Note that E(G) ∪ E(G) represents the set of edges that

belong to G and G. Therefore, |E(G) ∪ E(G)| =
(
n
2

)
. The degree of vertex u in G is

given as du(G) = n− 1− du(G). The number of vertices of degree i in G is denoted

by ni(G) and the number of pairs of vertices of degree i and j in G is denoted by

cij(G). If the confusion is not a concern, we opt for du over du(G), Nu over Nu(G),

∆ over ∆(G), δ over δ(G), n over n(G) and m over m(G), ni over ni(G) and cij over

cij(G). Additional graph theory notions may be found in [13].

In theoretical chemistry, topological indices are highly valuable and they have been

used as molecular descriptors due to their main characteristics, that is, their simple

definitions, thus the ease of calculation and the considerable amount of structural

information they are harvesting [33]. The most important applications of topological

indices are in QSPR/QSAR modeling [10, 12]. So far, countless number of graph

indices have been proposed, mostly belonging to the degree–, distance–, or eigenvalue–

based group of indices, depending on their definitions. Topological indices have also

been applied in graph algorithms and network communication [23].

Quite recently, a set of three degree–based graph indices have been introduced after

geometric considerations of a graph. These are called Sombor indices [14]. Even

though Sombor indices are new graph invariants, they have attracted enormous at-

tention of both chemists and mathematicians. This resulted in a large number of

published studies, see for example [1, 2, 4–9, 16, 18, 19, 21, 22, 24–27, 30, 31, 34].

The Sombor index (SO), the reduced Sombor index (SOred), and the average Sombor

index (SOavg) of a graph G are respectively defined as:

SO(G) =
∑

uv∈E(G)

√
d2
u + d2

v

SOred(G) =
∑

uv∈E(G)

√
(du − 1)2 + (dv − 1)2

SOavg(G) =
∑

uv∈E(G)

√
(du − 2m/n)

2
+ (dv − 2m/n)

2
.

In the Sombor indices formulas, we see that only pairs of adjacent vertices are con-

sidered. One could contemplate including all pairs of vertices in the Sombor indices

formulas. This results in the introduction of extended Sombor index (ESO), extended

reduced Sombor index (ESOred), and extended average Sombor index (ESOavg) de-
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fined respectively as follows:

ESO(G) =
∑

{u,v}⊆V (G)
u6=v

√
d2
u + d2

v

ESOred(G) =
∑

{u,v}⊆V (G)
u6=v

√
(du − 1)2 + (dv − 1)2

ESOavg(G) =
∑

{u,v}⊆V (G)
u6=v

√
(du − 2m/n)

2
+ (dv − 2m/n)

2
.

Remark 1. Let G and G∗ be two non-isomorphic graphs, both having order n and the
same degree sequence. Then it is obvious to see that ESO(G) = ESO(G∗), ESOred(G) =
ESOred(G∗) and ESOavg(G) = ESOavg(G∗).

The extended Sombor index of G can be restated as:

ESO(G) =
∑

1≤i≤j≤∆

cij
√
i2 + j2. (1.1)

The following is easy to verify for a graph G:

cij = cji =

{
ninj if i 6= j,(
ni

2

)
if i = j.

(1.2)

This paper is organized as follows: In section 2, we find the extremal graphs with

respect to extended Sombor index. In section 3, we explore the basic mathematical

features and establish the bounds (lower and upper) on ESO and ESOred in terms of

some graph parameters. In section 4, we find the extremal chemical trees of order n

with maximum and minimum ESO index. In section 5, we demonstrate the chemical

significance of extended Sombor indices. In section 6, we give the conclusion.

2. Extremal graphs with respect to extended Sombor index

In this section, we will find some extremal graphs with respect to the extended Sombor

index. It is obvious to see that ESO(Kn) = SO(Kn) =
n(n− 1)2

√
2

, ESOred(Kn) =

SOred(Kn) =
n(n− 1)(n− 2)√

2
and ESOavg(Kn) = SOavg(Kn) = 0. For any graph

G of order n, we obtain

0 ≤ ESO(G) ≤ ESO(Kn).

The right inequality (left inequality) turns into equality if and only if G ∼= Kn (G ∼=
Kn).
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We will now establish the upper and lower bounds on extended Sombor indices for

complete graph Kn, path graph Pn, star graph Sn and tree T of order n. First, we

consider the following two useful results, which will be frequently employed in the

subsequent result.

Lemma 1. Let f(x, y) =
√

(x− 1)2 + y2 −
√
x2 + y2, where x > 1 and y > 0. Then

f(x, y) is a strictly decreasing function on x and strictly increasing on y.

Proof. We obtain

f ′x(x, y) =
(x− 1)

√
x2 + y2 − x

√
(x− 1)2 + y2√(

(x− 1)2 + y2
)

(x2 + y2)

.

Note that (x − 1)2(x2 + y2) − x2
(

(x − 1)2 + y2
)

= −y2(2x − 1) < 0 for x > 1 and

y > 0. This gives (x − 1)
√
x2 + y2 < x

√
(x− 1)2 + y2 for x > 1 and y > 0. Hence

f ′x(x, y) < 0. So f(x, y) is a strictly decreasing function on x.

For x > 1 and y > 0, we obtain

f ′y(x, y) =
y√

(x− 1)2 + y2
− y√

x2 + y2
< 0.

So f(x, y) is a strictly decreasing function on y. This completes the proof.

We introduce two graph transformations in the following lemmas, which either in-

crease or decrease the ESO index.

Lemma 2. Let G be a connected graph, and consider u, v1 ∈ V (G) and v1v2 ∈ E(G),
where du(G) = p ≥ 3, dv1 = 1 and dv2 ≥ 2. Assume u1 is a neighbor of u such that u1 is
not on u, v1-path. Let G∗ be the graph obtained from G such that G∗ = G−{uu1}+ {u1v1}.
Then ESO(G∗) < ESO(G).

Proof. Note that du(G∗) = p−1, dv1(G∗) = dv1(G)+1 = 2 and dv(G
∗) = dv(G) for

all v ∈ V (G)\{u1, v1}. Let U = V (G)\{{u} ∪ {w ∈ V (T ) | dw(G) = 1}} and r = |U |.
We obtain

ESO(G∗)− ESO(G) =
√

(p− 1)2 + 4−
√
p2 + 1 + (n1 − 1)

(√
(p− 1)2 + 1−

√
p2 + 1

+
√

5−
√

2

)
+
∑
v∈U

(√
(p− 1)2 + d2

v −
√
p2 + d2

v +
√

4 + d2
v

−
√

1 + d2
v

)
.
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ESO(G∗)− ESO(G) < (n1 − 1)

(√
(p− 1)2 + 1−

√
p2 + 1 +

√
5−
√

2

)
+
∑
v∈U

(√
(p− 1)2 + d2

v −
√
p2 + d2

v +
√

4 + d2
v −

√
1 + d2

v

)

Since p ≥ 3, using Lemma 1 we have f(p, 1) ≤ f(3, 1) and f(p, dv) ≤ f(3, dv). Then

ESO(G∗)− ESO(G) < (n1 − 1)
(√

5−
√

10 +
√

5−
√

2
)

+ r
(

2
√

4 + d2
v −

√
9 + d2

v

−
√

1 + d2
v

)
= −0.1(n1 − 1) + +r

(
2
√

4 + d2
v −

√
9 + d2

v −
√

1 + d2
v

)
.

Since 4·d2
v > 0, it follows that (d4

v+10d2
v+9) > (d2

v+3)2, that is,
√

9 + d2
v+
√

1 + d2
v >

2
√

4 + d2
v. This means ESO(G∗)− ESO(G) < 0, which completes the proof.

Lemma 3. Let G be a connected graph, and consider u, v1 ∈ V (G), where du(G) = ∆ ≥ 3
and dv1 ≥ 2. Assume v2 is a neighbor of v1 such that v2 is not on u, v1-path. Let G∗ be a
graph obtained from G such that G∗ = G− {v1v2}+ {uv2}. Then ESO(G∗) > ESO(G).

Proof. Note that du(G∗) = ∆ + 1, dv1(G∗) = dv1(G)− 1 and dv(G
∗) = dv(G) for all

v ∈ V (G)\{u, v1}. Let U = V (G)−{{u, v1}∪{w ∈ V (G) | dw(G) = 1}} and r = |U |.
Then

ESO(G∗)− ESO(G) =
√

(∆ + 1)2 + (dv1 − 1)2 −
√

∆2 + d2
v1 + n1

(√
(∆ + 1)2 + 1

−
√

∆2 + 1 +
√

(dv1 − 1)2 + 1−
√
d2
v1 + 1

)
+
∑
v∈U

(√
(dv1 − 1)2 + d2

v

−
√
d2
v1 + d2

v +
√

(∆ + 1)2 + d2
v −

√
∆2 + d2

v

)
.

Note that√
(∆ + 1)2 + (dv1 − 1)2−

√
∆2 + d2

v1 =
√

∆2 + d2
v1 + 2 + 2(∆− dv1)−

√
∆2 + d2

v1 > 0.

Then

ESO(G∗)− ESO(G) > n1

(√
(∆ + 1)2 + 1−

√
∆2 + 1 +

√
(dv1 − 1)2 + 1−

√
d2
v1 + 1

)
+
∑
v∈C

(√
(dv1 − 1)2 + d2

v −
√
d2
v1 + d2

v +
√

(∆ + 1)2 + d2
v −

√
∆2 + d2

v

)
.



6 Extended Sombor Indices

Since ∆ ≥ dv1 ≥ 2, using Lemma 1, we have f(dv1 , 1) ≥ f(∆, 1) and f(dv1 , dv) ≥
f(∆, dv). Then, from the above, we obtain

ESO(G∗)− ESO(G) > n1

(√
(∆ + 1)2 + 1 +

√
(∆− 1)2 + 1− 2

√
∆2 + 1

)
+ r

(√
(∆ + 1)2 + d2

v +
√

(∆− 1)2 + d2
v − 2

√
∆2 + d2

v

)
.

(2.1)

One can easily check that (∆2 + 2∆ + 2)(∆2 − 2∆ + 2) > ∆4, that is,√
(∆ + 1)2 + 1 +

√
(∆− 1)2 + 1 > 2

√
∆2 + 1.

Similarly, one can obtain

2 + 2 · d2
v + 2

√(
(∆ + 1)2 + d2

v

)(
(∆− 1)2 + d2

v

)
> 0, that is,

2

[
1 +

√(
(∆ + 1)2 + d2

v

)(
(∆− 1)2 + d2

v

)]
> 2(∆2 + d2

v),

that is, √
(∆ + 1)2 + d2

v +
√

(∆− 1)2 + d2
v > −2

√
∆2 + d2

v.

Thus, from (2.1), we obtain

ESO(G∗)− ESO(G) > 0,

completing the proof.

Theorem 1. Let G be a connected graph of order n. Then we have

ESO(Pn) ≤ ESO(G) ≤ ESO(Kn).

The left inequality (right inequality) turns into equality if and only if G ∼= Pn (G ∼= Kn).
In addition, ESO(Pn) =

√
2(n2 − 5n+ 7) + 2(n− 2)

√
5.

Proof. The upper bound is straightforward. To obtain the lower bound, observe

that deleting edges from a graph G decreases its ESO index. Therefore, the minimum

ESO index is attained by an n-vertex tree. Now assume for contradiction that T � Pn
has the minimum ESO index among all trees of order n. Then there exist distinct

vertices u and v1 in G such that du(T ) = p ≥ 3 and dv1(T ) = 1. Let u1 be the

neighbor of u that is not on u, v1-path. We construct a tree T ∗ from G as follows:

G∗ = G − uu1 + u1v1. By Lemma 2, it follows that ESO(T ∗) < ESO(T ), which

contradicts our assumption. Therefore, Pn has the minimum ESO index among all

the trees of order n. This completes our result.
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Theorem 2. Let T be a tree of order n ≥ 4. Then we have

ESO(Pn) ≤ ESO(T ) ≤ ESO(Sn).

The left inequality (right inequality) turns into equality if and only if T ∼= Pn (T ∼= Sn). In

addition, ESO(Sn) = (n− 1)

[
n− 2√

2
+
√
n2 − 2n+ 2

]
.

Proof. The lower bound follows from Theorem 1. To obtain the upper bound,

suppose on contrary that T � Sn has the maximum ESO index among all trees of

order n ≥ 4. Then there exist distinct vertices u and v1 in T such that du(T ) = ∆ ≥ 3

and dv1(T ) ≥ 2. Let v2 be the neighbor of v1 that is not on u, v1-path. We construct

a tree T ∗ from T as follows: T ∗ = T − v1v2 + uv2. By Lemma 3, it follows that

ESO(T ∗) > ESO(T ), which contradicts our assumption. Therefore, Sn has the

maximum ESO index among all the trees of order n. This completes our result.

3. Bounds on extended Sombor indices of graphs

In this section, we establish bounds (lower and upper) on extended Sombor indices in

terms of order, size, maximum degree, and minimum degree of graphs. From [15, 35],

the following inequalities are immediate.

For non-negative real numbers µ1 > 0 and µ2 > 0 (or µ1 > 1 and µ2 > 1), we have

(3.1) (or (3.2)) as follows:

1√
2

(µ1 + µ2) ≤
√
µ2

1 + µ2
2 < µ1 + µ2. (3.1)

1√
2

(µ1 + µ2 − 2) ≤
√

(µ1 − 1)2 + (µ2 − 1)2 < (µ1 + µ2 − 2). (3.2)

The left inequalitis in (3.1) and (3.2) turn into equalities if and only if µ1 = µ2.

Theorem 3. Let G be a connected graph of order n and size m. Then

(i)
(
n
2

) nδ2√
2m
≤ ESO(G) <

(
n
2

)n∆2

m
,

(ii)
(
n
2

)n(δ − 1)δ√
2m

≤ ESOred(G) <
(
n
2

)n(∆− 1)∆

m
.

In both (i) and (ii), the left inequalities turn into equalities if and only if G is a regular
graph.
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Proof. (i) With summation over all pairs of vertices, we derive the following from right
inequality in (3.1).

ESO(G) <
∑

{u,v}⊆V (G)
u6=v

(du + dv). (3.3)

Since δ ≤ du ≤ ∆, for each u ∈ V (G), it follows that∑
{u,v}⊆V (G)

u6=v

(du + dv) ≤
(
n
2

)
2∆. (3.4)

From the handshaking lemma, we have

nδ ≤
∑

u∈V (G)

du = 2m ≤ n∆. (3.5)

The inequalities in (3.5) turn into equalities if and only if G is a regular graph. By using
(3.4) and (3.5) in (3.3), we obtain

ESO(G) <
(
n
2

)n∆2

m
.

Similarly, using the left inequalities in (3.1) and (3.5), we obtain
(
n
2

) nδ2√
2m
≤ ESO(G) and

it turns into equality if and only if du = δ for each u ∈ V (G), implying G is a regular graph.
(ii) The proof is analogous to (i), utilizing (3.2).

Since ∆ ≤ n− 1, we get the following corollary.

Corollary 1. Let G be a connected graph of order n. Then

(i) ESO(G) <
n2(n− 1)3

2m
,

(ii) ESOred(G) <
n2(n− 1)2(n− 2)

2m
.

Lemma 4. [3] Let G be a graph of order n and size m. Then∑
{u,v}⊆V (G)

u6=v

(du + dv) = 2m(n− 1).

Theorem 4. Let G be a connected graph of order n and size m. Then

(i)
√

2m(n− 1) ≤ ESO(G) < 2m(n− 1),

(ii)
(n− 1)(2m− n)√

2
≤ ESOred(G) < (n− 1)(2m− n).

In both (i) and (ii), the left inequalities turn into equalities if and only if G is a regular
graph.



S. Ahmad, R. Farooq 9

Proof. (i) With summation over all pairs of vertices, we derive the following from

left inequality in (3.1).

ESO(G) ≥ 1√
2

∑
{u,v}⊆V (G)

u 6=v

(du + dv).

By using Lemma 4, we obtain

ESO(G) ≥
√

2m(n− 1).

Moreover, the left inequality in (i) turns into equality if and only if du = dv for any

{u, v} ⊆ V (G), implying G is a regular graph. Similarly, using the right inequality in

(3.1) and Lemma 4, we obtain ESO(G) < 2m(n− 1). In addition, the proof of (ii) is

analogous to (i), utilizing (3.2).

Lemma 5. [35] Let G be a connected graph of order n. Then

SO(G) ≤
√

2m(n− 1).

The inequality turns into equality if and only if G ∼= Kn.

From Lemma 5 and left inequality in Theorem 4 (i), we have the following corollary.

Corollary 2. Let G be a connected graph of order n. Then

SO(G) ≤ ESO(G).

The inequality turns into equality if and only if G ∼= Kn.

The following result is straightforward.

Lemma 6. Let f(x) = (x− a)2 + (n− x− a)2, where 1 ≤ x ≤ n and a ≥ 0. Then f(x)
is decreasing for 1 ≤ x ≤ n

2
and increasing for n

2
≤ x ≤ n.

Theorem 5. Let G be an acyclic graph of order n. Then

(i) ESO(G) ≤


(
n
2

)√
δ2 + (n− δ)2 if ∆ + δ ≤ n,(

n
2

)√
∆2 + (n−∆)2 if ∆ + δ ≥ n,

(ii) ESOred(G) ≤


(
n
2

)√
(δ − 1)2 + (n− δ − 1)2 if ∆ + δ ≤ n,(

n
2

)√
(∆− 1)2 + (n−∆− 1)2 if ∆ + δ ≥ n.
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Proof. (i) Since G is an acyclic graph, for any {u, v} ⊆ V (G), it holds du + dv ≤ n.

Then

ESO(G) ≤
∑

{u,v}⊆V (G)
u6=v

√
d2
u + (n− du)2.

From Lemma 6, it can be seen that

ESO(G) ≤
∑

{u,v}⊆V (G)
u 6=v

√
d2
u + (n− du)2

≤


(
n
2

)√
δ2 + (n− δ)2 if ∆ + δ ≤ n,(

n
2

)√
∆2 + (n−∆)2 if ∆ + δ ≥ n.

This completes the proof of (i). The proof of (ii) is analogous to (i), utilizing Lemma

6.

Theorem 6. Let G be a connected graph of order n and size m. Then

(i)
(
n
2

) nδ2√
2m
≤ ESO(G) ≤

(
n
2

) n∆2

√
2m

,

(ii)
(
n
2

)nδ(δ − 1)√
2m

≤ ESOred(G) ≤
(
n
2

)n∆(∆− 1)√
2m

.

The left and right inequalities in (i) and (ii) turn into equalities if and only if G is a regular
graph.

Proof. (i) Since δ ≤ du ≤ ∆, for each u ∈ V (G), it holds that

ESO(G) =
∑

{u,v}⊆V (G)
u 6=v

√
d2
u + d2

v ≥
(
n
2

)√
2δ,

By using (3.5), we obtain

ESO(G) ≥
(
n
2

) nδ2

√
2m

.

Furthermore, the left inequality in (i) turns into equality if and only if du = δ for

each u ∈ V (G), implying G is a regular graph. Similarly, the right inequality in (i)

holds and turns into equality if and only if du = ∆ for each u ∈ V (G), implying G is

a regular graph. In addition, the proof of (ii) is analogous to (i).

Since ∆ ≤ n− 1, we get the following corollary.
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Corollary 3. Let G be a connected graph of order n and size m. Then

(i) ESO(G) ≤ n(n− 1)

2m
ESO(Kn),

(ii) ESOred(G) ≤ n(n− 1)

2m
ESOred(Kn).

The inequalities in (i) and (ii) turn into equalities if and only if G ∼= Kn

Theorem 7. Let G be the complement graph of a connected graph G with order n. Then

(
n
2

) nδ√
2m

(n− 1−∆) ≤ ESO(G) ≤
(
n
2

) n∆√
2m

(n− 1− δ).

The left and right inequality turns into equality if and only if G is a regular graph.

Proof. The extended Sombor index for G is defined as:

ESO(G) =
∑

{u,v}⊆V (G)
u6=v

√
d2
u(G) + d2

v(G).

Since du(G) = n− 1− du(G) and δ ≤ du(G) ≤ ∆, for each u ∈ V (G), it holds that

ESO(G) ≤
(
n
2

)√
2(n− 1− δ).

By using (3.5), we obtain

ESO(G) ≤
(
n
2

) n∆√
2m

(n− 1− δ).

Furthermore, the right inequality turns into equality if and only if du(G) = ∆ for

each u ∈ V (G), implying G is a regular graph. Similarly, the left inequality holds

and turns into equality if and only if du(G) = δ for each u ∈ V (G), implying G is a

regular graph.

From Theorems 6 (i) and 7, we get the following corollary.

Corollary 4. Let G be the complement graph of a connected graph G with order n. Then

(
n
2

) nδ√
2m

(δ + n− 1−∆) ≤ ESO(G) + ESO(G) ≤
(
n
2

) n∆√
2m

(n+ ∆− 1− δ).

The left and right inequalities turn into equalities if and only if G is a regular graph.
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We now establish upper bounds on ESO and ESOred in terms of order only.

Theorem 8. Let G be a connected graph of order. Then

(i) ESO(G) <
(
n
2

)
(2n− 2),

(ii) ESOred(G) < 2
(
n
2

)
(n− 2).

Proof. (i) From (3.3), it follows that

ESO(G) <
∑

{u,v}⊆V (G)
u 6=v

(du + dv).

Since du ≤ n− 1, for any {u, v} ⊆ V (G), it holds du + dv ≤ 2n− 2. Thus

∑
{u,v}⊆V (G)

u6=v

(du + dv) ≤
(
n
2

)
(2n− 2).

This completes the proof of (i). Analogously, the inequality (ii) is obtained by using

the right inequality in (3.2).

Theorem 9. Let G be an acyclic graph of order n. Then

(i) ESO(G) <
(
n
2

)
n,

(ii) ESOred(G) <
(
n
2

)
(n− 2).

Proof. (i) From (3.3), it follows that

ESO(G) <
∑

{u,v}⊆V (G)
u 6=v

(du + dv).

Since G is an acyclic graph, for any {u, v} ⊆ V (G), it holds du + dv ≤ n. Thus

∑
{u,v}⊆V (G)

u6=v

(du + dv) ≤
(
n
2

)
n.

This completes the proof of (i). Analogously, the inequality (ii) is obtained by using

the right inequality in (3.2).

Remark 2. The bounds for ESO and ESOred in Theorem 4 are sharp compared to those
found elsewhere in this section.
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4. Chemical trees with maximum and minimum extended
Sombor index

In this section, we find the extremal chemical trees of order n with maximum and

minimum ESO index. The class of all chemical trees of order n is denoted by C(n).

The extended Sombor index for a chemical tree T can be written as:

ESO(T ) =
∑

1≤i≤j≤4

cij
√
i2 + j2. (4.1)

It is well-known that the following relations hold:∑
1≤i≤4

ni = n. (4.2)

∑
1≤i≤4

ini = 2n− 2. (4.3)

From (1.2) and (4.2), we have the following relations for a chemical tree T :

n1

2
(2n− n1 − 1) = c11 + c12 + c13 + c14

n2

2
(2n− n2 − 1) = c12 + c22 + c23 + c24

n3

2
(2n− n3 − 1) = c13 + c23 + c33 + c34

n4

2
(2n− n4 − 1) = c14 + c24 + c34 + c44.


(4.4)

As a consequence of lower bound of Theorem 1, the path graph has minimum ESO

index in C(n).

4.1. Chemical trees with maximum extended Sombor index

Now, we find the extremal chemical trees of order n with the maximum ESO index

in C(n).

Definition 1. Let n = 3p+q+1, where p ≥ 0 and 1 ≤ q ≤ 3 are both integers. We define

D(n) = 4, . . . , 4︸ ︷︷ ︸
p

, q, 1, . . . , 1︸ ︷︷ ︸
n−p−1

.

Then D(n) is a sequence of length n. Let C(n, p, q) ⊆ C(n) be the set of those chemical trees
whose degree sequence in C(n) is D(n).

For each 2 ≤ n ≤ 3, we have only one chemical tree in C(n). Therefore, we only discuss

the problem for n ≥ 4. To find the chemical trees with the maximum extended Sombor

index, we need the following lemmas:
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Lemma 7. Let T be a chemical tree in C(n) of order n ≥ 4, with the maximum ESO
index. Then n2(T ) ≤ 1.

Proof. On the contrary, assume that T ∈ C(n) has a maximum ESO index with

n2 > 1. Let u1 and v1 be any two vertices in T , each having a degree 2, and T has a

degree sequence

(4, . . . , 4︸ ︷︷ ︸
p

, 3, . . . , 3︸ ︷︷ ︸
q

, 2, . . . , 2︸ ︷︷ ︸
r

, du1
(T ) = 2, dv1(T ) = 2, 1, . . . , 1︸ ︷︷ ︸

n−p−q−r−2

),

where p, q, r ≥ 0. Let v2 be the other neighbor of v1 that is not on u1, v1-path.

We construct a tree T ∗ ∈ C(n) from T as follows: T ∗ = T − v1v2 + v2u1. Then

du1
(T ∗) = du1

(T ) + 1 = 3, dv1(T ∗) = dv1(T ) − 1 = 1 and dv(T ) =dv(T
∗) for all

v ∈ V (T )\{u1, v1}. We obtain

ESO(T ∗)− ESO(T ) =
√

10−
√

8 + p(
√

25 +
√

17) + q(
√

18 +
√

10) + r(
√

13 +
√

5)

+ (n− p− q − r − 2)(
√

10 +
√

2)− p(
√

20 +
√

20)− q(
√

13 +
√

13)

− r(
√

8 +
√

8)− (n− p− q − r − 2)(
√

5 +
√

5).

=
√

10−
√

8− 2
√

10− 2
√

2 + 4
√

5 + p(
√

25 +
√

17−
√

10−
√

2

− 2
√

20 + 2
√

5) + q(
√

18 +
√

10−
√

10−
√

2− 2
√

13 + 2
√

5)

+ r(
√

13 +
√

5−
√

10−
√

2− 2
√

8 + 2
√

5) + n(
√

10 +
√

2− 2
√

5).

= 0.125 + 0.104n+ 0.074p+ 0.089q + 0.08r > 0.

This contradicts our assumption that T has a maximum ESO index in C(n). There-

fore, n2(T ) ≤ 1.

Lemma 8. Let T be a chemical tree in C(n) of order n ≥ 6, with maximum ESO index.
Then n3(T ) ≤ 1.

Proof. On the contrary, assume that T ∈ C(n) has a maximum ESO index with

n3 > 1. Let u1 and v1 be any two vertices in T , each having a degree 3, and T has a

degree sequence

(4, . . . , 4︸ ︷︷ ︸
p

, 3, . . . , 3︸ ︷︷ ︸
q

, du1
(T ) = 3, dv1(T ) = 3, 2︸︷︷︸

r

, 1, . . . , 1︸ ︷︷ ︸
n−p−q−r−2

),

where p, q ≥ 0 and r ∈ {0, 1}, by Lemma 7. Let v2 be the other neighbor of v1

that is not on u1, v1-path. We construct a tree T ∗ ∈ C(n) from T as follows: T ∗ =

T − v1v2 + v2u1. Then du1
(T ∗) = du1

(T ) + 1 = 4, dv1(T ∗) = dv1(T ) − 1 = 2 and

dv(T ) =dv(T
∗) for all v ∈ V (T )\{u1, v1}. We obtain
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ESO(T ∗)− ESO(T ) =
√

20 + p(
√

32 +
√

20) + q(
√

25 +
√

13) + r(
√

20 +
√

8)

+ (n− p− q − r − 2)(
√

17 +
√

5)−
√

18− p(
√

25 +
√

25)

− q(
√

18 +
√

18)− r(
√

13 +
√

13)− (n− p− q − r − 2)(
√

10 +
√

10).

=
√

20−
√

18− 2
√

17− 2
√

5 + 4
√

10 + p(
√

32 +
√

20−
√

17−
√

5

− 2
√

25 + 2
√

10) + q(
√

25 +
√

13−
√

17−
√

5− 2
√

18 + 2
√

10)

+ r(
√

20 +
√

8−
√

17−
√

5− 2
√

13 + 2
√

10) + n(
√

17 +
√

5− 2
√

10)

= 0.160 + 0.034n+ 0.094p+ 0.085q + 0.054r > 0.

This contradicts our assumption that T has a maximum ESO index in C(n). There-

fore, n3(T ) ≤ 1.

Lemma 9. Let T be a chemical tree in C(n) of order n ≥ 5, with maximum ESO index.
Then n2(T ) + n3(T ) ≤ 1.

Proof. From Lemmas 7 and 8, we have n2(T ) ≤ 1 and n3(T ) ≤ 1. On the contrary,

assume that n2(T ) + n3(T ) = 2. Then there exist vertices u1 and v1 in T of degrees

3 and 2, respectively. Let T has a degree sequence

(4, . . . , 4︸ ︷︷ ︸
p

, du
1
(T ) = 3, dv

1
(T ) = 2, 1, . . . , 1︸ ︷︷ ︸

n−p−2

),

where p ≥ 0. Let v2 be the other neighbor of v1 that is not on u1, v1-path. We

construct a tree T ∗ ∈ C(n) from T as follows: T ∗ = T − v1v2 + v2u1. Then

du
1
(T ∗) = du

1
(T ) + 1 = 4, dv

1
(T ∗) = dv

1
(T ) − 1 = 1 and dv(T ) =dv(T

∗) for all

v ∈ V (T )\{u1, v1}. We obtain

ESO(T ∗)− ESO(T ) =
√

17 + p(
√

32 +
√

17) + (n− p− 2)(
√

17 +
√

2)− p(
√

25 +
√

20)

−
√

13− (n− p− 2)(
√

10 +
√

5)

=
√

17
√

13− 2
√

17− 2
√

2 + 2
√

10 + 2
√

5 + n(
√

17 +
√

2−
√

10−
√

5)

+ p(
√

32 +
√

17−
√

17−
√

2−
√

25−
√

20 +
√

10 +
√

5).

= 0.239 + 0.138n+ 0.168p > 0.

This contradicts our assumption that T has a maximum ESO index in C(n). There-

fore, n2(T ) + n3(T ) ≤ 1.

Theorem 10. Let T be a chemical tree of order n with maximum ESO index in C(n).
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Then

ESO(T ) =



(p+ 1)(2p+ 1)
√

2 + 2p(p+ 1)
√

17 + p(p− 1)2
√

2

if q = 1 and n ≡ 2(mod 3),
(2p+ q)(2p+ q − 1)√

2
+ q(2p+ q)

√
1 + q2 + p

√
16 + q2

+ p(2p+ q)
√

17 + p(p− 1)2
√

2

if q ∈ {2, 3} and n ≡ (q − 2)(mod 3),

where p and q are defined in Definition 1.

Proof. Let T be a chemical tree in C(n) with the maximum ESO index. By Lemma

9, this chemical tree T has n2(T ) + n3(T ) ≤ 1. As T satisfies n2(T ) + n3(T ) ≤ 1, the

degree sequence of T is D(n). Now we discuss the problem in two cases.

Case 1. If q = 1 in D(n), then n2(T ) + n3(T ) = 0 and n4(T ) = p. From (4.2) and

(4.3), we get n1(T ) = 2p + 2. From (4.2), we obtain n = 3p + 2, which implies that

n ≡ 2(mod 3). From (1.2), we get

c11 = (p+ 1)(2p+ 1),

c14 = 2p(p+ 1),

c44 =
p(p− 1)

2
.

 (4.5)

By using (4.5) in (4.1), we obtain

ESO(T ) = (p+ 1)(2p+ 1)
√

2 + 2p(p+ 1)
√

17 + p(p− 1)2
√

2.

Case 2. If q ∈ {2, 3} in D(n), then n2(T ) + n3(T ) = 1 and n4(T ) = p. From (4.2)

and (4.3), we obtain

n = n1(T ) + p+ 1,

2n− 2 = n1(T ) + q + 4p.

}
(4.6)

From (4.6), we obtain n1(T ) = 2p + q. From (4.2), we obtain n = 3p + q + 1 =

3(p+ 1) + q − 2, which implies that n ≡ q − 2(mod 3). From (1.2), we get

c11 =
(2p+ q)(2p+ q − 1)

2
,

c1q = q(2p+ q),

c4q = p,

cqq = 0,

c14 = p(2p+ q),

c44 =
p(p− 1)

2
.


(4.7)
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By using (4.7) in (4.1), we obtain

ESO(T ) =
(2p+ q)(2p+ q − 1)√

2
+ q(2p+ q)

√
1 + q2 + p

√
16 + q2 + p(2p+ q)

√
17

+ p(p− 1)2
√

2.

This finishes the proof.

5. Chemical significance

As topological indices are rooted in mathematical chemistry, it is important to con-

sider their chemical significance alongside mathematical properties. This section ex-

amines the extended Sombor indices as molecular descriptors in QSPR analysis. For

a new index to be useful [29], it should effectively model at least one molecular prop-

erty and provide different structural insights, avoiding high correlation with existing

indices. Typically, indices with a correlation coefficient (R) ≥ 0.8 are suitable for

regression analysis.

Here we consider benzene hydrocarbons (BHs) to examine the predictive potential of

extended Sombor indices. The theoretical values of indices are produced by Python

code and the experimental properties are compiled from [32]. We find a significant lin-

ear relationship between the extended Sombor indices and the properties of benzene

hydrocarbons (BHs), namely boiling point (BP ), π-electron energy (π-ele), molecu-

lar weight (MW ), polarizability (PO), molar refractivity (MR), and molar volume

(MV ), using a linear model.

BHs properties →
MR π−ele MW PO BP MV

ESO−indices ↓
ESO 0.928367 0.918350 0.903492 0.928291 0.836089 0.776136

ESOred 0.910827 0.900013 0.883736 0.910636 0.812371 0.749093
ESOavg 0.930631 0.920939 0.906320 0.930440 0.839465 0.781046

Table 1. The correlation coefficients between extended Sombor indices and physicochemical properties
(MR, π−ele, MW , PO, BP , MV ) of benzenoid hydrocarbons (BHs).

Table 1 shows that extended Sombor indices are highly correlated with the physico–

chemical properties of BHs, especially with the MR, π−ele, MW , PO, indicating

that these indices could be beneficial in the modeling of these properties.

In examining an important property of a topological molecular descriptor—

correlations among extended Sombor indices and degree–based topological indices

for octane isomers—we expanded the pool of indices (namely, first and second Zagreb

indices [17], Randić index [28], Forgotten index [11] and sum-connectivity index [36])

and calculated their correlation coefficients. These results are given in Table 2.
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SO SOred M1 M2 R F X

ESO 0.719404 0.723579 0.723222 0.698062 0.714617 0.707156 0.724140

ESOred 0.752018 0.754711 0.752511 0.711308 0.749949 0.741979 0.756192
ESOavg 0.725806 0.728887 0.728530 0.699920 0.716092 0.716092 0.725688

Table 2. The correlation coefficient of extended Sombor indices with first Zagreb index (M1), second
Zagreb index (M2), Randić index, Forgotten index (F ) and sum-connectivity index (X).

From Table 2, one can see that ESO, ESOred, and ESOavg are poorly linearly cor-

related with the indices considered. This finding suggests that the extended Sombor

indices offer different structural information compared to the indices in Table 2.

6. Conclusion

In this paper, we introduce the extended versions of Sombor indices based on all

pairs of vertices. We have made several important observations. First, we observe

that when two non-isomorphic graphs have the same degree sequence, their extended

Sombor indices are also the same. This observation has significant implications for

understanding graph structures. We explore the basic mathematical features of these

extended indices, establish upper and lower bounds in terms of some graph param-

eters. Furthermore, based on the maximum and minimum extended Sombor index,

we characterize the extremal chemical trees. We find that the path graph has the

minimum ESO index in C(n). Additionally, C(n, p, q) ⊆ C(n) is the set of chemical

trees with a maximum ESO index. For 5 ≤ n ≤ 11, C(n, p, 1) has a unique chemical

tree for each n, while for n ≥ 12, C(n, p, 1) has more than one chemical tree. Simi-

larly, for 4 ≤ n ≤ 8, C(n, p, 2) and C(n, p, 3) have a unique chemical tree for each n,

while for n ≥ 9, C(n, p, 2) and C(n, p, 3) have more than one chemical tree. Moreover,

the chemical significance of the extended Sombor indices has been examined using

benzenoid hydrocarbons (BHs), which contain the aforesaid structural features. It

has been observed that the extended Sombor indices exhibit considerable predictive

potential for the π-electron energy (π-ele), molecular weight (MW ), polarizability

(PO), and molar refractivity (MR) of BHs.

Future work could explore the extremal bounds of the extended Sombor index

in graphs, taking into account additional graph parameters such as the pendant

number, branching number, segments, matching, and other related metrics.
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