
تعداد نشریات | 5 |
تعداد شمارهها | 116 |
تعداد مقالات | 1,363 |
تعداد مشاهده مقاله | 1,365,527 |
تعداد دریافت فایل اصل مقاله | 1,323,175 |
A neutrosophic approach to solving constrained optimization problems using Karush-Kuhn-Tucker conditions | ||
Communications in Combinatorics and Optimization | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 26 تیر 1404 | ||
نوع مقاله: Original paper | ||
شناسه دیجیتال (DOI): 10.22049/cco.2025.30167.2363 | ||
نویسندگان | ||
G. Vanaja؛ K. Ganesan* | ||
Department of Mathematics, College of Engineering and Technology, SRM Institute of science and Technology, Kattankulathur - 603 203, Tamil Nadu, India | ||
چکیده | ||
In this article, we investigate the solution of constrained optimization problems using the Karush Kuhn Tucker (KKT) condition with single-valued neutrosophic triangular number coefficients. Our approach introduces new neutrosophic arithmetic operations applied to the parametric representations of neutrosophic numbers, along with the neutrosophic ranking of the parametric forms of Triangular Neutrosophic Numbers. The primary objective of this study is to develop a robust framework for solving constrained Single-Valued Neutrosophic Nonlinear Programming Problems using the KKT condition, effectively managing uncertainty and imprecision in optimization. We present and prove an important theorem for the KKT condition under neutrosophic environments, contributing to the theoretical foundation of this method. Furthermore, a detailed numerical example illustrates the practical application of the proposed approach. The results are compared with those of existing methods, demonstrating the effectiveness and advantages of the neutrosophic-based solution. | ||
کلیدواژهها | ||
constrained optimization؛ single-valued neutrosophic number؛ neutrosophic programming؛ uncertainty management | ||
آمار تعداد مشاهده مقاله: 5 |