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Abstract: Given a nontrivial connected undirected graph G with diameter d, a
vertex coloring c of G that uses only the colors red and white induces, for each v ∈ V (G),

the d-vector ~d(v) = [a1a2 · · · ad], where each ai is equal to the number of red vertices

of distance i from v. Then c is called an ID-coloring of G if ~d(v) 6= ~d(w) for all distinct
v, w ∈ V (G). If G has at least one ID-coloring, then it is called an ID-graph and its

identification number ID(G) is defined to be the minimum number of red vertices among

all ID-colorings of G. The notions of ID-colorings and identification number have been
shown to be equivalent to the notions of multiset resolving sets and multiset dimension,

respectively. Previous works on this topic have focused on characterizing ID-caterpillars

and ID-lobsters and on the identification numbers of some ID-caterpillars. In this
paper, we focus on the identification numbers of ID-lobsters. Specifically, we establish

a sharp lower bound for the identification number of all ID-lobsters. Furthermore, we
characterize and determine the identification numbers of all uniform ID-lobsters.
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1. Introduction

The problem of distinguishing the vertices of a graph has captured the interest of

different mathematicians. In their paper Distance Vertex Identification in Graphs

[2], Chartrand, Kono and Zhang have introduced an approach to this problem using
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red-white colorings (i.e., vertex colorings in which each vertex is colored red or white

and at least one vertex is colored red). Given a nontrivial connected undirected graph

G with diameter d ≥ 2, a red-white coloring c of G induces a code ~d(v) = [a1a2 · · · ad]

for every vertex v in G, where for 1 ≤ i ≤ d, the component ai is the number of red

vertices at distance i from v. If no two vertices have the same code, then c called is

an identification coloring or ID-coloring of G. Any graph possessing an ID-coloring

is called an ID-graph. Thus, if a graph G is an ID-graph, then its vertices can be

distinguished from each other using an ID-coloring of G, even in the case that G has

nontrivial automorphisms.

It turns out that the notion of ID-colorings is equivalent to the earlier notion of multi-

set resolvings sets independently introduced by Saenpholphat [11] and Simanjuntak,

Siagian, & Vetrik [12]. This equivalence is established in [4] and implies that we can

replace the vector code ~d(v) by the multiset code M(v), which is defined to be the

multiset of distances of v to each of the red vertices in G. More precisely, a red-white

coloring of a graph G is an ID-coloring if and only if no two vertices have the same

multiset codes.

Given an ID-graph G, the minimum number of red vertices among all ID-colorings

of G is called the identification number ID(G) (or ID-number or multiset dimension)

of G. The ID-numbers of different graph families have been studied in the literature.

For instance in [2, 12], it has been shown that any nontrivial path has ID-number 1,

and any cycle with at least 6 vertices has ID-number 3. In [9, 10, 12], it has also been

shown that the grid Pm�Pn, for m ≥ 1 and n ≥ 4, has identification number 3.

ID-colorings of different tree families have also been studied in [3, 5–8], where differ-

ent results on conditions for trees to be ID-graphs have been presented. Particular

attention has also been devoted to a specific family of trees called caterpillars, which

are trees of order 3 or more, for which the removal of its leaves yields a path graph.

The ID-number of some ID-caterpillars has been determined in [8].

In [3], one of the graph families considered is that of lobster graphs, which are trees

for which the removal of their leaves yields a caterpillar graph. One of the proposed

main results in [3] is a characterization theorem for lobster graphs that are ID-graphs.

However, the identification number (or multiset dimension) of such graphs has not

been studied. Thus, in this paper, we extend these previous works by focusing on the

identification numbers of lobster graphs that are ID-graphs.

After presenting some preliminary definitions and notations below, we investigate in

the next section properties of ID-colorings for general lobster graphs. This leads to our

first result that provides a sharp lower bound for the ID-number of general ID-lobsters.

In the third section, we focus our attention on characterizing and determining the ID-

number of a general family of lobster graphs called uniform ID-lobsters.
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1.1. Preliminaries

All graphs to be considered in this paper are simple, connected, nontrivial, and undi-

rected. As is customary, for a positive integer n, the path graph of order n is denoted

by Pn while the star graph of order n+ 1 is denoted by K1,n.

Given a red-white coloring c of a graph G, recall that, for each v ∈ V (G), the multiset

code of v is given by the multiset

M(v) = {d(u, v) : u is a red vertex}.

Further, we denote by maxM(v),minM(v), and σ(M(v)) the maximum element, the

minimum element, and the sum of all elements, respectively, of M(v).

From [2], recall that a set S of t vertices, where t ≥ 2, of a graph G is called a t-tuplet

if either

(a) the vertices form an independent set and every two vertices in S have the same

neighborhood; or

(b) S is a clique and every two vertices in S have the same closed neighborhood.

A 2-tuplet is also called a twin while a 3-tuplet is also called a triplet. The following

results from [2] are used in the next sections.

Proposition 1 ([2]). Let c be an ID-coloring of a connected graph G. If u and v are
twins of G, then c(u) 6= c(v). Consequently, if G is an ID-graph, then G is triplet-free.

Proposition 2 ([2]). There is no ID-coloring of a connected graph with exactly two red
vertices.

Theorem 1 ([2]). A nontrivial connected graph G has ID(G) = 1 if and only if G is a
path.

As previously mentioned, a caterpillar graph is a tree for which the removal of its

pendant vertices yields a path or a zero-order graph. On the other hand, a lobster

graph is a tree for which the removal of its pendant vertices yields a caterpillar graph.

In the following, we present an equivalent formulation of lobster graphs as well as

corresponding notations to be used throughout the paper.

Definition 1. A lobster graph is a tree G = (V,E) such that V = V0 ∪ V1 ∪ V2, where
V0 6= ∅ and V0, V1, V2 are pairwise disjoint, and

1. the subgraph of G induced by the vertices in V0 is a path, called the central path of G;

2. for each w ∈ V1, there is exactly one v ∈ V0 such that vw ∈ E;

3. for each y ∈ V2, there is exactly one w ∈ V1 such that wy ∈ E.
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Figure 1. A lobster graph with vertex set V0 ∪V1 ∪V2. For the identified central vertex v and distance-1
vertex w, the sets V1[v] and V2[w] are shown.

Following the notations in the above definition, the central path of a lobster graph

G = (V0∪V1∪V2, E) will be denoted by P (G) while the vertices in V0 will be referred

to as central vertices of G. It can be easily observed that any vertex in V1 (resp. V2)

is of distance 1 (resp. distance 2) to the central path P (G). Thus, we refer to the

vertices in V1 (resp. V2) as distance-1 (resp. distance-2 ) vertices. For any central

vertex v of G, we defineV1[v] = {w ∈ V1 : vw ∈ E}. Similarly, for any distance-1

vertex w of G, we define V2[w] = {y ∈ V2 : wy ∈ E}. These definitions and notations

are illustrated using the lobster graph shown in Fig. 1.

Now, let v be a central vertex of the lobster graph G. By a branch at v, we mean a

subgraph of G induced by v, a vertex w ∈ V1[v], and all the vertices, if any, in V2[w].

For example, there are two branches at the central vertex v in the lobster graph in

Fig. 1; one branch is isomorphic to K1,4 while the other is isomorphic to P2.

2. Lobster Graphs

A lobster graph that is also an ID-graph is called an ID-lobster. In this section, we

investigate some properties of ID-lobsters towards establishing a sharp lower bound

for the ID-number of these graphs.

Following a similar development as in [3], we begin by presenting restrictions on the

branches that can be present in ID-lobsters. The first restriction is given by the

following observation, which is also part of Theorem 2 in [3]. We include a proof for

completeness.

Observation 2 ([3]). Let G be an ID-lobster. Then for any central vertex v of G, any
branch at v must be isomorphic to P2, P3, or K1,3.

Proof. Since G is an ID-graph, it must be triplet-free by Proposition 1. Thus,

|V2[w]| ≤ 2 for all w ∈ V1. Let v be a central vertex of G and let B be a branch at v.

By definition, B is a subgraph induced by v, a vertex w ∈ V1[v], and all the vertices,

if any, in V2[w]. If V2[w] = ∅, then B is isomorphic to P2. If |V2[w]| = 1, then B is

isomorphic to P3. If |V2[w]| = 2, then B is isomorphic to K1,3.
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In light of this observation, for any central vertex v of an ID-lobster G, we refer to the

possible branch types at v as P2-type, P3-type, and K1,3-type. Moreover, we denote

by s1(v), s2(v), and s3(v) the number of branches at v that are of P2-type, P3-type,

and K1,3-type, respectively.

The following observation implies further restrictions on the branches that may be

present in ID-lobsters. Once again, this observation is also part of Theorem 2 in [3]

but we also include a proof for completeness. (See also Observation 2.1 in [7].)

Lemma 1 ([3]). Let G be an ID-lobster. Then for any central vertex v of G, we have
s1(v) ≤ 2, s3(v) ≤ 2, and s1(v) + s2(v) + s3(v) ≤ 4.

Proof. By Proposition 1, G must be triplet-free; thus, s1(v) ≤ 2. The inequality

s3(v) ≤ 2 follows immediately from Claim 2A below.

Claim 2A. Suppose G has two K1,3-type branches B1, B2 at v. For i ∈ {1, 2},
suppose V (Bi) = {v, wi, yi,1, yi,2} and E(Bi) = {wiv, wiyi,1, wiyi,2}. Then for any

ID-coloring c of G, we must have (a) c(y1,1) 6= c(y1,2), (b) c(y2,1) 6= c(y2,2), and (c)

c(w1) 6= c(w2).

Proof of Claim 2A. Refer to Fig. 2(a). Let c be an ID-coloring of G. Since y1,1 and y1,2

(resp. y2,1 and y2,2 are twins, (a) and (b) follow immediately from Proposition 1. Now,

note that for all x ∈ V (G)r{w1, w2, y1,1, y1,2, y2,1, y2,2}, we have d(w1, x) = d(w2, x).

This implies that ~d(w1)[k] = ~d(w2)[k] for k ≥ 4. By Claim 2A(a) (resp. Claim 2A(b)),

exactly one of y1,1, y1,2 (resp. y2,1, y2,2) is red. This implies that ~d(w1)[1] = ~d(w2)[1]

and ~d(w1)[3] = ~d(w2)[3] as well. Thus, since c is an ID-coloring, we must have
~d(w1)[2] 6= ~d(w2)[2], which only happens if c(w1) 6= c(w2).

(a) (b)

Figure 2. A central vertex v in a lobster graph having (a) two K1,3-type branches at v; (b) two P3-type
branches at v.

We now focus on the P3-type branches at v. We first prove the following claim.

Claim 2B. Suppose G has two P3-type branches B1, B2 at v. For i ∈ {1, 2}, suppose

V (Bi) = {v, wi, yi} and E(Bi) = {vwi, wiyi}. Then for any ID-coloring c of G, we

must have (c(w1), c(y1)) 6= (c(w2), c(y2)).
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Proof of Claim 2B. Refer to Fig. 2(b). Let c be an ID-coloring of G with

(c(w1), c(y1)) = (c(w2), c(y2)). Since d(w1, x) = d(w2, x) for all x ∈ V (G) r
{w1, w2, y1, y2}, it follows that ~d(w1) = ~d(w2), which contradicts the assumption

that c is an ID-coloring.

Since any ID-coloring uses only two colors, Claim 2B implies that s2(v) ≤ 4. We are

now ready to prove that s1(v) + s2(v) + s3(v) ≤ 4, which follows immediately from

Claim 2B and the succeeding Claim 2C.

Claim 2C. Let c be an ID-coloring of G.

(1) Suppose G has a P2-type branch B1 and a P3-type branch B2 at v. Let V (B1) =

{v, w1}, E(B1) = {vw1}, V (B2) = {v, w2, y2}, and E(B2) = {vw2, w2y2}. Then:

(a) c(w1) = white implies (c(w2), c(y2)) 6= (white,white);

(b) c(w1) = red implies (c(w2), c(y2)) 6= (red,white).

(2) Suppose G has a K1,3-type branch B1 and a P3-type branch B2 at v. Let

V (B1) = {v, w1, y1,1, y1,2}, E(B1) = {vw1, w1y1,1, w1y1,2}, V (B2) = {v, w2, y2},
and E(B2) = {vw2, w2y2}. Then:

(a) c(w1) = white implies (c(w2), c(y2)) 6= (white, red);

(b) c(w1) = red implies (c(w2), c(y2)) 6= (red, red).

(a) (b)

Figure 3. A central vertex v in a lobster graph having (a) one P2-type branch and one P3-type branch
at v; (b) one K1,3-type branch and one P3-type branch at v.

Proof of Claim 2C. Refer to Fig. 3. For (1), note that d(w1, x) = d(w2, x) for all

x ∈ V (G) r {w1, w2, y2}. On the other hand, for (2), we have d(w1, x) = d(w2, x)

for all x ∈ V (G) r {w1, w2, y1,1, y1,2, y2}. The desired conclusions now follow using

similar arguments as the ones used for Claims 2A and 2B.

Observation 2 and Lemma 1 provide necessary conditions for a lobster graph to be

an ID-graph. We summarize these conditions in the following corollary.
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Corollary 1 ([3]). Let G be a lobster graph that has a central vertex v for which at least
one of the following conditions holds: (a) there is a branch at v that is not isomorphic to
P2, P3, or K1,3; or (b) s1(v) + s2(v) + s3(v) > 4. Then G is not an ID-graph.

We now provide a lower bound for the identification number of ID-lobsters. The

sharpness of this lower bound is established through Proposition 6 in the next section.

Lemma 2. Let G be an ID-lobster and V0 be the set of all central vertices of G. Then

ID(G) ≥ max

{
1,
∑
v∈V0

r(v)

}
,

where for each v ∈ V0,

r(v) =



4, if s1(v) + s2(v) + s3(v) = 4,
3, if s3(v) = 2 and s1(v) + s2(v) + s3(v) ≤ 3,
2, if s3(v) ≤ 1 and s1(v) + s2(v) + s3(v) = 3,
1, if s3(v) ≤ 1 and s1(v) + s2(v) + s3(v) = 2,

or s3(v) = 1 and s1(v) + s2(v) = 0,
0, if s3(v) = 0 and s1(v) + s2(v) ≤ 1.

Proof. In general, the result is established by applying Proposition 1 and Claims

2A, 2B, and 2C from the proof of Lemma 1.

Let c be any ID-coloring of G and v be a central vertex of an ID-lobster G. For

simplicity, we will denote s1(v), s2(v), s3(v) by s1, s2, s3, respectively. It is sufficient

to show that there are at least r(v) red vertices, under the coloring c, in the branches

at v.

Case 1. Suppose s1 + s2 + s3 = 4. Then (s1, s2, s3) ∈ {(0, 2, 2), (0, 3, 1), (0, 4, 0),

(1, 1, 2), (1, 2, 1), (1, 3, 0), (2, 0, 2), (2, 1, 1), (2, 2, 0)}. If (s1, s2, s3) = (0, 2, 2), Proposi-

tion 1 and Claim 2A imply that, under the coloring c, the two K1,3-type branches

must have 3 red vertices. Claim 2C(2b) then implies that the two P3-type branches

must have only 1 red vertex. Thus, the branches at v must have at least 4 red vertices,

as required. The proof for other values of (s1, s2, s3) is similar.

Case 2. Suppose s3 = 2 and s1 + s2 + s3 ≤ 3. Then (s1, s2, s3) ∈ {(0, 0, 2),

(0, 1, 2), (1, 0, 2)}. As in the previous case, the two K1,3-type branches at v must

have 3 red vertices under the coloring c. The third branch at v, if it exists, may have

all of its vertices colored white. Thus, branches at v must have at least 3 red vertices,

as required.

Case 3. Suppose s3 ≤ 1 and s1 + s2 + s3 = 3. Then (s1, s2, s3) ∈ {(0, 2, 1), (0, 3, 0),

(1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0)}. If s3 = 1, then the one K1,3-type branch at v must

have at least 1 red vertex; moreover, the other two branches must have at least 1 red

vertex as well. On the other hand, if s3 = 0, then (s1, s2) ∈ {(0, 3), (1, 2), (2, 1)} for

which it is easy to see that the branches at v must have at least 2 red vertices.



8 On the identification numbers of lobster graphs

Case 4. Suppose s3 ≤ 1 and s1 + s2 + s3 = 2; or s3 = 1 and s1 + s2 + s3 = 1. If

s1 + s2 + s3 = 2, then the two branches at v must have at least 1 red vertex under

the coloring c. Similarly, if s3 = 1, then the one K1,3-type branch at v must have at

least 1 red vertex.

Case 5. Suppose s3 ≤ 0 and s1 + s2 + s3 = 1; or s1 + s2 + s3 = 0. For this case, the

desired result is trivial.

Thus, we have established the desired formula for r(v) for any vertex v ∈ V0. More-

over, we have shown that under an arbitrary ID-coloring c of G, each central vertex

v must have in its branches at least r(v) vertices that are colored red. Thus, the

number of red vertices under c is at least
∑

v∈V0
r(v). The desired lower bound for

ID(G) follows immediately.

To illustrate an application of Lemma 2, we characterize and compute the identifica-

tion number of all ID-lobsters with only one central vertex.

Proposition 3. Let G be a lobster graph with exactly one central vertex v and whose
order is at least 2. Then G is an ID-graph if and only if the following conditions hold: (a)
any branch at v is isomorphic to P2, P3, or K1,3, (b) 1 ≤ s1(v) + s2(v) + s3(v) ≤ 4, and (c)
(s1(v), s2(v), s3(v)) 6= (0, 0, 1). Moreover, if (a), (b), (c) hold (i.e., G is an ID-graph), then

ID(G) =


4, if s1(v) + s2(v) + s3(v) = 4,
1, if s3(v) = 0 and 1 ≤ s1(v) + s2(v) ≤ 2,
3, otherwise.

Proof. For simplicity, we denote s1(v), s2(v), s3(v) by s1, s2, s3, respectively. Let G

be an ID-graph. Since G has order at least 2, we must have s1 +s2 +s3 ≥ 2. Then (a)

and (b) hold by Corollary 1. Moreover, when (s1, s2, s3) = (0, 0, 1), then G ≡ K1,3,

which is not an ID-graph. Thus, (c) also holds.

We now prove the converse. Suppose that G satisfies (a), (b), (c).

First, we consider the case when s3 = 0 and 1 ≤ s1 + s2 ≤ 2. Equivalently, (s1, s2, s3)

must be (0, 2, 0), (2, 0, 0), (1, 1, 0), (1, 0, 0), or (0, 1, 0). In any of these cases, G

isomorphic to a path graph. By Theorem 1, G is an ID-graph and ID(G) = 1.

Now, consider the case when s1 + s2 + s3 = 4. Then it is sufficient to show that G

has an ID-coloring. In Table 1, an ID-coloring of G (with 4 red vertices) is shown

for each possible (s1, s2, s3). Note that, in this case, we also have r(v) = 4; thus, by

Lemma 2, it also follows that ID(G) = 4.
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(s1, s2, s3) (0, 2, 2) (0, 3, 1) (0, 4, 0) (1, 1, 2) (1, 2, 1)

ID-coloring of G

(s1, s2, s3) (1, 3, 0) (2, 0, 2) (2, 1, 1) (2, 2, 0)

ID-coloring of G

Table 1. ID-colorings of a lobster graph G that has a single central vertex v, for different values of
(s1, s2, s3) satisfying s1 + s2 + s3 = 4.

Finally, for the last case, we consider the remaining possible values of (s1, s2, s3)

subject to conditions (b) and (c). All these remaining values are shown in Table 2,

from which it is evident that G is not isomorphic to a path graph. We also provide

therein an ID-coloring of G for each possible value of (s1, s2, s3); note that the ID-

colorings shown have exactly 3 red vertices. Thus, G is an ID-graph. Since Theorem

1 and Proposition 2 imply that ID(G) ≥ 3, it also follows that ID(G) = 3 in this case.

(s1, s2, s3) (0, 0, 2) (0, 1, 1) (0, 1, 2) (0, 2, 1)

ID-coloring of G

(s1, s2, s3) (0, 3, 0) (1, 0, 1) (1, 0, 2) (1, 1, 1)

ID-coloring of G

(s1, s2, s3) (1, 2, 0) (2, 0, 1) (2, 1, 0)

ID-coloring of G

Table 2. ID-colorings of a lobster graph G that has a single central vertex v, for different values of
(s1, s2, s3) satisfying s1 + s2 + s3 6= 4 and (s3 6= 0 or s1 + s2 = 3).

3. Uniform Lobster Graphs

Following the notations of Definition 1, recall that the vertex set of a lobster graph G

is a disjoint union of three sets V0, V1, and V2. The vertices in V0 induce the central
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path of G while vertices in V1 and V2 are of distance 1 and distance 2, respectively, to

the central path. Thus, vertices in V1 and in V2 are called distance-1 and distance-2

vertices, respectively. We now present the following definition.

Definition 2. Let n, a, b be positive integers such that n ≥ 2. The uniform lobster graph
L(n, a, b) is the lobster graph having exactly n central vertices such that each central vertex
is adjacent to exactly a distance-1 vertices while each distance-1 vertex is adjacent to exactly
b distance-2 vertices.

In this section, we characterize and determine the identification number of all uniform

lobster graphs that are ID-graphs. The following is an immediate consequence of

Corollary 1.

Corollary 2. Let n, a, b be positive integers such that n ≥ 2. If a > 4, or b > 2, or
(a > 2 and b > 1), then the uniform lobster graph L(n, a, b) is not an ID-graph.

Thus, we are left to consider the following values of (a, b): (1, 1), (1, 2), (2, 1), (2, 2),

(3, 1), and (4, 1), each of which is considered in the following propositions.

Proposition 4. The uniform lobster graph L(n, 1, 1) is an ID-graph for any integer
n ≥ 2. Moreover,

ID(L(n, 1, 1)) =

{
1, if n = 2,
3, if n ≥ 3.

Proof. The case n = 2 is trivial. For n ≥ 3, it is clear that L(n, 1, 1) is not a path;

thus, its identification number is at least 3. We now provide an identification coloring

of L(n, 1, 1) that uses 3 red vertices. For n = 3, refer to Fig. 4(a).

(a) (b) (c)

Figure 4. ID-colorings for (a) L(3, 1, 1), (b) L(4, 1, 1), (c) L(5, 1, 1); shown beside each vertex is its
multiset code.

We now assume that n ≥ 4. Let G = L(n, 1, 1); we will use the vertex notations as

shown in Fig. 5.

Figure 5. Notations for the vertices of the uniform lobster graph L(n, 1, 1) .
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Let c be a red-white coloring of G in which the vertices v1, v2, vn are colored red and

the other vertices are colored white. We show that c is an ID-coloring of G. When

n = 4 or 5, this can be verified from Fig. 4 (b) & (c), respectively.

We now consider the general case n ≥ 6. Based on the definition of c, it can be easily

verified that

σ(M(vi)) =

{
n, i = 1,

n+ i− 3, i ∈ {2, 3, . . . , n}, (3.1)

and that

max(M(vi)) =

{
n− i, i ∈ {1, 2, . . . , bn2 c},
i− 1, i ∈ {bn2 c+ 1, bn2 c+ 2, . . . , n}. (3.2)

Moreover, for each i ∈ {1, 2, . . . , n}, we have

σ(M(wi)) = σ(M(vi)) + 3, and maxM(wi) = maxM(vi) + 1,

σ(M(xi)) = σ(M(vi)) + 6, and maxM(xi) = maxM(vi) + 2.

Now, let u, y be two arbitrary distinct vertices of G. We show that M(u) 6= M(y).

For this, note that it is sufficient to show that σ(M(u)) 6= σ(M(y)) or maxM(u) 6=
maxM(y) or minM(u) 6= minM(y).

Case 1. Suppose u = vi and y = vj , where 1 ≤ i < j ≤ n. If i 6= 1, (3.1) implies that

σ(M(vi)) 6= σ(M(vj)). If i = 1 and 2 ≤ j ≤ n, then σ(M(v1)) = n 6= n + j − 3 =

σ(M(vj)) if and only if j 6= 3. We are left to consider the case where (i, j) = (1, 3):

since v1 is red and v3 is white, we have M(v1) 6= M(v3).

Case 2. Suppose u = wi and y = wj , where 1 ≤ i < j ≤ n. Fix i, j arbitrarily. Note

that adding 1 to each element of M(vi) (resp. M(vj)) yields M(wi) (resp. M(wj)).

By Case 1, M(vi) 6= M(vj), which implies that M(wi) 6= M(wj) as well.

Case 3. Suppose u = xi and y = xj , where 1 ≤ i < j ≤ n. Note that adding 2 to

each element of M(vi) (resp. M(vj)) yields M(xi) (resp. M(xj)). The proof proceeds

similarly as in Case 2.

Case 4. Suppose u = vi and y = wj , where i, j ∈ {1, 2, . . . , n}. The cases where

i = 1 or j = 1 can be verified easily; thus, we now assume that i, j ∈ {2, 3, . . . , n}.
Notice that σ(M(vi)) 6= σ(M(wj)) if and only if n+ i−3 6= n+ j or i− j 6= 3. Hence,

we are left to consider the case where i − j = 3. Given that both i, j must be in

{2, 3, . . . , n}, we must have (i, j) ∈ {(5, 2), (6, 3), . . . , (n, n− 3)}.

(4.1) Suppose 5 ≤ i ≤ bn2 c. Then 2 ≤ j ≤ bn2 c − 3 and

maxM(vi) = n− i 6= n− (i− 3) + 1 = maxM(wj),

as desired.
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(4.2) Suppose bn2 c + 1 ≤ i ≤ bn2 c + 3. Then bn2 c − 2 ≤ j ≤ bn2 c. It follows that

maxM(vi) = i− 1 6= n− (i− 3) + 1 = maxM(wj) if and only if i 6= n+5
2 . Thus,

we are left to consider the case where n is odd and i = n+5
2 ; it follows that

j = i− 3 = n−1
2 . In this case, we have

minM(vi) = min

{
n− n+ 5

2
,
n+ 5

2
− 2,

n+ 5

2
− 1

}
=
n− 5

2

while

minM(wj) = min

{
n− n− 1

2
+ 1,

n− 1

2
− 2 + 1,

n− 1

2
− 1 + 1

}
=
n− 3

2
.

Thus, minM(vi) 6= minM(wj), as desired.

(4.3) Suppose bn2 c+ 4 ≤ i ≤ bnc. Then bn2 c+ 1 ≤ j ≤ n− 3 and

maxM(vi) = i− 1 6= i− 3 = maxM(wj),

as desired.

Case 5. Suppose u = wi and y = xj , where i, j ∈ {1, 2, ..., n}. Fix i, j arbitrarily.

Note that adding 1 to each element of M(vi) (resp. M(wj)) yields M(wi) (resp.

M(xj)). Using Case 4, the proof proceeds similarly as in Case 2.

Case 6. Suppose u = vi and y = xj , where i, j ∈ {1, 2, ..., n}. As the proof is simlar

to that for Case 4, the details for this case are skipped.

Proposition 5. For any integer n ≥ 2, the uniform lobster graph L(n, 1, 2) is an ID-graph
and ID(L(n, 1, 2)) = n+ 1.

Proof. Let n ≥ 2 and G = L(n, 1, 2). Then at each central vertex v of G, there

is exactly one branch and this branch is of K1,3-type; thus, s3(v) = 1 and s1(v) =

s2(v) = 0. Using the notation in Lemma 2, we have r(v) = 1 for any central vertex v

of G. Thus, by the same lemma, we have ID(G) ≥ n.

(a) (b)

Figure 6. (a) Notations for the vertices of the uniform lobster graph L(n, 1, 2); (b) An ID-coloring for
the uniform lobster graph L(4, 1, 2); shown beside each vertex is its multiset code.

We will proceed using the vertex notations as shown in Fig. 6(a). Suppose there

is an ID-coloring c0 of G in which only n vertices are red. Note that for each i ∈
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{1, 2, . . . , n}, the vertices xi,1 and xi,2 are twins; thus, by Proposition 1, we must

have c0(xi,1) 6= c0(xi,2). We may then assume that the n red vertices under c0 are

x1,1, x2,1, . . . , xn,1. In this case, however, M(v1) = M(vn), which is a contradiction.

Thus, an ID-coloring of G in which only n vertices are colored red cannot exist; that

is, ID(G) ≥ n+ 1.

Let c be a red-white coloring of G in which the vertices v1, x1,1, x2,1, . . . , xn,1 are red

while the others are white. An example for the case n = 4 is illustrated in Fig. 6(b).

To complete the proof, we need to show that c is an ID-coloring of G. Let u, y be

distinct vertices of G; in each of the following cases, we show that M(u) 6= M(y).

Case 1. Suppose u = vi and y = vj , where 1 ≤ i < j ≤ n. Since v1 is the only red

central vertex, we may assume further that 2 ≤ i < j ≤ n. Note that maxM(vi) 6=
maxM(vj) if and only if i+j 6= n+1. Thus, we are left to consider the case when i =

n+1−j. In this case, symmetry implies that M(vi)r{d(vi, v1)} = M(vj)r{d(vj , v1)}.
Moreover, since d(vi, v1) < d(vj , v1), it follows that M(vi) 6= M(vj) as well.

Case 2. Suppose u = wi and y = wj , where 1 ≤ i < j ≤ n. Similar to Case 1, note

that maxM(wi) 6= maxM(wj) if and only if i+ j 6= n+ 1. The proof then proceeds

similarly.

Case 3. Suppose u = xi1,i2 and y = xj1,j2 , where 1 ≤ i1 ≤ j1 ≤ n and i2, j2 ∈ {1, 2}.
The desired conclusion follows immediately if u and y are of different colors. Thus,

we may assume that i1 < j1 and i2 = j2. We further assume that i2 = j2 = 1 as

the proof for i2 = j2 = 2 is the same. Similar to the previous two cases, note that

maxM(xi1,1) 6= maxM(xj1,1) if and only if i1 + j1 6= n+ 1. The proof then proceeds

similarly as in Case 1.

Case 4. Suppose u = vi and y = wj , where i, j ∈ {1, 2, ..., n}. Note that 1 ∈M(wj)

for any j. Fix an arbitrary j. If i 6= 2, then 1 /∈ M(vi), which implies that M(vi) 6=
M(wj). If i = 2, then M(v2) 6= M(wj) since M(v2) has 2 copies of 3 while M(wj)

has only at most one.

Case 5. Suppose u = wi and y = xj1,j2 , where i, j1 ∈ {1, 2, ..., n} and j2 ∈ {1, 2}.
Since u is white, we only need to consider the case where y is white; that is, we

may assume that j2 = 2. Consequently, 1 /∈ M(y) = M(xj1,2) for any j1 while

1 ∈M(u) = M(wi) for any i. The desired conclusion follows.

Case 6. Suppose u = vi and y = xj1,j2 , where i, j1 ∈ {1, 2, ..., n} and j2 ∈ {1, 2}. If

j1 6= 2, then M(vi) 6= M(xj1,j2) since 3 ∈ M(vi) while 3 /∈ M(xj1,j2). On the other

hand, if j1 = 2, then the desired conclusion also follows since maxM(xj1,j2) = n+2 >

n+ 1 ≥ maxM(vi).

Proposition 6. The uniform lobster graph L(n, 2, 1) is an ID-graph for any integer
n ≥ 2; moreover,

ID(L(n, 2, 1)) =

{
3, if n = 2,
n, if n ≥ 3.
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Proof. Let n ≥ 2 and G = L(n, 2, 1). Then at each central vertex v of G, there

are exactly two branches, both of which are of P3-type; thus, s2(v) = 2 and s1(v) =

s3(v) = 0. Using the notation in Lemma 2, we have r(v) = 1 for any central vertex v

of G. Thus, by the same lemma, we have ID(G) ≥ n.

(a) (b)

Figure 7. ID-colorings for (a) L(2, 2, 1), (b) L(n, 2, 1), where n ≥ 3; in (a), shown beside each vertex is
its multiset code.

When n = 2, Proposition 2 implies that ID(L(2, 2, 1)) ≥ 3. In Fig. 7(a), an ID-

coloring of L(2, 1, 1) with 3 red vertices is presented. Therefore, ID(L(2, 2, 1)) = 3.

For the general case where n ≥ 3, a red-white coloring of L(n, 2, 1) with n red vertices

is shown. Using a similar approach as in the proof of Proposition 5, it can be shown

that this red-white coloring is an ID-coloring of L(n, 2, 1).

Proposition 7 ([1]). For any integer n ≥ 2, the uniform lobster graph L(n, 2, 2) is an
ID-graph and ID(L(n, 2, 2)) = 3n+ 1.

Proof. Let n ≥ 2 and G = L(n, 2, 2). Then at each central vertex v of G, there are

exactly two branches, both of which are of K1,3-type; thus, s3(v) = 2 and s1(v) =

s2(v) = 0. Using the notation in Lemma 2, we have r(v) = 3 for any central vertex v

of G. Thus, by the same lemma, we have ID(G) ≥ 3n.

Let c0 be any ID-coloring of G. For each central vertex v, Proposition 1 and Claim

2A in Lemma 1 imply that the two branches at v, excluding v itself, must have

exactly 3 red vertices as shown in Fig. 8. Thus, there are exactly 3n red non-central

vertices. If no central vertex is red, then the multiset codes of the endvertices of

the central path will be equal; thus, there must be a (3n + 1)th red vertex. Hence,

ID(L(n, 2, 2)) ≥ 3n+ 1.

Figure 8. ID-coloring of L(n, 2, 2), n ≥ 2, with 3n + 1 red vertices.

We are left to show that G has an ID-coloring with 3n + 1 red vertices. For this, it

can be shown, using a similar approach as in the proof for Proposition 6, that the
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red-white coloring of L(n, 2, 2), n ≥ 2, in Fig. 8 is an ID-coloring. The complete

details of the proof can also be found in [1].

Proposition 8. For any integer n ≥ 2, the uniform lobster graph L(n, 3, 1) is an ID-graph
and ID(L(n, 3, 1)) = 2n+ 1.

Proof. Let n ≥ 2 and G = L(n, 3, 1). Then at each central vertex v of G, there

are exactly three branches, all of which are of P3-type; thus, s2(v) = 3 and s1(v) =

s3(v) = 0. Using the notation in Lemma 2, we have r(v) = 2 for any central vertex v

of G. Thus, by the same lemma, we have ID(G) ≥ 2n. However, similar to previous

proofs, it can be verified that G cannot have an ID-coloring with exactly 2n red

vertices; thus, ID(G) ≥ 2n+ 1. Finally, it can be verified that the red-white coloring

in Fig. 9 is an ID-coloring of G. This completes the proof.

Figure 9. ID-coloring of L(n, 3, 1), n ≥ 2, with 2n + 1 red vertices.

The remaining family of uniform lobsters consists of L(n, 4, 1), where n ≥ 2. For this

family, each central vertex has four branches, all of which are of P3-type. Before we

present the result for this family, we consider the special case n = 3; i.e., L(3, 4, 1).

Let v be a central vertex of L(3, 4, 1). Suppose the four branches at v are vw1x1,

vw2, x2, vw3x3, and vw4x4. For any ID-coloring c of L(3, 4, 1), Claim 2B in Lemma

1 implies that the ordered pairs (c(w1), c(x1)), (c(w2), c(x2)), (c(w3), c(x3)), and

(c(w4), c(x4)) must be pairwise distinct. Without loss of generality, we may assume

that
(c(w1), c(x1)) = (red, red), (c(w2), c(x2)) = (white,white)

(c(w3), c(x3)) = (white, red), (c(w4), c(x4)) = (red,white).

As the choice of v is arbitrary, the same coloring can be assumed for the branches at

other central vertices. This means there are exactly 12 non-central red vertices in any

ID-coloring of L(3, 4, 1). Clearly, the multiset codes of the endvertices of the central

path are going to be equal if (a) no central vertex is red, or (b) only the middle central

vertex is red, or (c) all three central vertices are red, or (d) both end vertices of the

central path are red. Up to symmetry, only two possibilities are left and these are

shown in Fig. 10. And we see that both possibilities do not yield ID-colorings as well.

Therefore, L(3, 4, 1) does not have an ID-coloring; that is, it is not an ID-graph.
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Figure 10. Red-white colorings of L(3, 4, 1) that are not ID because M(u) = M(y)

Proposition 9. Let n ≥ 2 be an integer. The uniform lobster graph L(n, 4, 1) is an
ID-graph and ID(L(n, 4, 1)) = 4n+ 1 if and only if n 6= 3.

Proof. The preceding discussion covers the case when n = 3. Let n ≥ 2 with n 6= 3

and let G = L(n, 4, 1). Then as previously mentioned, at each central vertex v of

G, there are exactly four branches, all of which are of P3-type; thus, s2(v) = 4 and

s1(v) = s3(v) = 0. Using the notation in Lemma 2, we have r(v) = 4 for any central

vertex v of G. Thus, by the same lemma, we have ID(G) ≥ 4n. However, similar

to previous proofs, it can be verified that G cannot have an ID-coloring with exactly

4n red vertices; thus, ID(G) ≥ 4n + 1. Finally, it can be verified that the red-white

coloring in Fig. 11 is an ID-coloring of G. This completes the proof.

Figure 11. ID-coloring of L(n, 4, 1), n ≥ 2 and n 6= 3, with 4n + 1 red vertices.

Combining Corollary 2 and Propositions 4-9, we obtain the following characterization

of uniform ID-lobsters.

Theorem 3. Let n, a, b be positive integers such that n ≥ 2. The uniform lobster graph
L(n, a, b) is an ID-graph if and only if (a, b) ∈ {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (4, 1)} and
(n, a, b) 6= (3, 4, 1). Moreover, if L(n, a, b) is an ID-lobster, then

ID(L(n, a, b)) =



1, if (n, a, b) = (2, 1, 1),
3, if (a, b) = (1, 1) and n ≥ 3; or (n, a, b) = (2, 2, 1),
n, if (a, b) = (2, 1) and n ≥ 3,

n+ 1, if (a, b) = (1, 2),
2n+ 1, if (a, b) = (3, 1),
3n+ 1, if (a, b) = (2, 2),
4n+ 1, if (a, b) = (4, 1) and n 6= 3.
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4. Conclusion and Future Direction

The equivalent notions of ID-colorings and multiset resolving sets have been previously

studied in relation to trees [3, 7], particularly caterpillars [3, 8] and lobsters [3]. These

previous works focused on characterizing ID-caterpillars and ID-lobsters and on the

identification numbers of some ID-caterpillars. In this paper, we extended the study

on these topics by focusing on the identification numbers of ID-lobsters. In Section

2, we established a sharp lower bound for the identification number of all ID-lobsters

and determined the identification number of any ID-lobster with only one central

vertex. We then focused on a general family of lobsters called uniform lobsters.

For positive integers n, a, b with n ≥ 2, the uniform lobster L(n, a, b) is the lobster

graph that has exactly n central vertices, each of which is adjacent to exactly a

distance-1 vertices while each distance-1 vertex is adjacent to exactly b distance-2

vertices. In Section 3, we characterized and determined the identification numbers

of all uniform ID-lobsters. Particularly, we showed that the uniform lobster graph

L(n, a, b) is an ID-graph if and only if (a, b) ∈ {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (4, 1)}
and (n, a, b) 6= (3, 4, 1). Moreover, Propositions 4-9 provide the identification numbers

of these uniform ID-lobsters. For future work, we propose the following interesting

problems:

(a) To determine the identification numbers of all ID-lobsters; develop a general

procedure for constructing an ID-coloring of any ID-lobster with the minimum

possible number of red vertices;

(b) To study identification colorings of other graph families such as regular graphs

or higher-dimensional grids or toroidal graphs.
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