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Abstract: Let G be a graph and s be an integer. A s-container C(x, y) of G between

two vertices x and y is a set of s internally vertex disjoint x, y-paths. A s-container
C(x, y) is a s∗-container if V (C(x, y)) = V (G), where V (C(x, y)) is the set of vertices

incident with some paths in C(x, y). Then G is s∗-connected if there exists a s∗-
container between any two distinct vertices of G. The spanning connectivity κ∗(G) of
G is the largest integer k such that G is s∗-connected for any s with 1 ≤ s ≤ k. Further,

G is super spanning connected if κ∗(G) = κ(G), where κ(G) is the connectivity of G.
In this paper, we show that the n-th cartesian product of complete graph Kt (t ≥ 3)

is super spanning connected. Our results, in some sense, extended a previous result in

[Shih et al., One-to-one disjoint path covers on k-ary n-cubes, Theoret. Comput. Sci.
(2011)].
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1. Introduction

In today’s telecommunication networks, the construction of vertex disjoint paths be-

tween a pair of distinct vertices in a network has been an important subject [8, 16].

The vertex disjoint paths are used to speed up the transfer of a large amount of data

by splitting the data over several vertex disjoint communication paths [7]. Additional

benefits of adopting such a vertex disjoint routing scheme are the enhanced robustness

to vertex failures and congestion, and the enhanced capability of load balancing [16].

∗ Corresponding Author



2 Super spanning connectivity of the cartesian product

Table 1. Previous known results and our results on κ∗(G)

Graph G Conditions n κ∗(G) Authors

Pancake graph Pn n 6= 3 n ≥ 1 n− 1 Lin et al. (2005) [13]

(n, k)-star graph Sn,k n− k ≥ 2 n ≥ 3 n− 1 Hsu et al. (2006) [9]

Burnt pancake graph Bn n 6= 2 n ≥ 1 n Chin et al. (2009) [6]

Folded hypercube FQn n is an even integer n ≥ 2 n + 1 Chang et al. (2009) [3]

Enhanced hypercube Qn,m m is an even integer n ≥ m ≥ 2 n + 1 Chang et al. (2009) [3]

k-ary n-cube Qk
n k ≥ 3 is an odd integer n ≥ 2 2n Shih et al. (2011) [18]

Non-bipartite torus T (k1, k2, . . . , kn) ki ≥ 3 n ≥ 2 2n Li et al. (2015) [11]

Alternating group graph AGn n ≥ 3 2n− 4 You et al. (2015) [24]

DCell with n-port switches Dk,n k ≥ 0 and Dk,n 6= D1,2 n ≥ 2 n + k − 1 Wang et al. (2016) [20]

Arrangement graph An,k n− k ≥ 2 n ≥ 4 k(n− k) Li et al. (2017) [12]

WK-recursive network K(n, t) t ≥ 1 n ≥ 4 n− 1 You et al. (2018) [23]

Split-star network S2
n n ≥ 4 2n− 3 Li et al. (2021) [10]

Folded divide-and-swap cube FDSCn d ≥ 1 n = 2d d + 2 You et al. (2023) [25]

Cartesian product of complete graphs Kn
t t ≥ 3 n ≥ 1 n(t− 1) Current authors

Table 2. Previous known results on κ∗l(G)

Graph G Conditions n κ∗l(G) Authors

Hypercube Qn n ≥ 1 n Chang et al. (2004) [2]

Star graph Sn n 6= 3 n ≥ 1 n− 1 Lin et al. (2005) [13]

Bipartite hypercube-like graph B′n n ≥ 1 n Lin et al. (2007) [15]

Folded hypercube FQn n is an odd integer n ≥ 1 n + 1 Chang et al. (2009) [3]

Enhanced hypercube Qn,m m is an odd integer n ≥ m ≥ 2 n + 1 Chang et al. (2009) [3]

k-ary n-cube Qk
n k ≥ 4 is an even integer n ≥ 2 2n Shih et al. (2011) [18]

Hypercube Qn n ≥ 1 n Wang et al. (2019) [19]

Recent progress of the study of disjoint paths in a variety of networks can be found

in the literature [10, 19, 25]. In this article, we further request that the set of vertex

disjoint paths between any given pair of distinct vertices is a cover of the network.

Studies about disjoint path covers of some networks or graphs can be found in the

literature [4, 9, 14, 15, 17]. Below, following [13], we use terminology k∗-container

instead of disjoint path cover.

A k-container C(u, v) between two vertices u and v of a graph G is a set of k internal

vertex disjoint paths joining u to v, i.e., C(u, v) = {P1, P2, . . . , Pk}. Let V (C(u, v))

to denote the union of the vertices of these paths, i.e., V (C(u, v)) = V (P1)∪V (P2)∪
· · · ∪ V (Pk). A k-container C(u, v) is a k∗-container if V (C(u, v)) = V (G). A graph

G is k∗-connected if there exists a k∗-container between any two distinct vertices. The

spanning connectivity κ∗(G) of a graph G is the largest integer k such that for any

integer m with 1 ≤ m ≤ k and for any u, v ∈ V (G) with u 6= v, G has an m∗-container

between u and v [5]. Further, G is super spanning connected if κ∗(G) = κ(G), where

κ(G) is the connectivity of G. By definition, it is not difficult to see that the spanning

connectivity of a graph is a common generalization of connectivity and hamiltonicity.

We summarize some recent results on the spanning connectivity of well-known graphs

and networks in Table 1.

A counter part of the spanning connectivity in bipartite graphs is spanning laceability.

A bipartite graph T is k∗-laceable if there exists a k∗-container between any two
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Figure 1. (a) The cartesian product K2 � K2, and (b) the (5× 4)-grid

vertices from different partite sets of T . The spanning laceability κ∗l(T ) of a bipartite

graph T is the largest integer k such that T is i∗-laceable for any i with 1 ≤ i ≤ k.

Further, T is super spanning laceable if κ∗l(T ) = κ(T ). We list some recent results of

the spanning laeability of bipartite graphs in Table 2.

The cartesian product of simple graphs G and H is the graph G � H whose vertex set

is V (G)×V (H) and whose edge set is the set of all pairs (u1, v1)(u2, v2) such that either

u1u2 ∈ E(G) and v1 = v2, or v1v2 ∈ E(H) and u1 = u2. Thus, for each edge u1u2 of

G and each edge v1v2 of H, there are four edges in G � H, namely (u1, v1)(u2, v1),

(u1, v2)(u2, v2), (u1, v1)(u1, v2), and (u2, v1)(u2, v2) (see Figure 1. (a)); the notation

used for the cartesian product reflects this fact. More generally, the cartesian product

Pm � Pn of two paths is the (m× n)-grid. An example is shown in Figure 1. (b).

Many famous interconnection networks are constructed by cartesian product. The

n-dimensional hypercube Qn is defined as the cartesian product of n complete graphs,

i.e., Qn = K2 � K2 � · · ·� K2, and the 3-ary n-cube Q3
n is also defined as the

cartesian product of n complete graphs, i.e., Q3
n = K3 � K3 � · · ·� K3. The super

spanning laceability of the n-dimensional hypercube Qn has been studied in literature

[2]. To be specific, Qn is super spanning laceable for any positive integer n. The

spanning connectivity of Q3
n has been studied in [18], and has been proved that the

spanning connectivity of Q3
n is 2n. In this paper, we further study the spanning

connectivity of the cartesian product of complete graphs Kt for t ≥ 3.

The rest of this article is organized as follows. In Section 2, the basic structures of

the cartesian product of complete graphs Kt (t ≥ 3) will be introduced. In Section 3,

the main result of the paper will be given. Finally, the conclusions of this paper will

be given in Section 4.

2. Preliminaries

For the graph definition and notation we basically follow [1]. The sets of ver-

tices and edges of a graph G are denoted by V (G) and E(G), respectively. If

u, v are vertices of a graph G such that there is an edge e = uv ∈ E(G) be-

tween u and v, then we say that the vertices u and v are adjacent in G. A path

P between two vertices v0 and vk is represented by P = 〈v0, v1, . . . , vk〉, where

each pair of consecutive vertices are connected by an edge. We use P−1 to de-

note the path 〈vk, vk−1, . . . , v0〉. We also write the path P = 〈v0, v1, . . . , vk〉 as

〈v0, v1, . . . , vi〉〈vi+1, . . . , vk〉 or 〈v0, v1, . . . , vi−1, Q, vj+1, . . . , vk〉, where Q denotes the
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Figure 2. Two graphs K2
3 and K2

4

path 〈vi, vi+1, . . . , vj〉. The length of a path P is the number of edges in P . We use

dG(u, v) to denote the length of the shortest path between two vertices u and v in G.

If there is no path connecting u and v, we set dG(u, v) :=∞. A path is a hamiltonian

path of a graph G if its vertices span the vertex set of G. A graph G is hamiltonian

connected if there exists a hamiltonian path joining any two vertices of G. A cycle is

a path with at least three vertices such that the first vertex is the same as the last

vertex. A hamiltonian cycle of G is a cycle that traverses every vertex of G exactly

once. A graph is hamiltonian if it has a hamiltonian cycle.

For a faulty subset of vertics F , G − F represents the subgraph of G derived from

V (G)−F . Let k be an nonnegative integer. A graph G is k-fault-tolerant hamiltonian

(abbreviated as k-hamiltonian) if G − F is hamiltonian for every F with |F | ≤ k.

A graph G is k-fault-tolerant hamiltonian connected (abbreviated as k-hamiltonian

connected) if G− F is hamiltonian connected for every F with |F | ≤ k.

For a graph G, its line graph L(G) is a graph whose vertex set is edge set of G and

two vertices of L(G) are adjacent if and only if their corresponding edges share a

common endpoint in G.

The n-th cartesian product of complete graph Kt is denoted by Kn
t . A vertex u ∈

V (Kn
t ) is represented by (u(0), u(1), . . . , u(n− 1)), where 0 ≤ u(i) ≤ t− 1. Then two

vertices u and v in Kn
t are adjacent if and only if |u(i) − v(i)| 6= 0 for some i and

u(j) = v(j) for any 0 ≤ j ≤ n − 1 with j 6= i. Two graphs K2
3 and K2

4 are shown in

Figure 2.

From the definition of Kn
t and the property of the cartesian product, we get that the

connectivity of Kn
t is n(t − 1). It is shown that Kn

t is vertex-symmetric [21]. This

means that given any two distinct vertices v and v′ of Kn
t , there is an automorphism of

Kn
t mapping v to v′. Note that each vertex of Kn

t is represented by a n-bit tuple. We

will call the dth-bit the dth dimension. We can partition Kn
t over dimension d by fixing

the dth element of any vertex tuple at some value a for every a ∈ {0, 1, 2, . . . , t− 1}.
This results in t copies of Kn−1

t , denoted by Kn−1,0
t , Kn−1,1

t , Kn−1,2
t , . . . , Kn−1,t−1

t ,

with corresponding vertices in Kn−1,0
t , Kn−1,1

t , Kn−1,2
t , . . . , Kn−1,t−1

t joined in a
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complete graph of order t (in dimension d).

In this article, we always partition Kn
t over the n-th dimension by letting V (Kn−1,j

t ) =

{(v(0), v(1), v(2), . . . , j) | 0 ≤ v(i) ≤ t − 1, 0 ≤ i ≤ n − 2} for 0 ≤ j ≤ t − 1. See

Figure 2 for an illustration. Given a vertex x = (x(0), x(1), . . . , x(n − 1)) ∈ V (Kn
t ),

the symbol xj = (x(0), x(1), x(2), . . . , j), where 0 ≤ j ≤ t − 1, is defined to be the

vertex corresponding to x in Kn−1,j
t for simplicity. If P = 〈x1, x2, . . . , xk〉 is a path

contained within Kn−1,i
t , then P j = 〈xj1, x

j
2, . . . , x

j
k〉 is a corresponding path contained

within Kn−1,j
t .

Theorem 1. [22] For n ≥ 2, Q3
n is (2n − 2)-hamiltonian and (2n − 3)-hamiltonian

connected.

3. The main result

In this section, we will derive our main result i.e., Theorem 2, using mathematical

induction. We first prove the following three lemmas for later use.

Lemma 1. Kn
t is 1∗-connected for t ≥ 3.

Proof. We shall prove the lemma by mathematical induction on n. It is worthy of

noting that κ∗(Kt) = t − 1. Thus, Kt is 1∗-connected, and so the lemma holds for

n = 1. As the induction hypothesis, we assume that Kn−1
t is 1∗-connected for n ≥ 2.

Note that Kn
t is vertex-symmetric. Thus given two distinct vertices u, v ∈ V (Kn

t ),

without loss of generality, we set u = (0, 0, . . . , 0) ∈ V (Kn−1,0
t ). We consider the

following cases pertaining to the parity of t.

Case 1. t is odd.

Case 1.1. v ∈ V (Kn−1,0
t ).

By induction hypothesis, Kn−1,j
t is 1∗-connected for every 0 ≤ j ≤ t − 1. Let xv ∈

E(Kn−1,0
t ) such that x 6= u. Then we construct hamiltonian paths 〈u, L0, x, v〉,

〈ut−1, Lt−1,
vt−1〉 and 〈xj , T j , uj〉 in Kn−1,0

t , Kn−1,t−1
t and Kn−1,j

t for 1 ≤ j ≤ t−2, respectively.

By concatenating these paths, we construct a hamiltonian path

H = 〈u, L0, x〉〈x1, T 1, u1〉〈u2, (T 2)−1, x2〉 · · · 〈xt−2, T t−2, ut−2〉〈ut−1, Lt−1, vt−1〉〈v〉

between u and v in Kn
t (Figure 3 (a)).

Case 1.2. v /∈ V (Kn−1,0
t ).

By the symmetry, we may suppose v ∈ V (Kn−1,1
t ). Take x ∈ V (Kn−1,0

t ) such that

x 6= u. Further, choose y ∈ V (Kn−1,1
t ) such that y 6= v and y0 6= x. Using in-

duction hypothesis, we construct hamiltonian paths 〈uj , T j , xj〉 in Kn−1,j
t for all

0 ≤ j ≤ t− 2 except for j = 1. By similar way, we also construct hamiltonian paths
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Figure 3. An illustration for Case 1.1 and Case 1.2 of Lemma 1

Figure 4. An illustration for Case 2.1 and Case 2.2 of Lemma 1

〈y, L1, v〉 and 〈xt−1, Lt−1, yt−1〉 in Kn−1,1
t and Kn−1,t−1

t , respectively. Merging these

paths, we construct a hamiltonian path

H =〈u, T 0, x〉〈x2, (T 2)−1, u2〉〈u3, T 3, x3〉 · · · 〈xt−3, (T t−3)−1, ut−3〉〈ut−2, T t−2, xt−2〉
〈xt−1, Lt−1, yt−1〉〈y, L1, v〉

between u and v in Kn
t (Figure 3 (b)).

Case 2. t is even.

Case 2.1. v ∈ V (Kn−1,0
t ).

By induction hypothesis, Kn−1,j
t is 1∗-connected for every 0 ≤ j ≤ t − 1. Let

xy ∈ E(Kn−1,0
t ) such that x 6= u, v and y 6= u, v. Then we have hamiltonian paths

〈u, L0, x, y,

M0, v〉 and 〈xj , T j , yj〉 in Kn−1,0
t and Kn−1,j

t for 1 ≤ j ≤ t−1, respectively. Combin-

ing these paths, we construct a hamiltonian path between u and v in Kn
t as following

(Figure 4 (a)):

〈u, L0, x〉〈x1, T 1, y1〉〈y2, (T 2)−1, x2〉 · · · 〈xt−1, T t−1, yt−1〉〈y,M0, v〉.

Case 2.2. v /∈ V (Kn−1,0
t ).

Without loss of generality, we may suppose v ∈ V (Kn−1,1
t ). Choose x ∈ V (Kn−1,0

t )

such that x 6= u and x1 6= v. By induction hypothesis, we have hamiltonian paths

〈u, T 0, x〉, 〈x1, L1, v〉 and 〈uj , T j , xj〉 in Kn−1,0
t ,Kn−1,1

t and Kn−1,j
t for 2 ≤ j ≤ t −

1, respectively. Then we construct a hamiltonian path between u and v in Kn
t as

following (Figure 4 (b)):

〈u, T 0, x〉〈x2, (T 2)−1, u2〉〈u3, T 3, x3〉 · · · 〈xt−2, (T t−2)−1, ut−2〉〈ut−1, T t−1, xt−1〉〈x1, L1, v〉.

Combining Cases 1 and 2, we infer that Kn
t is 1∗-connected.
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Figure 5. An illustration for Case 1 and Case 2 of Lemma 2

Lemma 2. For any odd integer t ≥ 5, Kn
t is 1-hamiltonian connected.

Proof. It is easy to see that κ∗(Kt − {w}) = κ∗(Kt−1) = t− 2 for any w ∈ V (Kt),

thus Kt is 1-hamiltonian connected. This means that the result holds for n = 1.

As the induction hypothesis, we assume that Kn−1
t is 1-hamiltonian connected for

n ≥ 2 and t ≥ 5. We need to prove that Kn
t − {w} is 1∗-connected for any vertex

w ∈ V (Kn
t ). Because Kn

t is vertex-symmetric, without loss of generality, we set

w = (0, 0, . . . , 0) ∈ V (Kn−1,0
t ). Let u, v ∈ V (Kn

t ). According to the position of u and

v, we have the following three situations.

Case 1. u, v ∈ V (Kn−1,0
t ).

By induction hypothesis, we construct a hamiltonian path 〈u, L0, x, v〉 of Kn−1,0
t −

{w}. By Lemma 1, we construct hamiltonian paths 〈ut−1, Lt−1, vt−1〉 and 〈uj , T j , xj〉
in Kn−1,t−1

t and in Kn−1,j
t for all 1 ≤ j ≤ t− 2, respectively. Using these paths, we

construct a hamiltonian path in Kn
t − {w} between u and v as following (Figure 5

(a)):

H =〈u, L0, x〉〈x1, (T 1)−1, u1〉〈u2, T 2, x2〉 · · · 〈xt−2, (T t−2)−1, ut−2〉〈ut−1, Lt−1, vt−1〉〈v〉.

Case 2. u ∈ V (Kn−1,0
t ), v /∈ V (Kn−1,0

t ).

Without loss of generality, we may suppose v ∈ V (Kn−1,1
t ). Choose x ∈ V (Kn−1,0

t −
{w}) such that x 6= u, and choose y ∈ Kn−1,1

t such that y 6= v and y0 6= x. By the

induction hypothesis, we construct a hamiltonian path 〈u, L0, x〉 of Kn−1,0
t − {w},

and construct a hamiltonian path 〈uj , T j , xj〉 of Kn−1,j
t for all 2 ≤ j ≤ t− 2, respec-

tively. Similarly, we also construct hamiltonian paths 〈y, L1, v〉 and 〈xt−1, Lt−1, yt−1〉
of Kn−1,1

t and Kn−1,t−1
t , respectively. Then we construct a hamiltonian path between

u and v in Kn
t − {w} as following (Figure 5 (b)):

H =〈u, L0, x〉〈x2, (T 2)−1, u2〉〈u3, T 3, x3〉 · · · 〈xt−3, (T t−3)−1, ut−3〉〈ut−2, T t−2, xt−2〉
〈xt−1, Lt−1, yt−1〉〈y, L1, v〉.

Case 3. u, v /∈ V (Kn−1,0
t ).

Based on the structure of Kn
t , we further consider following subcases.

Case 3.1 u, v ∈ V (Kn−1,1
t ).
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Figure 6. An illustration for Case 3.1 and Case 3.2 of Lemma 2

Without loss of generality, we may suppose u0 6= w. Choose x ∈ V (Kn−1,0
t − {w})

such that x 6= u0, and choose uy ∈ E(Kn−1,1
t ) such that y 6= v and y0 6= x. By

the induction hypothesis, construct a hamiltonian path 〈u0, L0, x〉 of Kn−1,0
t − {w},

and construct a hamiltonian path 〈uj , T j , xj〉 of Kn−1,j
t for all 2 ≤ j ≤ t− 2, respec-

tively. Similarly, construct hamiltonian paths 〈u, y, L1, v〉 and 〈xt−1, Lt−1, yt−1〉 of

Kn−1,1
t and Kn−1,t−1

t , respectively. Then we construct a hamiltonian path between

u and v in Kn
t − {w} as following (Figure 6 (a)):

H =〈u〉〈u0, L0, x〉〈x2, (T 2)−1, u2〉〈u3, T 3, x3〉 · · · 〈xt−3, (T t−3)−1, ut−3〉〈ut−2, T t−2, xt−2〉
〈xt−1, Lt−1, yt−1〉〈y, L1, v〉.

Case 3.2 u ∈ V (Kn−1,1
t ), v ∈ V (Kn−1,2

t ).

Choose two distinct vertices x, y ∈ V (Kn−1,0
t − {w}) such that x 6= u0 and y 6= v0.

By the induction hypothesis, construct hamiltonian paths 〈x, L0, y〉, 〈u, L1, x
1〉 and

〈vj , T j , yj〉 of Kn−1,0
t −{w}, Kn−1,1

t and Kn−1,j
t for all 2 ≤ j ≤ t−1, respectively. As

a result, we construct a hamiltonian path between u and v in Kn
t − {w} as following

(Figure 6 (b)):

H =〈u, L1, x
1〉〈x, L0, y〉〈yt−1, (T t−1)−1, vt−1〉〈vt−2, T t−2, yt−2〉 · · · 〈y2, (T 2)−1, v〉.

Lemma 3. κ∗(K2
t ) = 2(t− 1) for t ≥ 3.

Proof. By Lemma 1, K2
t is 1∗-connected. In the following, we just need to prove

that K2
t has a s∗-container between any two vertices in K2

t for all 2 ≤ s ≤ 2(t − 1).

Because K2
t is vertex-symmetric, without loss of generality, let u = (0, 0). Apparently,

u ∈ V (K1,0
t ). Depending on the parity of t, we divide into the following two cases.

Case 1. t is odd.

Case 1.1. v ∈ V (K1,0
t ).

Note that K1,j
t is isomorphic to Kt for all 0 ≤ j ≤ t − 1. Thus, K1,j

t has an m∗-

container between any two vertices for all 1 ≤ m ≤ t− 1. Hence, there exist m vertex

disjoint paths {Pi}m−1i=0 between u and v, whose union covers all vertices of K1,0
t .

Since K1,j
t is hamiltonian connected, we set hamiltonian paths 〈uj , T j , vj〉 in K1,j

t for
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all 1 ≤ j ≤ t − 1. Further, we reconstruct hamiltonian paths 〈ut−2, Lt−2, yt−2〉 and

〈yt−1, Lt−1, vt−1〉 respectively in K1,t−2
t and in K1,t−1

t , where y ∈ K1,0
t and y 6= u, v.

Let

Pm =〈u〉〈u1, T 1, v1〉〈v2, (T 2)−1, u2〉 · · · 〈ut−4, T t−4, vt−4〉〈vt−3, (T t−3)−1, ut−3〉
〈ut−2, Lt−2, yt−2〉〈yt−1, Lt−1, vt−1〉〈v〉.

Hence, there exist m+ 1 vertex disjoint paths {Pi}mi=0 between u and v whose union

covers all the vertices of K2
t . This means K2

t has a s∗-container between u and v for

all 2 ≤ s ≤ t. We can construct remaining s∗-containers for t ≤ s ≤ 2t−2 as following

way. Set

Pm = 〈u, u1, T 1, v1, v〉, Pm+1 = 〈u, u2, T 2, v2, v〉, . . . , Pm+t−2 = 〈u, ut−1, T t−1, vt−1, v〉.

Hence, there exist m+ t− 1 vertex disjoint paths {Pi}m+t−2
i=0 between u and v, whose

union covers all the vertices of K2
t . As a result, K2

t has a s∗-container between u and

v for all t ≤ s ≤ 2t− 2.

Case 1.2. v /∈ V (K1,0
t ).

Without loss of generality, we may assume v ∈ V (K1,1
t ). Let u = u0 be in K1,0

t and

v = v1 in K1,1
t . We have the following two subcases.

Case 1.2.1. dK2
t
(u, v) = 1.

Then u1 = v. Choose w ∈ V (K1,0
t ) such that w 6= u. Note again that K1,j

t is

isomorphic to Kt for all 0 ≤ j ≤ t − 1, thus there exist m vertex disjoint paths

{P ji }
m−1
i=0 between uj and wj in K1,j

t whose union covers all the vertices of K1,j
t for

all 1 ≤ m ≤ t − 1. For convenience, we express P ji as P ji = 〈uj , Rji , wj〉. Choose a

neighbor yji of uj in {P ji }
m−1
i=0 . Then let Pi = 〈u,R0

i , (R
2
i )
−1, R3

i , . . . , (R
t−1
i )−1, y1i , v〉

for all 0 ≤ i ≤ m− 2, where Rji is nonempty for all 0 ≤ i ≤ m− 2. Further, let

Pm−1 = 〈u,R0
m−1, w〉〈w2, (R2

m−1)−1〉〈R3
m−1, w

3〉 · · · 〈wt−1, (Rt−1m−1)−1〉〈y1m−1, Q′, v〉,

where 〈y1m−1, Q′, v〉 is a hamiltonian path between y1m−1 and v in K1,1
t −

{y10 , y11 , . . . , y1m−2}. Besides, we construct Pm = 〈u, u2, u3, . . . , ut−2, ut−1, v〉. Hence,

there exist m+ 1 vertex disjoint paths {Pi}mi=0 between u and v whose union covers

all the vertices of K2
t . Thus K2

t has a s∗-container between u and v for all 2 ≤ s ≤ t.
For t ≤ s ≤ 2t− 2, we find t− 1 paths Pm = 〈u, v〉, Pm+1 = 〈u, u2, v〉, . . . , Pm+t−2 =

〈u, ut−1, v〉. Hence, there exist m + t − 1 vertex disjoint paths {Pi}m+t−2
i=0 between

u and v, whose union covers all the vertices of K2
t . This implies that K2

t has a

s∗-container between u and v for all t ≤ s ≤ 2t− 2.

Case 1.2.2. dK2
t
(u, v) ≥ 2.

It is the same as above, there exist m vertex disjoint paths {P ji }
m−1
i=0 between uj and

vj in K1,j
t whose union covers all the vertices of K1,j

t for all 1 ≤ m ≤ t − 1 and
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0 ≤ j ≤ t− 1. Let P ji = 〈uj , Rji , vj〉. Then, we find Pi = 〈u,R0
i , (R

2
i )
−1, R1

i , v〉, where

Rji is nonempty for all 0 ≤ i ≤ m− 2. We also construct

Pm−1 =〈u,R0
m−1, v

0〉〈v2, (R2
m−1)−1, u2〉〈u3, T 3, v3〉〈v4, (T 4)−1, u4〉 · · · 〈ut−2, T t−2, vt−2〉

〈vt−1, (T t−1)−1, ut−1〉〈u1, R1
m−1, v〉,

where 〈uj , T j , vj〉 is a hamiltonion path of K1,j
t for every 3 ≤ j ≤ t− 1. Hence, there

exist m vertex disjoint paths {Pi}m−1i=0 between u and v, whose union covers all the

vertices of K2
t . Thus K2

t has a s∗-container between u and v for all 1 ≤ s ≤ t− 1.

The Pm−1 is decomposed into t paths Pm−1 =
〈
u,R0

m−1, v
0, v

〉
, Pm =

〈u, u1, R1
m−1, v〉,

Pm+1 = 〈u, u2, R2
m−1, v

2, v〉, Pm+2 = 〈u, u3, T 3, v3, v〉, . . . , Pm+t−2 =

〈u, ut−1, T t−1, vt−1, v〉. Hence, there exist m− 1 + t vertex disjoint paths {Pi}m+t−2
i=0

between u and v, whose union covers all the vertices of K2
t . Therefore, K2

t has a

s∗-container between u and v for all t ≤ s ≤ 2t− 2.

Case 2. t is even.

The case where t is even is slightly different from the case where t is odd.

Case 2.1. v ∈ V (K1,0
t ).

Obviously, there exist m vertex disjoint paths {Pi}m−1i=0 between u and v whose union

covers all the vertices of K1,0
t . Set 〈uj , T j , vj〉 is a hamiltonion path of K1,j

t for every

1 ≤ j ≤ t− 1. Let

Pm = 〈u〉〈u1, T 1, v1〉〈v2, (T 2)−1, u2〉 · · · 〈ut−1, T t−1, vt−1〉〈v〉.

Hence, there exist m+ 1 vertex disjoint paths {Pi}mi=0 between u and v whose union

covers all the vertices of K2
t . Then K2

t has a s∗-container for all 2 ≤ s ≤ t. We

can construct s∗-containers between u and v for t ≤ s ≤ 2t− 2 as following way: we

construct

Pm = 〈u, u1, T 1, v1, v〉, Pm+1 = 〈u, u2, T 2, v2, v〉, . . . , Pm+t−2 = 〈u, ut−1, T t−1, vt−1, v〉.

Hence, there exist m+ t− 1 vertex disjoint paths {Pi}m+t−2
i=0 between u and v whose

union covers all the vertices of K2
t . Then K2

t has a s∗-container between u and v for

all t ≤ s ≤ 2t− 2.

Case 2.2. v /∈ V (K1,0
t ).

Without loss of generality, we may suppose v ∈ V (K1,1
t ). We have the following two

subcases.

Case 2.2.1. dK2
t
(u, v) = 1.

Then u1 = v. Choose w ∈ V (K1,0
t ). Note again that K1,j

t is isomorphic to Kt for all

0 ≤ j ≤ t − 1, thus there exist m vertex disjoint paths {P ji }
m−1
i=0 between uj and wj

in K1,j
t , whose union covers all the vertices of K1,j

t for all 1 ≤ m ≤ t− 1. We express
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P ji as P ji = 〈uj , Rji , wj〉. Let Pi = 〈u,R0
i , (R

2
i )
−1, R3

i , . . . , (R
t−2
i )−1, Rt−1i , (R1

i )
−1, v〉

for all 0 ≤ i ≤ m− 2, where Rji is nonempty for all 0 ≤ i ≤ m− 2, and

Pm−1 =〈u,R0
m−1, w

0〉〈w2, (R2
m−1)−1〉〈R3

m−1, w
3〉 · · · 〈wt−2, (Rt−2m−1)−1〉〈Rt−1m−1, w

t−1〉
〈w1, (R1

m−1)−1, v〉.

Besides, we construct Pm = 〈u, u2, u3, . . . , ut−1, v〉. Hence, there exist m + 1 vertex

disjoint paths {Pi}mi=0 between u and v whose union covers all the vertices of K2
t .

Then K2
t has a s∗-container between u and v for all 2 ≤ s ≤ t.

For t ≤ s ≤ 2t − 2, we find t − 1 paths Pm = 〈u, v〉, Pm+1 = 〈u, u2, v〉, Pm+2 =

〈u, u3, v〉, . . . , Pm+t−2 = 〈u, ut−1, v〉. Hence, there exist m+ t−1 vertex disjoint paths

{Pi}m+t−2
i=0 between u and v whose union covers all the vertices of K2

t . This implies

K2
t has a s∗-container between u and v for all t ≤ s ≤ 2t− 2.

Case 2.2.2. dK2
t
(u, v) ≥ 2.

It is the same as above, there exist m vertex disjoint paths {P ji }
m−1
i=0 between uj and

vj in K1,j
t whose union covers all the vertices of K1,j

t for all 1 ≤ m ≤ t − 1 and

0 ≤ j ≤ t − 1. Let P ji = 〈uj , Rji , vj〉. Then, we find Pi = 〈u,R0
i , (R

2
i )
−1, R1

i , v〉
and Pm−1 = 〈u,R0

m−1, v
0, v〉, where Rji is nonempty for all 0 ≤ i ≤ m − 2. We also

construct

Pm = 〈u, u2, R2
m−1, v

2〉〈v3, (T 3)−1, u3〉〈u4, T 4, v4〉 · · · 〈vt−1, (T t−1)−1, ut−1〉〈u1, R1
m−1, v〉,

where 〈uj , T j , vj〉 is a hamiltonion path of K1,j
t for all 3 ≤ j ≤ t−1. Hence, there exist

m+1 vertex disjoint paths {Pi}mi=0 between u and v, whose union covers all the vertices

ofK2
t . ThenK2

t has a s∗-container between u and v for all 2 ≤ s ≤ t. Note that the Pm
is divided into t−1 paths Pm = 〈u, u1, R1

m−1, v〉, Pm+1 = 〈u, u2, R2
m−1, v

2, v〉, Pm+2 =

〈u, u3, T 3, v3, v〉, . . . , Pm+t−2 = 〈u, ut−1, T t−1, vt−1, v〉. Hence, there exist m + t − 1

vertex disjoint paths {Pi}m+t−2
i=0 between u and v whose union covers all the vertices

of K2
t . Therefore, K2

t has a s∗-container between u and v for all t ≤ s ≤ 2t− 2.

Theorem 2. κ∗(Kn
t ) = n(t− 1), t ≥ 3.

Proof. We prove this theorem by inductino on n. Since the complete graph Kt is

super spanning connected for t ≥ 3, κ∗(Kt) = t − 1. According to Lemma 3, we

have κ∗(K2
t ) = 2(t − 1). These imply that the theorem holds for n = 1, 2. As the

induction hypothesis, for n ≥ 3, we assume that Kn−1
t has an m∗-container between

any two vertices in Kn−1
t for all 1 ≤ m ≤ (n − 1)(t − 1). Let u, v ∈ V (Kn

t ) be two

distinct vertices. Because Kn
t is vertex-symmetric, without loss of generality, we set

u = (0, 0, . . . , 0) ∈ V (Kn−1,0
t ). By Lemma 1, Kn

t is 1∗-connected, so we just need to

prove Kn
t is s∗-connected for all 2 ≤ s ≤ m+ t− 1. Depending on the parity of t, we

divide into the following two cases.

Case 1. t is odd.
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Figure 7. An illustration for Case 1.1 of Theorem 2

Case 1.1. v ∈ V (Kn−1,0
t ).

Note that Kn−1,j
t is isomorphic to Kn−1

t for all 0 ≤ j ≤ t − 1. Thus, Kn−1,j
t is

m∗-connected for all 1 ≤ m ≤ (n − 1)(t − 1). Hence, there exist m vertex disjoint

paths {Pi}m−1i=0 between u and v, whose union covers all the vertices of Kn−1,0
t . Set

hamiltonian paths 〈uj , T j , vj〉 in Kn−1,j
t for all 1 ≤ j ≤ t − 1. We respectively

reconstruct hamiltonian paths 〈ut−2, Lt−2, yt−2〉 and 〈yt−1, Lt−1, vt−1〉 in Kn−1,t−2
t

and in Kn−1,t−1
t , where y ∈ V (Kn−1,0

t ), y 6= u, v. Let

Pm =〈u〉〈u1, T 1, v1〉〈v2, (T 2)−1, u2〉〈u3, T 3, v3〉 · · · 〈vt−3, (T t−3)−1, ut−3〉
〈ut−2, Lt−2, yt−2〉〈yt−1, Lt−1, vt−1〉〈v〉.

Hence, there exist m+ 1 vertex disjoint paths {Pi}mi=0 between u and v, whose union

covers all the vertices of Kn
t . Then Kn

t is s∗-connected for all 2 ≤ s ≤ (n−1)(t−1)+1.

In the following, we construct s∗-containers for t ≤ s ≤ n(t − 1) between u and v as

following way. Let

Pm = 〈u, u1, T 1, v1, v〉, Pm+1 = 〈u, u2, T 2, v2, v〉, . . . , Pm+t−2 = 〈u, ut−1, T t−1, vt−1, v〉.

Hence, there exist m+ t− 1 vertex disjoint paths {Pi}m+t−2
i=0 between u and v whose

union covers all the vertices of Kn
t . Then Kn

t has a s∗-container between u and v for

all t ≤ s ≤ n(t − 1). Since (n − 1)(t − 1) + 1 − t = (n − 2)(t − 1) > 0, we have that

Kn
t has a s∗-container between u and v for all 1 ≤ s ≤ n(t− 1) (Figure 7).

Case 1.2. v /∈ V (Kn−1,0
t ).

Without loss of generality, we may assume that v ∈ V (Kn−1,1
t ). Let u = u0 be in

Kn−1,0
t and v = v1 in Kn−1,1

t . We have the following two subcases.

Case 1.2.1. dKn
t

(u, v) = 1.

Then u1 = v. Choose w ∈ V (Kn−1,0
t ) such that w 6= u and dKn

t
(u,w) ≥ 2. Note again

that Kn−1,j
t is isomorphic to Kn−1

t for every 0 ≤ j ≤ t− 1, thus there exist m vertex

disjoint paths {P ji }
m−1
i=0 between uj and wj in Kn−1,j

t whose union covers all the

vertices of Kn−1,j
t for all 1 ≤ m ≤ (n−1)(t−1). We express P ji as P ji = 〈uj , Rji , wj〉.

Let Pi = 〈u,R0
i , (R

2
i )
−1, R3

i , (R
4
i )
−1, . . . , Rt−2i , (R1

i )
−1, v〉 for all 0 ≤ i ≤ m−2. Choose

a neighbor yji of wj in P ji . By Theorem 1 and Lemma 2, we construct a hamiltonian
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Figure 8. An illustration for Case 1.2.1 of Theorem 2

path 〈yt−1m−1, Lt−1, w
t−1〉 of Kn−1,t−1

t − {ut−1}. And construct

Pm−1 =〈u,R0
m−1, (R

2
m−1)−1, R3

m−1, (R
4
m−1)−1, . . . , Rt−2m−1〉〈y

t−1
m−1, Lt−1, w

t−1〉
〈wt−2, wt−3, . . . , w2, w〉〈w1, (R1

m−1)−1, v〉.

Besides, we construct Pm = 〈u, u2, u3, . . . , ut−2, ut−1, v〉. Hence, there exist m + 1

vertex disjoint paths {Pi}mi=0 between u and v whose union covers all the vertices of

Kn
t . Therefore, Kn

t has a s∗-container between u and v for all 2 ≤ s ≤ (n−1)(t−1)+1.

For t ≤ s ≤ n(t−1), we find t−1 paths Pm = 〈u, v〉, Pm+1 = 〈u, u2, v〉, . . . , Pm+t−2 =

〈u, ut−1, v〉. Hence, there existm+t−1 vertex disjoint paths {Pi}m+t−2
i=0 between u and

v whose union covers all the vertices of Kn
t . This implies that Kn

t has a s∗-container

between u and v for every s with t ≤ s ≤ n(t− 1). Because (n− 1)(t− 1) + 1− t =

(n − 2)(t − 1) > 0, thus Kn
t has a s∗-container between u and v for every s with

1 ≤ s ≤ n(t− 1) (Figure 8).

Case 1.2.2. dKn
t

(u, v) ≥ 2.

It is the same as above, there exist m vertex disjoint paths {P ji }
m−1
i=0 between uj and

vj in Kn−1,j
t whose union covers all the vertices of Kn−1,j

t for all 1 ≤ m ≤ (n−1)(t−1)

and 0 ≤ j ≤ t − 1. Let P ji = 〈uj , Rji , vj〉. Then, we find Pi = 〈u,R0
i , (R

2
i )
−1, R1

i , v〉,
where Rji is nonempty for every i with 0 ≤ i ≤ m−2. We also construct a hamiltonion

path

Pm−1 =〈u,R0
m−1, v

0〉〈v2, (R2
m−1)−1, u2〉〈u3, T 3, v3〉〈v4, (T 4)−1, u4〉 · · · 〈ut−2, T t−2, vt−2〉

〈vt−1, (T t−1)−1, ut−1〉〈u1, R1
m−1, v〉,

where 〈uj , T j , vj〉 of Kn−1,j
t for every j with 3 ≤ j ≤ t − 1. Hence, there exist m

vertex disjoint paths {Pi}m−1i=0 between u and v, whose union covers all the vertices

of Kn
t . Then Kn

t has a s∗-container for all 1 ≤ s ≤ (n − 1)(t − 1). The Pm−1
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Figure 9. An illustration for Case 1.2.2 of Theorem 2

Figure 10. An illustration for Case 2.1 of Theorem 2

is divided into t paths Pm−1 =
〈
u,R0

m−1, v
0, v

〉
, Pm = 〈u, u1, R1

m−1, v〉, Pm+1 =

〈u, u2, R2
m−1, v

2, v〉, Pm+2 = 〈u, u3, T 3, v3, v〉, . . . , Pm+t−2 = 〈u, ut−1, T t−1, vt−1, v〉.
Hence, there exist m− 1 + t vertex disjoint paths {Pi}m+t−2

i=0 between u and v whose

union covers all the vertices of Kn
t . Then Kn

t has a s∗-container between u and v for

every t ≤ s ≤ n(t− 1). Since (n− 1)(t− 1) + 1− t = (n− 2)(t− 1) > 0, then Kn
t has

a s∗-container between u and v for every 1 ≤ s ≤ n(t− 1) (Figure 9).

Case 2. t is even.

The case where t is even is slightly different from the case where t is odd.

Case 2.1. v ∈ V (Kn−1,0
t ).

Obviously, there exist m vertex disjoint paths {Pi}m−1i=0 between u and v whose union

covers all the vertices of Kn−1,0
t . Set a hamiltonion path 〈uj , T j , vj〉 of Kn−1,j

t for

evey 1 ≤ j ≤ t− 1. Let

Pm = 〈u〉〈u1, T 1, v1〉〈v2, (T 2)−1, u2〉 · · · 〈ut−1, T t−1, vt−1〉〈v〉.

Hence, there exist m+ 1 vertex disjoint paths {Pi}mi=0 between u and v whose union

covers all the vertices of Kn
t . Then Kn

t has a s∗-container between u and v for every
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Figure 11. An illustration for Case 2.2.1 of Theorem 2

2 ≤ s ≤ (n − 1)(t − 1) + 1. We can construct s∗-containers between u and v for

t ≤ s ≤ n(t− 1) as following way. Let

Pm = 〈u, u1, T 1, v1, v〉, Pm+1 = 〈u, u2, T 2, v2, v〉, . . . , Pm+t−2 = 〈u, ut−1, T t−1, vt−1, v〉.

Hence, there exist m+ t− 1 vertex disjoint paths {Pi}m+t−2
i=0 between u and v whose

union covers all the vertices of Kn
t . Then Kn

t has a s∗-container between u and v for

every t ≤ s ≤ n(t− 1). Because (n− 1)(t− 1) + 1− t = (n− 2)(t− 1) > 0, then Kn
t

has a s∗-container between u and v for every 1 ≤ s ≤ n(t− 1) (Figure 10).

Case 2.2. v /∈ V (Kn−1,0
t ).

Without loss of generality, we may suppose v ∈ V (Kn−1,1
t ). We have the following

two subcases.

Case 2.2.1. dKn
t

(u, v) = 1.

Then u1 = v. Choose w ∈ V (Kn−1,0
t ) such that dKn

t
(u,w) ≥ 2. Note again that

Kn−1,j
t is isomorphic to Kn−1

t for every 0 ≤ j ≤ t − 1, thus there exist m vertex

disjoint paths {P ji }
m−1
i=0 between uj and wj in Kn−1,j

t whose union covers all the

vertices of Kn−1,j
t for all 1 ≤ m ≤ (n−1)(t−1). We express P ji as P ji = 〈uj , Rji , wj〉.

Let Pi = 〈u,R0
i , (R

2
i )
−1, R3

i , (R
4
i )
−1, . . . , Rt−1i , (R1

i )
−1, v〉 for all 0 ≤ i ≤ m− 2,

Pm−1 =〈u,R0
m−1, w〉〈w2, (R2

m−1)−1〉〈R3
m−1, w

3〉〈w4, (R4
m−1)−1〉 · · ·

〈Rt−1m−1, w
t−1〉〈w1, (R1

m−1)−1, v〉.

Besides, we construct Pm = 〈u, u2, u3, . . . , ut−1, v〉. Hence, there exist m + 1 vertex

disjoint paths {Pi}mi=0 between u and v whose union covers all the vertices of Kn
t .

Thus Kn
t has a s∗-container between u and v for every 2 ≤ s ≤ (n− 1)(t− 1) + 1.

For t ≤ s ≤ n(t − 1), we find t − 1 paths Pm = 〈u, v〉, Pm+1 = 〈u, u2, v〉, Pm+2 =

〈u, u3, v〉, . . . , Pm+t−2 = 〈u, ut−1, v〉. Hence, there exist m + t − 1 vertex disjoint
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Figure 12. An illustration for Case 2.2.2 of Theorem 2

paths {Pi}m+t−2
i=0 between u and v whose union covers all the vertices of Kn

t . This

implies that Kn
t has a s∗-container between u and v for every t ≤ s ≤ n(t − 1).

Because (n− 1)(t− 1) + 1− t = (n− 2)(t− 1) > 0, so Kn
t has a s∗-container between

u and v for every 1 ≤ s ≤ n(t− 1) (Figure 11).

Case 2.2.2. dKn
t

(u, v) ≥ 2.

It is the same as above, there exist m vertex disjoint paths {P ji }
m−1
i=0 between uj and

vj in Kn−1,j
t whose union covers all the vertices of Kn−1,j

t for all 1 ≤ m ≤ (n−1)(t−1)

and 0 ≤ j ≤ t − 1. Let P ji = 〈uj , Rji , vj〉. Then, we find Pi = 〈u,R0
i , (R

2
i )
−1, R1

i , v〉
and Pm−1 = 〈u,R0

m−1, v
0, v〉 where Rji is nonempty for every 0 ≤ i ≤ m− 2. We also

construct a hamiltonion path

Pm = 〈u, u2, R2
m−1, v

2〉〈v3, (T 3)−1, u3〉〈u4, T 4, v4〉 · · · 〈vt−1, (T t−1)−1, ut−1〉〈u1, R1
m−1, v〉,

where 〈uj , T j , vj〉 of Kn−1,j
t for every 3 ≤ j ≤ t− 1. Hence, there exist m+ 1 vertex

disjoint paths {Pi}mi=0 between u and v whose union covers all the vertices of Kn
t .

Then Kn
t has a s∗-container between u and v for every 2 ≤ s ≤ (n− 1)(t− 1) + 1.

The Pm is divided into t−1 paths Pm = 〈u, u1, R1
m−1, v〉, Pm+1 = 〈u, u2, R2

m−1, v
2, v〉,

Pm+2 = 〈u, u3, T 3, v3, v〉, . . . , Pm+t−2 = 〈u, ut−1, T t−1, vt−1, v〉. Hence, there exist

m+ t−1 vertex disjoint paths {Pi}m+t−2
i=0 between u and v whose union covers all the

vertices of Kn
t . Then Kn

t has a s∗-container between u and v for every t ≤ s ≤ n(t−1).

Because (n−1)(t−1)+1− t = (n−2)(t−1) > 0, then Kn
t has a s∗-container between

u and v for every 1 ≤ s ≤ n(t− 1) (Figure 12).

As mentioned in the first part, the 3-ary n-cube Q3
n is the n-th cartesian product of

K3. Thus, by Theorem 2, we have the following corollary:

Corollary 1. ([18]) κ∗(Q3
n) = 2n.
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Note that the line graph of a complete bipartite graph Kt,t is isomorphic to the

cartesian product of two complete graphs Kt’s. Thus, using the main theorem of the

paper we derive the following result:

Corollary 2. κ∗(L(Kt,t)) = 2(t− 1) for t ≥ 3.

4. Concluding remarks

In this paper, we prove that the spanning connectivity of the n-th cartesian product

Kn
t = Kt � Kt � · · ·� Kt of the complete graph Kt(t ≥ 3) is the same as its

connectivity, i.e., κ∗(Kn
t ) = κ(Kn

t ) = n(t − 1). Since the spanning connectivity of a

graph G is not exceed the connectivity of G, the result is optimal. In the future, we

further study the spanning connectivity of the graph Kt1 � Kt2 � · · ·� Ktn , where

Kti is a complete graph with ti vertices.
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