| تعداد نشریات | 6 |
| تعداد شمارهها | 121 |
| تعداد مقالات | 1,448 |
| تعداد مشاهده مقاله | 1,555,674 |
| تعداد دریافت فایل اصل مقاله | 1,459,760 |
Simple-intersection Graphs of S-acts | ||
| Communications in Combinatorics and Optimization | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 24 آبان 1404 اصل مقاله (522.83 K) | ||
| نوع مقاله: Original paper | ||
| شناسه دیجیتال (DOI): 10.22049/cco.2025.30632.2558 | ||
| نویسندگان | ||
| Xingliang Liang* ؛ Yujie Wang؛ Xiaojie Chen | ||
| Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, P.R. China | ||
| چکیده | ||
| The intersection graph of an algebraic structure plays a pivotal role in understanding and analyzing algebraic structures---such as groups, rings, modules, acts---by encoding substructural relationships into graph-theoretic frameworks. In this paper, we introduce a new intersection-graph type for an $S$-act $A$ over a semigroup $S$, termed the \emph{simple intersection graph} of $A$, denoted by $GS(A)$. We focus on the relationship between algebraic properties of $A$ and graph-theoretic characteristics of $GS(A)$, including degree, cycles, cliques, connectivity, bipartiteness and dominaning sets. Specifically, we characterize $S$-acts $A$ for which $GS(A)$ is complete, connected or complete bipartite, and determine key invariants such as degree, girth, diameter, clique number and domination number of $GS(A)$. Applications include solutions to coloring optimization problems and extensions to semigroup-based graphs $GS(S)$. | ||
| کلیدواژهها | ||
| S-act؛ simple-intersection graph؛ clique؛ bipartiteness؛ domination number | ||
| مراجع | ||
|
[1] M. Ahmed and F. Moh’d, A new intersection-graph type for modules, Commun. Algebra 52 (2024), no. 5, 2065–2078. https://doi.org/10.1080/00927872.2023.2280716 [2] S. Akbari, H.A. Tavallaee, and S.K. Ghezelahmad, Intersection graph of submodules of a module, J. Algebra Appl. 11 (2012), no. 1, 1250019. https://doi.org/10.1142/S0219498811005452
[3] J.A. Bondy and U.S.R. Murty, Graph Theory with applications, north-Holland, 1979.
[4] J. Bosák, The graphs of semigroups, Theory of Graphs and Application, Academic Press, New York, 1964.
[5] I. Chakrabarty, S. Ghosh, T.K. Mukherjee, and M.K. Sen, Intersection graphs ofideals of rings, Discrete Math. 309 (2009), no. 17, 5381–5392. https://doi.org/10.1016/j.disc.2008.11.034
[6] B. Csákány and G. Pollák, The graph of subgroups of a finite group, Czechoslov. Math. J. 19 (1969), no. 2, 241–247. http://dx.doi.org/10.21136/CMJ.1969.100891 [7] B. Davvaz and Z. Nazemian, Chain conditions on commutative monoids, Semigroup Forum, vol. 100, Springer, 2020, pp. 732–742. https://doi.org/10.1007/s00233-019-10032-1
[8] J.M. Howie, Fundamentals of Semigroup Theory, oxford university Press, 1995.
[9] R. Khosravi and M. Roueentan, Chain conditions on (Rees) congruences of S-acts, J. Algebra Appl. 23 (2024), no. 5, 2450085. https://doi.org/10.1142/S0219498824500853
[10] M. Kilp, U. Knauer, and A.V. Mikhalev, Monoids, Acts and Categories: With Applications to Wreath Products and Graphs. a Handbook for Students and Researchers, vol. 29, Walter de Gruyter, 2011.
[11] G. Lallement, Semigroups and Combinatorial Applications, John Wiley & Sons, Inc., 1979.
[12] A. Mahmoodi, A. Vahidi, R. Manaviyat, and R. Alipour, Intersection graph of idealizations, Collect. Math. 75 (2024), no. 3, 693–702. https://doi.org/10.1007/s13348-023-00407-7
[13] F. Moh’d and M. Ahmed, A simple-intersection graph of a ring approach to solving coloring optimization problems, Commun. Comb. Optim. 10 (2025), no. 2, 423–442. https://doi.org/10.22049/cco.2023.28858.1752
[14] H.S. Qiao and Z.K. Liu, An Introduction to Semigroups, Science Press, Beijing, 2019.
[15] H. Rasouli and A. Tehranian, Intersection graphs of s-acts, Bull. Malays. Math. Sci. Soc. 38 (2015), no. 4, 1575–1587. https://doi.org/10.1007/s40840-014-0098-5 [16] H. Shahsavari and B. Khosravi, Characterization by intersection graph of some families of finite nonsimple groups, Czechoslov. Math. J. 71 (2021), no. 1, 191–209. https://doi.org/10.21136/CMJ.2020.0250-19.
[17] G.T. Song, Goldie’s theorem for semigroups, Semigr. Forum 47 (1993), 182–195. | ||
|
آمار تعداد مشاهده مقاله: 51 تعداد دریافت فایل اصل مقاله: 71 |
||