| تعداد نشریات | 6 |
| تعداد شمارهها | 121 |
| تعداد مقالات | 1,448 |
| تعداد مشاهده مقاله | 1,555,853 |
| تعداد دریافت فایل اصل مقاله | 1,459,870 |
Optimization Through Localized Metric Resolvability | ||
| Communications in Combinatorics and Optimization | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 09 آذر 1404 اصل مقاله (441.43 K) | ||
| نوع مقاله: Original paper | ||
| شناسه دیجیتال (DOI): 10.22049/cco.2025.30535.2522 | ||
| نویسندگان | ||
| Asim Nadeem1؛ Kamran Azhar1؛ Yilun Shang* 2 | ||
| 1Department of Mathematics, Forman Christian College, Lahore, Pakistan | ||
| 2School of Computer Science, Northumbria University, Newcastle upon Tyne, UK | ||
| چکیده | ||
| The use of local metric resolvability can be realized in delivery services for optimal placement of existing and new resources like medical facilities, stores, and fire stations. The local metric basis produces codes for the facilities and regions to be served by these facilities in a network or a graph in such a way that the adjacent nodes get unique codes in terms of distances, so that each facility is used optimally. In this paper, the local metric dimension (LMD) has been computed for convex polytopes $B_n$, $C_n$, $D_n$, and $Q_n$. An algorithm to extend the number of resources in a distributed network and real-life applications of local metric resolvability have also been investigated. | ||
| کلیدواژهها | ||
| Convex polytopes؛ metric dimension؛ local metric dimension؛ graph | ||
| مراجع | ||
|
[1] I. Ali, M. Javaid, and Y. Shang, Computing dominant metric dimensions of certain connected networks, Heliyon 10 (2024), no. 4, e25654. https://doi.org/10.1016/j.heliyon.2024.e25654
[2] N. Ali, H.M.A. Siddiqui, and M.I. Qureshi, Characterizing rings based on resolvability in associated compressed zero divisor graphs, J. Algebra Appl. (2025), 2541004. https://doi.org/10.1142/S021949882541004X
[3] N. Ali, H.M.A. Siddiqui, M.I. Qureshi, M.E.M. Abdalla, N.S. Abd EL-Gawaad, and F.T. Tolasa, On study of multiset dimension in fuzzy zero divisor graphs associated with commutative rings, Int. J. Comput. Intell. 17 (2024), no. 1, 298. https://doi.org/10.1007/s44196-024-00706-2 [4] N. Ali, H.M.A. Siddiqui, M.I. Qureshi, S.A.O. Abdallah, A. Almahri, J. Asad, and A. Akgül, Exploring ring structures: multiset dimension analysis in compressed zero-divisor graphs, Symmetry 16 (2024), no. 7, 930. https://doi.org/10.3390/sym16070930
[5] K. Azhar, A. Nadeem, and Y. Shang, Local metric and partition resolvability of graphs with applications, Int. J. Math. Math. Sci. 2025 (2025), no. 1, 6660723. https://doi.org/10.1155/ijmm/6660723
[6] K. Azhar, A. Nadeem, and Y. Shang, Sharp bounds of partition resolvability of convex polytopes, J. Combin. Math. Combin. Comput. 128 (2026), 163–179. https://doi.org/10.61091/jcmcc128-10
[7] M. Baĉa, On magic labellings of convex polytopes, Annals Discrete Math. 51 (1992), 13–16.
[8] M. Bača, Labelling of two classes of convex polytopes, Util. Math. 34 (1988), 24–31.
[9] G.A. Barragán-Ramírez and J.A. Rodríguez-Velázquez, The local metric dimension of strong product graphs, Graphs Combin. 32 (2016), no. 4, 1263–1278. https://doi.org/10.1007/s00373-015-1653-z
[10] R.C. Brigham, G. Chartrand, R.D. Dutton, and P. Zhang, Resolving domination in graphs, Math. Bohem. 128 (2003), no. 1, 25–36. http://dx.doi.org/10.21136/MB.2003.133935
[11] A.N. Cahyabudi and T.A. Kusmayadi, On the local metric dimension of a lollipop graph, a web graph, and a friendship graph, J. Phys. Conf. Ser., vol. 909, IOP Publishing, 2017, p. 012039.
[12] A.S. Cevik, I.N. Cangul, and Y. Shang, Matching some graph dimensions with special generating functions, AIMS Math. 10 (2025), no. 4, 8446–8467. https://doi.org/10.3934/math.2025389
[13] G. Chartrand, L. Eroh, M.A. Johnson, and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000), no. 1-3, 99–113. https://doi.org/10.1016/S0166-218X(00)00198-0
[14] G. Chartrand, V. Saenpholphat, and P. Zhang, The independent resolving number of a graph, Math. Bohem. 128 (2003), no. 4, 379–393. http://doi.org/10.21136/MB.2003.134003
[15] F. Harary and R.A. Melter, On the metric dimension of a graph, Theory Comput. Syst. Ars Comb. 2 (1976), 191 –195.
[16] M. Imran, S.A.U.H. Bokhary, and A.Q. Baig, On the metric dimension of rotationally-symmetric convex polytopes, J. Algebra Comb. Discrete Struct. Appl. 3 (2015), no. 2, 45–59. http://doi.org/10.13069/jacodesmath.47485
[17] R. Ismail, A. Nadeem, and K. Azhar, Local metric resolvability of generalized petersen graphs, Mathematics 12 (2024), no. 14, 2179. https://doi.org/10.3390/math12142179
[18] A. Kelenc, D. Kuziak, A. Taranenko, and I.G. Yero, Mixed metric dimension of graphs, Appl. Math. Comput. 314 (2017), 429–438. https://doi.org/10.1016/j.amc.2017.07.027
[19] S. Khuller, B. Raghavachari, and A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70 (1996), no. 3, 217–229. https://doi.org/10.1016/0166-218X(95)00106-2 [20] S. Klavžar and M. Tavakoli, Local metric dimension of graphs: Generalized hierarchical products and some applications, Appl. Math. Comput. 364 (2020), 124676. https://doi.org/10.1016/j.amc.2019.124676
[21] F. Okamoto, B. Phinezy, and P. Zhang, The local metric dimension of a graph, Math. Bohem. 135 (2010), no. 3, 239–255. http://doi.org/10.21136/MB.2010.140702
[22] Y. Ramírez-Cruz, O.R. Oellermann, and J.A. Rodríguez-Velázquez, The simultaneous metric dimension of graph families, Discrete Appl. Math. 198 (2016), 241–250. https://doi.org/10.1016/j.dam.2015.06.012
[23] A. Riaz, H.M.A. Siddiqui, and N. Ali, Graph-theoretic characterization of rings: Outer multiset dimension of zero-divisor graphs, Discrete Appl. Math. 377 (2025), 436–444. https://doi.org/10.1016/j.dam.2025.08.022
[24] J.A. Rodríguez-Velázquez, G.A. Barragán-Ramírez, and C. García Gómez, On the local metric dimension of corona product graphs, Bull. Malays. Math. Sci. Soc. 39 (2016), no. 1, 157–173. https://doi.org/10.1007/s40840-015-0283-1
[25] J.A. Rodríguez-Velázquez, C. García Gómez, and G.A. Barragán-Ramírez, Computing the local metric dimension of a graph from the local metric dimension of primary subgraphs, Int. J. Comput. Math. 92 (2015), no. 4, 686–693. https://doi.org/10.1080/00207160.2014.918608
[26] L. Saha, M. Basak, K. Tiwary, K.C. Das, and Y. Shang, On the characterization of a minimal resolving set for power of paths, Mathematics 10 (2022), no. 14, 2445. https://doi.org/10.3390/math10142445
[27] L. Saha, B. Das, K. Tiwary, K.C. Das, and Y. Shang, Optimal multi-level faulttolerant resolving sets of circulant graph $C(n: 1, 2)$, Mathematics 11 (2023), no. 8, 1896. https://doi.org/10.3390/math11081896
[28] A. Sebő and E. Tannier, On metric generators of graphs, Math. Oper. Res. 29 (2004), no. 2, 383–393. https://doi.org/10.1287/moor.1030.0070
[29] Y. Shang, Creating a network-state homomorphism through optimization, RAIRO - Theor. Inform. 58 (2024), 17. https://doi.org/10.1051/ita/2024014
[30] Z. Shao, P. Wu, E. Zhu, and L. Chen, On metric dimension in some hex derived networks, Sensors 19 (2018), no. 1, 94. https://doi.org/10.3390/s19010094 [31] P.J. Slater, Leaves of trees, the 6th Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium, vol. 14, Utilitas Mathematica Pub., 1975, pp. 549–559.
[32] H. Suprajitno, General results of local metric dimensions of edge-corona of graphs, Int. Math. Forum 11 (2016), no. 16, 793–799. http://dx.doi.org/10.12988/imf.2016.67102
[33] I.G. Yero, A. Estrada-Moreno, and J.A. Rodr´ıguez-Vel´azquez, Computing the $k$-metric dimension of graphs, Appl. Math. Comput. 300 (2017), 60–69. | ||
|
آمار تعداد مشاهده مقاله: 28 تعداد دریافت فایل اصل مقاله: 80 |
||