تعداد نشریات | 5 |
تعداد شمارهها | 111 |
تعداد مقالات | 1,247 |
تعداد مشاهده مقاله | 1,199,878 |
تعداد دریافت فایل اصل مقاله | 1,060,650 |
Twin minus domination in directed graphs | ||
Communications in Combinatorics and Optimization | ||
مقاله 5، دوره 1، شماره 2، اسفند 2016، صفحه 149-164 اصل مقاله (467.96 K) | ||
نوع مقاله: Original paper | ||
شناسه دیجیتال (DOI): 10.22049/cco.2016.13575 | ||
نویسندگان | ||
Maryam Atapour* 1؛ Abdollah Khodkar2 | ||
1Department of Mathematics Faculty of basic sciences University of Bonab Bonab, Iran, Po. Box: 5551761167 | ||
2Department of Mathematics University of West Georgia Carrollton, GA 30118, USA | ||
چکیده | ||
Let $D=(V,A)$ be a finite simple directed graph. A function $f:V\longrightarrow \{-1,0,1\}$ is called a twin minus dominating function if $f(N^-[v])\ge 1$ and $f(N^+[v])\ge 1$ for each vertex $v\in V$. The twin minus domination number of $D$ is $\gamma_{-}^*(D)=\min\{w(f)\mid f \mbox{ is a twin minus dominating function of } D\}$. In this paper, we initiate the study of twin minus domination numbers in digraphs and present some lower bounds for $\gamma_{-}^*(D)$ in terms of the order, size and maximum and minimum in-degrees and out-degrees. | ||
کلیدواژهها | ||
twin domination in digraphs؛ minus domination in graphs؛ twin minus domination in digraphs | ||
مراجع | ||
[1] H. Abdollahzadeh Ahangar, J. Amjadi, S.M. Sheikholeslami, V. Samodivkin, and L. Volkmann, Twin roman domination number of a digraph, Miskolc Math. Notes 17 (2016), no. 1, 3–14.
2] S. Arumugam, K. Ebadi, and L. Sathikala, Twin domination and twin irredundance in digraphs, Appl. Anal. Discrete Math. 7 (2013), 275–284.
[3] M. Atapour, A. Bodaghli, and S.M. Sheikholeslami, Twin signed total domination numbers in directed graphs, Ars Combin., to appear.
[4] M. Atapour, R. Hajypory, S.M. Sheikholeslami, and L. Volkmann, The signed k-domination number of directed graphs, Cent. Eur. J. Math. 8 (2010), 1048–1057.
[5] M. Atapour, S. Norouzian, and S.M. Sheikholeslami, Global minus domination in graphs, Trans. Comb. 3 (2014), no. 2, 35–44.
[6] M. Atapour, S. Norouzian, S.M. Sheikholeslami, and L. Volkmann, Twin signed domination numbers in directed graphs, Algebra, Discrete Math. (to appear).
[7] A. Bodaghli, S.M. Sheikholeslami, and L. Volkmann, Twin signed Roman domination number of a digraph, Tamkang J. Math. 47 (2016), no. 3, 357–371.
[8] G. Chartrand, P. Dankelmann, M. Schultz, and H.C. Swart, Twin domination in digraphs, Ars Combin. 67 (2003), 105–114.
[9] G. Chartrand, D.W. VanderJagt, and B.Q. Yue, Orientable domination in graphs, Congr. Numer. 119 (1996), 51–63.
[10] J. Dunbar, S. Hedetniemi, M.A. Henning, and A.A. McRae, Minus domination in regular graphs, Discrete Math. 149 (1996), no. 1, 311–312.
[11] H. Karami, A. Khodkar, and S.M. Sheikholeslami, Lower bounds on the signed domination numbers of directed graphs, Discrete Math. 309 (2009), no. 8, 2567–2570.
[12] W. Li and H. Xing, Minus domination numbers of directed graphs, Advanced Materials Research, vol. 267, 2011, pp. 334–337.
[13] H. Liu and L. Sun, On the minus domination number of graphs, Czechoslovak Math. J. 54 (2004), no. 4, 883–887.
[14] J. Matoušek, Lower bound on the minus-domination number, Discrete Math. 233 (2001), no. 1, 361–370.
[15] D.B. West, Introduction to graph theory, Prentice hall Upper Saddle River, 2001.
[16] H.M. Xing and H.L. Liu, Minus total domination in graphs, Czechoslovak Math. J. 59 (2009), no. 4, 861–870.
[17] B. Zelinka, Signed domination numbers of directed graphs, Czechoslovak Math. J. 55 (2005), no. 2, 479–482.
| ||
آمار تعداد مشاهده مقاله: 1,776 تعداد دریافت فایل اصل مقاله: 1,862 |