تعداد نشریات | 5 |
تعداد شمارهها | 112 |
تعداد مقالات | 1,271 |
تعداد مشاهده مقاله | 1,238,839 |
تعداد دریافت فایل اصل مقاله | 1,098,293 |
Two upper bounds on the A_α-spectral radius of a connected graph | ||
Communications in Combinatorics and Optimization | ||
مقاله 5، دوره 7، شماره 1، شهریور 2022، صفحه 53-57 اصل مقاله (335.84 K) | ||
نوع مقاله: Original paper | ||
شناسه دیجیتال (DOI): 10.22049/cco.2021.27061.1187 | ||
نویسنده | ||
Shariefuddin Pirzada* | ||
Department of Mathematics, Hazratbal | ||
چکیده | ||
If $A(G)$ and $D(G)$ are respectively the adjacency matrix and the diagonal matrix of vertex degrees of a connected graph $G$, the generalized adjacency matrix $A_{\alpha}(G)$ is defined as $A_{\alpha}(G)=\alpha ~D(G)+(1-\alpha)~A(G)$, where $0\leq \alpha \leq 1$. The $A_{\alpha}$ (or generalized) spectral radius $\lambda(A_{\alpha}(G))$ (or simply $\lambda_{\alpha}$) is the largest eigenvalue of $A_{\alpha}(G)$. In this paper, we show that $$ \lambda_{\alpha}\leq \alpha~\Delta +(1-\alpha)\sqrt{2m\left(1-\frac{1}{\omega}\right)}, $$ where $m$, $\Delta$ and $\omega=\omega(G)$ are respectively the size, the largest degree and the clique number of $G$. Further, if $G$ has order $n$, then we show that \begin{equation*} \lambda_{\alpha}\leq \frac{1}{2}\max\limits_{1\leq i\leq n} \left[\alpha d_{i}+\sqrt{ \alpha^{2}d_{i}^{2}+4m_{i}(1-\alpha)[\alpha+(1-\alpha)m_{j}] }\right], \end{equation*} where $d_{i}$ and $m_{i}$ are respectively the degree and the average 2-degree of the vertex $v_{i}$. | ||
کلیدواژهها | ||
Adjacency matrix؛ generalized adjacency matrix؛ spectral radius؛ clique number | ||
مراجع | ||
[1] A.E. Brouwer and W.H. Haemers, Spectra of Graphs, Springer, New York, 2012.
[2] Y. Chen, D. Li, Z. Wang, and J. Meng, Aα-spectral radius of the second power of a graph, Appl. Math. Comput. 359 (2019), 418–425.
[3] D. Li, Y. Chen, and J. Meng, The Aα-spectral radius of trees and unicyclic graphs with given degree sequence, Appl. Math. Comput. 363 (2019), Article ID: 124622.
[4] H. Lin, X. Huang, and J. Xue, A note on the Aα-spectral radius of graphs, Linear Algebra Appl. 557 (2018), 430–437.
[5] T.S. Motzkin and E.G. Straus, Maxima for graphs and a new proof of a theorem of Turán, Canad. J. Math. 17 (1965), 533–540.
[6] V. Nikiforov, Merging the A and Q spectral theories, Appl. Analysis Discrete Math. 11 (2017), no. 1, 81–107.
[7] S. Pirzada, An Introduction to Graph Theory, Universities Press Orient BlackSwan, Hyderabad, 2012.
[8] S. Wang, D. Wong, and F. Tian, Bounds for the largest and the smallest Aαeigenvalues of a graph in terms of vertex degrees, Linear Algebra Appl. 590 (2020), 210–223. | ||
آمار تعداد مشاهده مقاله: 696 تعداد دریافت فایل اصل مقاله: 661 |