تعداد نشریات | 5 |
تعداد شمارهها | 112 |
تعداد مقالات | 1,271 |
تعداد مشاهده مقاله | 1,238,832 |
تعداد دریافت فایل اصل مقاله | 1,098,289 |
A note on δ^(k)-colouring of the Cartesian product of some graphs | ||
Communications in Combinatorics and Optimization | ||
مقاله 12، دوره 7، شماره 1، شهریور 2022، صفحه 113-120 اصل مقاله (360.42 K) | ||
نوع مقاله: Original paper | ||
شناسه دیجیتال (DOI): 10.22049/cco.2021.27114.1211 | ||
نویسندگان | ||
Sudev Naduvath* 1؛ Merlin Thomas Ellumkalayil2 | ||
1Christ University, Bangalore, India. | ||
2Department of Mathematics, Christ University, Bangalore, India. | ||
چکیده | ||
The chromatic number, $\chi(G)$ of a graph $G$ is the minimum number of colours used in a proper colouring of $G$. In an improper colouring, an edge $uv$ is bad if the colours assigned to the end vertices of the edge is the same. Now, if the available colours are less than that of the chromatic number of graph $G$, then colouring the graph with the available colours lead to bad edges in $G$. The number of bad edges resulting from a $\delta^{(k)}$-colouring of $G$ is denoted by $b_{k}(G)$. In this paper, we use the concept of $\delta^{(k)}$-colouring and determine the number of bad edges in Cartesian product of some graphs. | ||
کلیدواژهها | ||
Improper colouring؛ near proper colouring؛ δ^(k)-colouring؛ bad edge | ||
مراجع | ||
[1] J.A. Bondy and U.S.R. Murty, Graph Theory, Springer, New York, 2008.
[2] G. Chartrand and P. Zhang, Chromatic Graph Theory, Chapman and Hall/CRC Press, 2008.
[3] R. Hammack, W. Imrich, and S. Klavžar, Handbook of Product Graphs, CRC Press, 2011.
[4] F. Harary, Graph Theory, Narosa Publ. House, New Delhi., 2001.
[5] W. Imrich and S. Klavzar, Product Graphs: Structure and Recognition, Wiley, 2000.
[6] T.R. Jensen and B. Toft, Graph Coloring Problems, John Wiley & Sons, 2011.
[7] J. Kok and E.G. Mphako-Banda, Chromatic completion number, J. Math. Comput. Sci. 10 (2020), no. 6, 2971–2983.
[8] J. Kok and S. Naduvath, δ(k)-colouring of cycle related graphs, Adv. Stud. Contemp. Math., to appear.
[9] M. Kubale, Graph Colorings, American Mathematical Soc., 2004.
[10] E.G. Mphako-Banda, An introduction to the k-defect polynomials, Quaest. Math. 42 (2019), no. 2, 207–216.
[11] D.B. West, Introduction to Graph Theory, Prentice hall Upper Saddle River, 2001.
| ||
آمار تعداد مشاهده مقاله: 501 تعداد دریافت فایل اصل مقاله: 684 |