تعداد نشریات | 5 |
تعداد شمارهها | 108 |
تعداد مقالات | 1,228 |
تعداد مشاهده مقاله | 1,147,445 |
تعداد دریافت فایل اصل مقاله | 1,006,646 |
On the total liar's domination of graphs | ||
Communications in Combinatorics and Optimization | ||
مقاله 14، دوره 7، شماره 2، اسفند 2022، صفحه 169-175 اصل مقاله (363.08 K) | ||
نوع مقاله: Original paper | ||
شناسه دیجیتال (DOI): 10.22049/cco.2021.27219.1213 | ||
نویسندگان | ||
Narjes Seyedi1؛ Hamid Reza Maimani* 2؛ Abolfazl Tehranian1 | ||
1Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran | ||
2Shahid Rajaee Teacher Training University | ||
چکیده | ||
For a graph $G$, a set $L$ of vertices is called a total liar's domination if $|N_G(u)\cap L|\geq 2$ for any $u\in V(G)$ and $|(N_G(u)\cup N_G(v))\cap L|\geq 3$ for any distinct vertices $u,v\in V(G)$. The total liar’s domination number is the cardinality of a minimum total liar’s dominating set of $G$ and is denoted by $\gamma_{TLR}(G)$. In this paper we study the total liar's domination numbers of join and products of graphs. | ||
کلیدواژهها | ||
Total liar' s domination؛ Join of graphs؛ Graphs products | ||
مراجع | ||
[1] A. Alimadadi, M. Chellali, and D.A. Mojdeh, Liar’s dominating sets in graphs, Discrete Appl. Math. 211 (2016), 204–210.
[2] R. Diestel, Graph Theory, Springer-Verlag, New York, 1997.
[3] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc. New York, 1998.
[4] B.S. Panda and S. Paul, Hardness results and approximation algorithm for total liar’s domination in graphs, J. Comb. Optim. 27 (2014), no. 4, 643–662.
[5] M.L. Roden and P.J. Slater, Liar’s domination and the domination continuum, Congr. Numer. 190 (2008), 77–85.
[6] , Liar’s domination in graphs, Discrete Math. 309 (2009), no. 19, 5884–5890.
[7] P.J. Slater, Liar’s domination, Networks 54 (2009), no. 2, 70–74. | ||
آمار تعداد مشاهده مقاله: 554 تعداد دریافت فایل اصل مقاله: 728 |