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Abstract: Let G be a graph with vertex set V (G). A double Italian dominating func-
tion (DIDF) is a function f : V (G) −→ {0, 1, 2, 3} having the property that f(N [u]) ≥ 3

for every vertex u ∈ V (G) with f(u) ∈ {0, 1}, where N [u] is the closed neighborhood of

u. If f is a DIDF on G, then let V0 = {v ∈ V (G) : f(v) = 0}. A restrained double Ital-
ian dominating function (RDIDF) is a double Italian dominating function f having the

property that the subgraph induced by V0 does not have an isolated vertex. The weight

of an RDIDF f is the sum
∑

v∈V (G) f(v), and the minimum weight of an RDIDF on a
graph G is the restrained double Italian domination number. We present bounds and

Nordhaus-Gaddum type results for the restrained double Italian domination number.

In addition, we determine the restrained double Italian domination number for some
families of graphs.
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strained domination
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1. Introduction

For definitions and notations not given here we refer to [12]. We consider simple

graphs G with vertex set V = V (G) and edge set E = E(G). The order of G is

n = n(G) = |V |. The open neighborhood of a vertex v is the set N(v) = NG(v) = {u ∈
V (G) | uv ∈ E} and its closed neighborhood is the set N [v] = NG[v] = N(v) ∪ {v}.
The degree of vertex v ∈ V is d(v) = dG(v) = |N(v)|. The maximum degree and

minimum degree of G are denoted by ∆ = ∆(G) and δ = δ(G), respectively. The

complement of a graph G is denoted by G. For a subset D of vertices in a graph G,

we denote by G[D] the subgraph of G induced by D. The diameter of a graph G,

denoted by diam(G), is the greatest distance between two vertices of G. A leaf is a

vertex of degree one, and its neighbor is called a support vertex. A set S ⊆ V (G) is

called a dominating set if every vertex is either an element of S or is adjacent to an

element of S. The domination number γ(G) of a graph G is the minimum cardinality



2 Restrained double Italian domination in graphs

of a dominating set of G. A restrained dominating set is a set S ⊆ V (G) where every

vertex in V (G)\S is adjacent to a vertex in S as well as to another vertex in V (G)\S.

The restrained domination number of G, denoted by γr(G), is the smallest cardinality

of a restrained dominating set of G. Restrained domination was formally defined by

Domke, Hattingh, Hedetniemi, Laskar and Markus in their 1999 paper [9]. For more

information on this paramter we refer the reader to the survey paper [11]. We write

Pn for the path of order n, Cn for the cycle of length n and Kn for the complete graph

of order n. Also, let Kn1,n2,...,np
denote the complete p-partite graph with vertex set

S1 ∪ S2 ∪ . . . ∪ Sp where |Si| = ni for 1 ≤ i ≤ p. For n ≥ 2, the star K1,n−1 has one

vertex of degree n− 1 and n− 1 leaves. The corona H ◦K1 is the graph constructed

from a copy of H, where for each vertex v ∈ V (H), a new vertex v′ and a pendant

edge vv′ are added.

Cockayne, Dreyer, S.M. Hedetniemi and S.T. Hedetniemi [8] introduced the concept

of Roman domination in graphs, and since then a lot of related variations and gener-

alizations have been studied (see [4–7]).

In 2016, Chellali, Haynes, S.T. Hedetniemi and McRae [3] defined a new variant of

Roman dominating functions, the so called Italian dominating functions.

Mojdeh and Volkmann [13] considered a variant of Italian domination which they

called double Italian domination. A double Italian dominating function (DIDF) on

a graph G is a function f : V (G) −→ {0, 1, 2, 3} having the property that for every

vertex u ∈ V (G), if f(u) ∈ {0, 1}, then f(N [u]) ≥ 3. The weight of a DIDF f is the

sum w(f) =
∑

v∈V (G) f(v), and the minimum weight of a DIDF in a graph G is the

double Italian domination number, denoted by γdI(G). For a DIDF f , one can denote

f = (V0, V1, V2, V3), where Vi = {v ∈ V (G) : f(v) = i} for i = 0, 1, 2, 3. This concept

was further studied in [1, 2, 16].

A restrained double Italian dominating function (RDIDF) is a DIDF f having the

property that the subgraph induced by V0 does not have an isolated vertex. The

weight of an RDIDF f is the sum
∑

v∈V (G) f(v), and the minimum weight of an

RDIDF on a graph G is the restrained double Italian domination number, denoted by

γrdI(G). Clearly, γdI(G) ≤ γrdI(G).

In this paper, we present sharp bounds and Nordhaus-Gaddum type results for

the restrained double Italian domination number. In addition, we determine the

restrained double Italian domination number for some families of graphs.

We make use of the following results.

Proposition 1. 1. (Ore’s Theorem) If a graph G of order n has no isolated vertices,
then γ(G) ≤ n/2.

2. [10, 15] For a graph G of order n with no isolated vertices, γ(G) = n/2 if and only if
the components of G are the cycle C4 or the corona H ◦K1 for any connected graph
H.

Proposition 2. [9] If n ≥ 2 is an integer, then γr(K1,n−1) = n.
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Proposition 3. [13] If n ≥ 3 is an integer, then γdI(Cn) = n.

Proposition 4. [13] If G is a graph of order n ≥ 2, then γdI(G) ≥ 3.

Proposition 5. If G is a graph of order n, then γrdI(G) ≤ 2n, with equality if and only
if G = Kn.

Proof. Define the function f on G by f(x) = 2 for each vertex x ∈ V (G). Since

f is an RDIDF on G of weight 2n, we deduce that γrdI(G) ≤ 2n. If G = Kn, then

obviously γrdI(G) = 2n. If G contains an edge uv, then define g by g(u) = 1 and

g(x) = 2 for x ∈ V (G) \ {u}. Then g is an RDIDF on G of weight 2n − 1 and thus

γrdI(G) ≤ 2n− 1. This completes the proof.

Proposition 6. If G is a graph of order n, with δ(G) ≥ 2, then γrdI(G) ≤ n.

Proof. Define the function f by f(x) = 1 for each vertex x ∈ V (G). Since δ(G ≥ 2,

we observe that f(N [x]) ≥ 3 for every vertex x ∈ V (G) with f(x) ∈ {0, 1}. Therefore

f is an RDIDF on G of weight n and thus γrdI(G) ≤ n.

Proposition 7. If G is a connected graph of order n ≥ 2, then γrdI(G) ≤ 3n
2

with
equality if an only if G ∈ {P2, P4}.

Proof. Let S be a dominating set of G and define the function f by f(x) = 2 if

x ∈ S and f(x) = 1 otherwise. Then f is an RDIDF of G and by Ore’s Theorem we

have γrdI(G) ≤ n+ γ(G) ≤ 3n
2 .

If G ∈ {P2, P4}, then clearly γrdI(G) = 3n
2 . Conversely, assume that γrdI(G) = 3n

2 .

By Proposition 1-(2), G = C4 or G is the corona H ◦K1 for some connected graph H.

We deduce from Proposition 6 that G 6= C4. Hence G = H ◦K1 for some connected

graph H. If n(H) ≥ 3 and u1u2u3 is a path in H and vi is the leaf adjacent to ui in G

for 1 ≤ i ≤ 3, then the function f defined by f(u1) = f(u2) = 0, f(v1) = 3, f(v2) = 2,

f(x) = 2 for x ∈ V (H) − {u1, u2} and f(x) = 1 otherwise, is an RDIDF on G of

weight 3n
2 − 1, a contradiction. Thus n(H) ≤ 2 and so G ∈ {P2, P4}.

2. Special classes of graphs

In this section we determine the restrained double Italian domination number for

complete graphs, complete p-partite graphs, paths and cycles. The proof of the first

observation is easy and therefore omitted.

Observation 1. (i) γrdI(Kn) = 3 for n ≥ 2,

(ii) γrdI(K1,n−1) = n+ 1 for n ≥ 2,
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(iii) γrdI(K2,2) = 4, γrdI(K2,3) = 5 and γrdI(Kp,q) = 6 for p, q ≥ 2 and p+ p ≥ 6,

(iv) Let Kn1,n2,...,np be the complete p-partite graph such that p ≥ 3 and n1 ≤ n2 ≤ . . . ≤
np. Then γrdI(K1,n2,...,np) = 3, γrdI(K2,n2,...,np) = 4, γrdI(Kn1,n2,n3) = 5 for n1 ≥ 3
and γrdI(Kn1,n2,...,np) = 4 for n1 ≥ 3 and p ≥ 4.

Observation 2. If n ≥ 3 is an integer, then γrdI(Cn) = n.

Proof. Proposition 3 implies γrdI(Cn) ≥ γdI(Cn) = n. Since γrdI(Cn) ≤ n by

Proposition 6, we obtain the desired result.

Observation 3. If n ≥ 4 is an integer, then γrdI(Pn) = n+ 2.

Proof. Let Pn = v1v2 . . . vn. Define the function f by f(v1) = f(vn) = 2 and

f(vi) = 1 for 2 ≤ i ≤ n− 1. Then f is an RDIDF on Pn of weight n+ 2 and therefore

γrdI(Pn) ≤ n+ 2.

Now we show that γrdI(Pn) ≥ n + 2. It is straightforward to verify that γrdI(Pn) =

n + 2 for 4 ≤ n ≤ 6. For n ≥ 7 we proceed by induction on n. Let n ≥ 7 and let

the inverse inequality be valid for every path of order at least four and less than n.

Assume that f is a γrdI(Pn)-function. Clearly, f(vn) ≥ 1. Now we distinguish three

cases.

If f(vn) = 1, then f(vn−1) ≥ 2, and the function g with g(vi) = f(vi) for 1 ≤ i ≤ n−1

is an RDIDF on Pn−1 = Pn − {vn}. Hence the induction hypothesis implies

γrdI(Pn) = ω(f) = ω(g) + 1 ≥ γrdI(Pn−1) + 1 ≥ (n− 1) + 2 + 1 = n+ 2.

If f(vn) = 2, then f(vn−1) = 1 and f(vn−2) ≥ 1. We note that the function g with

g(vn−1) = 2 and g(x) = f(x) for 1 ≤ i ≤ n − 2, is an RDIDF of Pn−1 and the

result follows as above. Finally, let f(vn) = 3. Then f(vn−1) = f(vn−2) = 0 and

f(vn−3) = 3. Clearly, the function g with g(vi) = f(vi) for 1 ≤ i ≤ n−3 is an RDIDF

on Pn−3 = Pn − {vn, vn−1, vn−2}. The induction hypothesis leads to

γrdI(Pn) = ω(f) = ω(g) + 3 ≥ γrdI(Pn−3) + 3 ≥ (n− 3) + 2 + 3 = n+ 2.

This completes the proof.

3. Sharp bounds on γrdI(G)

Theorem 4. If G is a graph of order n ≥ 2, then γrdI(G) ≥ 3, with equality if and only
if ∆(G) = n− 1 and G contains a vertex w of maximum degree such that δ(G[NG(w)]) ≥ 1.

Proof. Using Proposition 4, we obtain γrdI(G) ≥ γdI(G) ≥ 3 immediately.

We next prove the equality part. Assume that G contains a vertex w with dG(w) =
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n − 1 such that δ(G[NG(w)]) ≥ 1. Define the function f by f(w) = 3 and f(x) = 0

for x ∈ V (G) \ {w}. Since G[NG(w)] does not contain an isolated vertex, we observe

that f is an RDIDF on G of weight 3 and so γrdI(G) = 3.

Conversely, assume that γrdI(G) = 3. If f is a γrdI(G)-function, then there are three

cases possible.

There is a vertex w with f(w) = 3 such that the remaining n− 1 vertices with value

0 are adjacent to w and δ(G[NG(w)]) ≥ 1.

There are two adjacent vertices u and v with f(u) = 2 and f(v) = 1 such that

such that the remaining n − 2 vertices with value 0 are adjacent to u and v and

G[V (G)\{u, v}] has no isolated vertex. But then dG(u) = n−1 and δ(G[NG(u)]) ≥ 1.

There are three mutuality adjacent vertices u, v, w with f(u) = f(v) = f(w) = 1

such that the remaining n − 3 vertices with value 0 are adjacent to u, v and w and

G[V (G)\{u, v, w}] has no isolated vertex. But then dG(u) = n−1 and δ(G[NG(u)]) ≥
1.

In all three cases, we deduce that ∆(G) = n−1 and G contains a vertex w of maximum

degree such that δ(G[NG(w)]) ≥ 1. This completes the proof.

Using Proposition 2 and Observation 1 (ii), we observe that γr(K1,n−1)+1 = n+1 =

γrdI(K1,n−1) for n ≥ 2. However, if G is not a star, then we prove the following sharp

inequality.

Theorem 5. Let G be a connected graph of order n ≥ 2. If G is not a star, then
γr(G) + 2 ≤ γrdI(G).

Proof. Let f = (V0, V1, V2, V3) be a γrdI(G)-function. We distinguish three cases.

Case 1. Let |V2| ≥ 2 or |V3| ≥ 1.

Then

γr(G) ≤ |V1|+ |V2|+ |V3| ≤ |V1|+ 2|V2|+ 3|V3| − 2 = γrdI(G)− 2.

Case 2. Let |V2| = |V3| = 0.

Then |V1| ≥ 3, and each vertex of V1 is adjacent to two vertices of V1 and each vertex

of V0 is adjacent to three vertices of V1. Let u ∈ V1 be adjacent to v ∈ V1 and w ∈ V1.

Then V1 \ {u, v} is a restrained dominating set of G of weight |V1| − 2 and therefore

γr(G) + 2 ≤ γrdI(G).

Case 3. Let |V3| = 0 and |V2| = 1 = |{w}|.
Subcase 3.1. Assume that |V0| ≥ 1. Then each vertex of V0 is adjacent to w and a

vertex of V1 or to at least three vertices in V1. If there is a vertex u ∈ V0 adjacent to

w and to a vertex v ∈ V1, then (V1 \ {v}) ∪ {w} is a restrained dominating of G and

so γr(G) + 2 ≤ γrdI(G). In the remaining case every vertex of V0 is adjacent to three

vertices of V1. If the vertex u ∈ V0 is adjacent to a vertex v ∈ V1, then (V1\{v})∪{w}
is a restrained dominating of G and so γr(G) + 2 ≤ γrdI(G).
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Subcase 3.2. Assume that |V0| = 0. Let V1 = {v1, v2, . . . , vn−1} and let, without

loss of generality, v1, v2, . . . , vk adjacent to w with k ≤ n − 1. Assume first that

k ≤ n − 2. Since G is connected, we assume, without loss of generality, that vk+1 is

adjacent to vk. If k ≥ 2, then V (G)\{w, vk} is a restrained dominating of G and hence

γr(G) + 2 ≤ γrdI(G). Let next k = 1. Since G is not a star, the vertex v2 is adjacent

to a further vertex, say v3. Now V (G) \ {v1, v2} is a restrained dominating of G and

thus γr(G) + 2 ≤ γrdI(G). Finally, assume that k = n− 1. Since G is not a star, V1
contains two adjacent vertices. If, without loss of generality, v1 and v2 are adjacent,

V (G)\{v1, v2} is a restrained dominating of G and therefore γr(G)+2 ≤ γrdI(G).

If G is C4 or C5 or G can be obtained from C3 by attaching zero or more leaves to

a vertex of C3, then we observe that γr(G) + 2 = γrdI(G) = n(G). These examples

demonstrate that Theorem 5 is sharp.

If S is an restrained dominating set of a graph G, then (V (G)\S, ∅, ∅, S) is an RDIDF

on G. This implies the next observation immediately.

Observation 6. If G is a graph, then γrdI(G) ≤ 3γr(G).

4. Trees

By Sp,q we denote the double star, where one center vertex is adjacent to p leaves and

the other one by q leaves. Our first result on trees is easy to verify.

Observation 7. If Sp,q is a double star, then γrdI(Sp,q) = p+ q + 4 = n(Sp,q) + 2.

Theorem 8. If T is a tree of order n with diameter 4, then γrdI(T ) ≥ n+ 2.

Proof. Let v0, v1, v2, . . . , vp be the non-leaves of T such that v0 is adjacent to the

vertices v1, v2, . . . , vp. In addition, let v1i , v
2
i , . . . , v

ti
i be the leaves adjacent to vi for

1 ≤ i ≤ p and u1, u2, . . . , uk be the leaves adjacent to v0. Since T is of diameter

4, we note that p ≥ 2. Now let f be a γrdI(T )-function. We observe that f(vi) +

f(v1i ) + f(v2i ) + . . .+ f(vtii ) ≥ ti + 2 and f(v0) + f(u1) + f(u2) + . . .+ f(uk) ≥ k + 1

if k ≥ 1. This implies ω(f) ≥ n + p ≥ n + 2 if k ≥ 1 and ω(f) ≥ n − 1 + p ≥ n + 2

if k = 0 and p ≥ 3. It remains the case that k = 0 and p = 2. If f(v0) ≥ 1, then

we obtain the desired result. Let now f(v0) = 0. Then, without loss of generality,

f(v1) = 0 and f(v2) = 3. This leads to f(v1) + f(v11) + f(v21) + . . .+ f(vt11 ) ≥ t1 + 2

and f(v2) + f(v12) + f(v22) + . . . + f(vt22 ) ≥ t2 + 3, and thus we obtain ω(f) ≥ n + 2

also in the last case.

Let T1 be the tree of diameter 4 consisting of the path v1v2v3v4 such that v4 is adjacent

to t ≥ 1 leaves w1, w2, . . . , wt. Then γrdI(T1) = t+ 6 = n(T1) + 2.
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Let T2 be the tree of diameter 4 consisting of the path v1v2v3 such that v1 is adjacent

to two leaves u1 and u2 and v3 is adjacent to t ≥ 1 leaves w1, w2, . . . , wt. Then

γrdI(T2) = t+ 7 = n(T2) + 2.

These examples show that Theorem 8 is sharp.

Theorem 9. Let T be a tree of order n ≥ 4. If T is not a star, then γrdI(T ) ≥ n+ 2.

Proof. If 3 ≤ diam(T ) ≤ 4, then Observation 7 and Theorem 8 lead to the desired

result. Let now diam(T ) ≥ 5. We proceed by induction on n. Assume that the result

is valid for all trees which are not a star of order less than n. Let v1v2 . . . vp be a

diametrical path, and let f be a γrdI(T )-function.

Case 1. Assume that there exists a leaf v with f(v) = 1.

If u is the neighbor of v, then f(u) ≥ 2 and so the function g with g(x) = f(x) for

x ∈ V (T ) \ {v} is an RDIDF on the tree T − v of diameter at least 4. Hence the

induction hypothesis implies

γrdI(T ) = ω(f) = ω(g) + 1 ≥ γrdI(T − v) + 1 ≥ (n− 1) + 2 + 1 = n+ 2.

Hence we assume in the following that h(v) ≥ 2 for each γrdI(T )-function h and each

leaf v of T .

Case 2. Assume that f(v1) = 2.

Then f(v2) ≤ 1. If f(v2) = 1, then the function g with g(v1) = 1, g(v2) = 2 and

g(x) = f(x) otherwise is also a γrdI(T )-function, a contradiction.

Assume next that f(v2) = 0. It follows that f(v3) = 0 and there exists a further

leaf z adjacent to v2 with f(z) = 2. If there exists a further neighbor w of v3 with

f(w) = 0, then the function g with g(v1) = g(z) = 1, g(v2) = 2 and g(x) = f(x)

otherwise is also a γrdI(T )-function, a contradiction. Therefore f(x) ≥ 1 for each

neighbor x of v3. If there is a further leaf z1 adjacent to v2, then the function g with

g(v1) = g(z) = g(z1) = g(v3) = 1, g(v2) = 2 and g(x) = f(x) otherwise is also a

γrdI(T )-function, a contradiction. Let now u1, u2, . . . , uk be the leaves adjacent to v3
and w1, w2, . . . , wt be the support vertices adjacent to v3. If T3 is the component of

T − v3v4 containing the vertex v3, then we observe that
∑

x∈V (T3)
f(x) ≥ n(T3) + 1 if

k + t ≥ 1. Note that by Observation 1 (ii) γrdI(K1,q−1) = q + 1. Thus this fact and

the induction hypothesis implies

γrdI(T ) = ω(f) =
∑

x∈V (T3)

f(x) +
∑

x∈V (T−T3)

f(x) ≥ n(T3) + 1 +n(T −T3) + 1 = n+ 2.

If d(v3) = 2, then f(v4) = 3. Let again T3 be the component of T−v3v4 containing the

vertex v3. If T −T3 is a star, then the fact that f(v4) = 3 leads to
∑

x∈V (T−T3)
f(x) ≥

n(T − T3) + 3, and thus

γrdI(T ) = ω(f) =
∑

x∈V (T3)

f(x) +
∑

x∈V (T−T3)

f(x) ≥ 4 + n(T − T3) + 3 = n+ 3.
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If T − T3 is not a star, then the induction hypothesis yields to

γrdI(T ) = ω(f) =
∑

x∈V (T3)

f(x) +
∑

x∈V (T−T3)

f(x) ≥ 4 + n(T − T3) + 2 = n+ 2.

Case 3. Assume that f(v1) = 3.

Then f(v2) = f(v3) = 0. If there exists a further leaf z adjacent to v2 with f(z) ≥ 2,

then the function g with g(v1) = 2 and g(x) = f(x) otherwise is also an RDIDF

on G with ω(g) < ω(f), a contradiction. Thus d(v2) = 2. If there exists a further

neighbor w of v3 with f(w) = 0, then the function g with g(v1) = 1, g(v2) = 2

and g(x) = f(x) otherwise is also a γrdI(T )-function, a contradiction. Therefore

f(x) ≥ 1 for each neighbor x of v3. Let again u1, u2, . . . , uk be the leaves adjacent to

v3 and w1, w2, . . . , wt be the support vertices adjacent to v3. If T3 is the component

of T −v3v4 containing the vertex v3, then we observe that
∑

x∈V (T3)
f(x) ≥ n(T3) +1

if k + t ≥ 1. Thus the induction hypothesis implies

γrdI(T ) = ω(f) =
∑

x∈V (T3)

f(x) +
∑

x∈V (T−T3)

f(x) ≥ n(T3) + 1 +n(T −T3) + 1 = n+ 2.

If d(v3) = 2, then f(v4) = 3. Now the desired result follows as in Case 2.

If Pn is a path of order n ≥ 4, then γrdI(Pn) = n+2 by Observation 3. Thus Theorem

9 is sharp. However, there are many further trees with equality in Theorem 9.

5. Nordhaus-Gaddum type results

Results of Nordhaus-Gaddum type study the extreme values of the sum or product of

a parameter on a graph and its complement. In their classical paper [14], Nordhaus

and Gaddum discussed this problem for the chromatic number. We present such

inequalities for the restrained double Italian domination number

Theorem 10. If G is a graph of order n ≥ 2, then γrdI(G) + γrdI(G) ≥ 7, with equality
if and only if n = 2.

Proof. If n = 2, then it is easy to see that γrdI(G) + γrdI(G) = 7. Let now n ≥ 3.

According to Theorem 4 we only need to show that if γrdI(G) = 3, then γrdI(G) ≥ 5.

Assume that γrdI(G) = 3. It follows from Theorem 4 that ∆(G) = n− 1. Therefore

G = H ∪ {w}, where w is an isolated vertex of G. Since n(H) ≥ 2, Theorem 4 leads

to γrdI(G) ≥ γrdI(H) + 2 ≥ 5.

Theorem 11. If G is a graph G of order n ≥ 1 such that G 6= P4 and G 6= P4, then

γrdI(G) + γrdI(G) ≤ 2n+ 3.
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Proof. This bound is easy to verify for 1 ≤ n ≤ 3. Let now n ≥ 4, and assume,

without loss of generality, that δ(G) ≤ δ(G). We distinguish three cases.

Case 1. Assume that δ(G) = 0.

Let u be a vertex such that dG(u) = 0. Assume that there exists a second vertex

v with dG(v) = 0. Then Theorem 4 implies γrdI(G) = 3, and thus it follows from

Proposition 5 that γrdI(G) + γrdI(G) ≤ 2n + 3. Now assume that dG(x) ≥ 1 for

x ∈ V (G) \ {u}. Assume next that dG(v) = 1 for a vertex v ∈ V (G) \ {u}, and let

w be adjacent to v in G. Define on G the function f by f(u) = 3, f(w) = 1 and

f(x) = 0 for x ∈ V (G) \ {u,w}. Then f is an RDIDF on G of weight 4. Hence

Proposition 7 yields to

γrdI(G) + γrdI(G) ≤ 2 +

⌊
3(n− 1)

2

⌋
+ 4 ≤ 2n+ 3.

Now assume that dG(x) ≥ 2 for x ∈ V (G)\{u}. Then Proposition 6 implies γrdI(G) ≤
2 + (n − 1) = n + 1. If we define on G the function g with g(u) = 2 and g(x) = 1

for x ∈ V (G) \ {u}, then g is an RDIDF on G of weight n + 1. Consequently,

γrdI(G) + γrdI(G) ≤ 2n+ 2 in this case.

Case 2. Assume that δ(G) = 1.

Let u be a vertex such that dG(u) = 1, and let v be adjacent to u in G. If dG(v) = 1,

then let w ∈ V (G)\{u, v}. If n = 4, then it is easy to verify that γrdI(G)+γrdI(G) =

6 + 4 = 10 < 2n+ 3. If n ≥ 5, then define f on G by f(v) = f(w) = 3 and f(x) = 0

for x ∈ V (G) \ {v, w}. Then f is an RDIDF on G of weight 6. Therefore we deduce

from Proposition 7 that

γrdI(G) + γrdI(G) ≤
⌊

3n

2

⌋
+ 6 ≤ 2n+ 3.

Now assume that there exists a vertex w 6= u, v with dG(w) = 1. Let w be adjacent

to v in G. Define f on G by f(u) = 3, f(v) = 2 and f(x) = 0 for x ∈ V (G) \ {u, v}.
Then f is an RDIDF on G of weight 5. Proposition 7 implies

γrdI(G) + γrdI(G) ≤
⌊

3n

2

⌋
+ 5 ≤ 2n+ 3.

If w is not adjacent to v, then let z be adjacent to w in G. If n = 4 and v and z are

adjacent in G, then G = P4, a contradiction. If n = 4 and v and z are adjacent in G,

then we observe that γrdI(G) + γrdI(G) ≤ 6 + 4 = 10 < 11 = 2n + 3. If n ≥ 5, then

define f by f(u) = 3, f(v) = 2, f(z) = 1 and f(x) = 0 for x ∈ V (G) \ {u, v, z}. Then

f is an RDIDF on G of weight 6, and Proposition 7 leads to

γrdI(G) + γrdI(G) ≤
⌊

3n

2

⌋
+ 6 ≤ 2n+ 3.
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Now assume that dG(x) ≥ 2 for x ∈ V (G) \ {u}. Define f on G by f(u) = 2 and

f(x) = 1 for x ∈ V (G) \ {u}. Then f is an RDIDF on G of weight n + 1 and thus

γrdI(G) ≤ n+1. Define g on G by g(u) = g(v) = 2 and g(x) = 1 for x ∈ V (G)\{u, v}.
Then g is an RDIDF on G of weight n+ 2 and thus γrdI(G) ≤ n+ 2. Consequently,

γrdI(G) + γrdI(G) ≤ 2n+ 3 in this case.

Case 3. Assume that δ(G) ≥ 2.

Then δ(G) ≥ 2 and so Proposition 6 yields to γrdI(G) + γrdI(G) ≤ 2n.

If n ≥ 2, then it follows from Proposition 5 and Observation 1 (i) that

γrdI(Kn) + γrdI(Kn) = 2n+ 3. Thus Theorem 11 is sharp.

Acknowledgments: I thank Seyed Mahmoud Sheikholeslami for the equality part

in Proposition 7.
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