تعداد نشریات | 5 |
تعداد شمارهها | 111 |
تعداد مقالات | 1,245 |
تعداد مشاهده مقاله | 1,194,343 |
تعداد دریافت فایل اصل مقاله | 1,054,511 |
On the Zagreb indices of graphs with given Roman domination number | ||
Communications in Combinatorics and Optimization | ||
مقاله 11، دوره 8، شماره 1، خرداد 2023، صفحه 141-152 اصل مقاله (377.96 K) | ||
نوع مقاله: Original paper | ||
شناسه دیجیتال (DOI): 10.22049/cco.2021.27439.1263 | ||
نویسندگان | ||
Ayu Ameliatul Shahilah Ahmad Jamri1؛ Roslan Hasni* 2؛ Sharifah Kartini Said Husain3 | ||
1MENGGABANG TELIPOT KUALA NERUS | ||
2Universiti Malaysia Terengganu(UMT), Malaysia | ||
3Universiti Putra Malaysia(UPM) | ||
چکیده | ||
Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$. The two Zagreb indices $M_1=\sum_{v\in V(G)} d^2_G(v)$ and $M_2=\sum_{uv\in E(G)} d_G(u)d_G(v)$ are vertex degree based graph invariants that have been introduced in the 1970s and extensively studied ever since. {In this paper, we first give a lower bound on the first Zagreb index of trees with given Roman domination number and we characterize all extremal trees. Then we present upper bound for Zagreb indices of unicyclic and bicyclic graphs with given Roman domination number. | ||
کلیدواژهها | ||
Zagreb index؛ Roman domination number؛ tree | ||
مراجع | ||
[1] A.A.S. Ahmad Jamri, R. Hasni, M.K. Jamil, and D.A. Mojdeh, Maximum second Zagreb index of trees with given Roman domination number, submitted.
[2] S. Bermudo, J.E. Nápoles, and J. Rada, Extremal trees for the Randić index with given domination number, Appl. Math. Comput. 375 (2020), 125122.
[3] B. Borovicanin, K.C. Das, B. Furtula, and I. Gutman, Bounds for zagreb indices, MATCH Commun. Math. Comput. Chem. 78 (2017), no. 1, 17–100.
[4] Bojana Borovićanin and Boris Furtula, On extremal Zagreb indices of trees with given domination number, Appl. Math. Comput. 279 (2016), 208–218.
[5] E.W. Chambers, B. Kinnersley, N. Prince, and D.B. West, Extremal problems for Roman domination, SIAM J. Discrete Math. 23 (2009), no. 3, 1575–1586.
[6] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, Roman domination in graphs, Topics in Domination in Graphs (T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, eds.), Springer, Berlin/Heidelberg, 2020, pp. 365–409.
[7] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, Varieties of Roman domination II, AKCE Int. J. Graphs Comb. 17 (2020), no. 3, 966–984.
[8] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, Varieties of Roman domination, Structures of Domination in Graphs (T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, eds.), Springer, Berlin/Heidelberg, 2021, pp. 273–307.
[9] E.J. Cockayne, R.M. Dawes, and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980), no. 3, 211–219.
[10] P. Dankelmann, Average distance and domination number, Discrete Appl. Math. 80 (1997), no. 1, 21–35.
[11] Z. Du, A.A.S. Ahmad Jamri, R. Hasni, and D.A. Mojdeh, Maximal first Zagreb index of trees with given Roman domination number, submitted.
[12] T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, Topics in Domination in Graphs, Springer, Berlin/Heidelberg, 2020.
[13] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[14] I. Milovanović, M. Matejić, E. Milovanović, and R. Khoeilar, A note on the first Zagreb index and coindex of graphs, Commun. Comb. Optim. 6 (2021), no. 1, 41–51.
[15] D.A. Mojdeh, M. Habibi, L. Badakhshian, and Y. Rao, Zagreb indices of trees, unicyclic and bicyclic graphs with given (total) domination, IEEE Access 7 (2019), 94143–94149.
[16] S. Nikolić, G. Kovačević, A. Miličević, and N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003), no. 2, 113–124.
[17] D.B. West, Introduction to Graph Theory, Prentice hall Upper Saddle River, New Jersey, 2001. | ||
آمار تعداد مشاهده مقاله: 617 تعداد دریافت فایل اصل مقاله: 1,077 |