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Abstract: The annihilating-ideal graph of a commutative ring R with unity is de-

fined as the graph AG(R) whose vertex set is the set of all non-zero ideals with non-zero

annihilators and two distinct vertices I and J are adjacent if and only if IJ = 0. Nikan-
dish et.al. proved that AG(Zn) is weakly perfect. In this short paper, we characterize

n for which AG(Zn) is perfect.
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1. Introduction

Over the last two decades, various graphs defined on rings have become an interesting

topic of research. Various graphs like [1, 2, 4–6, 8, 9] have been constructed to study

the interplay between the graph-theoretic and ring-theoretic properties. Interested

readers are referred to the following surveys [3, 10, 14] on graphs defined on rings.

One such graph is the annihilating-ideal graph AG(R) of a commutative ring R,

introduced by Behboodi and Rakeei [7].

Definition 1. [7] Let R be a commutative ring with unity. The annihilating-ideal graph
of R is defined as the graph AG(R) whose vertex set is the set of all non-zero ideals with
non-zero annihilators and two distinct vertices I and J are adjacent if and only if IJ = 0.
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In [15], the authors proved that AG(Zn) is weakly perfect, i.e., its clique number ω is

equal to its chromatic number χ.

A graph G is said to be perfect if ω(H) = χ(H) holds for all induced subgraphs H

of G. Perfect graphs play an important role in graph theory, as many hard graph

problems in general like graph coloring, finding maximum clique and independent set,

etc. can be solved in polynomial-time in case of perfect graphs. Thus characterizing

perfect graphs in different families is an important issue (see [12, 13]). In this short

paper, we characterize n for which AG(Zn) is perfect. The following theorem is the

main result of the paper:

Theorem 1. AG(Zn) is perfect if and only if n is one of the forms pα1
1 , pα1

1 pα2
2 , pα1

1 p2p3
or p1p2p3p4, where pi’s are distinct primes and αi ∈ N.

In the next section, we prove Theorem 1. Before that we state an observation and an

important result which will be crucial in our proof.

Proposition 1. The vertex set of AG(Zn) is {〈m〉 : m | n, 1 < m < n} and two vertices
〈m1〉 and 〈m2〉 are adjacent if and only if n | m1m2.

Theorem 2. (Strong Perfect Graph Theorem) [11] A graph G is perfect if and only if
neither G nor Gc has an induced odd-cycle of length greater or equal to 5.

2. Proof of Theorem 1

We split the proof of Theorem 1 into different cases (lemmas) depending upon the

number of distinct prime factors of n.

First, we deal with the case when n has more than 4 distinct prime factors and show

that in this case AG(Zn) is not perfect.

Lemma 1. If n = p1
α1p2

α2 · · · pkαk and k ≥ 5, then AG(Zn) is not perfect.

Proof. Let m = n/(p1
α1p2

α2 · · · p5α5). Then the following five vertices, taken in
order,

〈p1α1p2
α2p4

α4m〉, 〈p3α3p4
α4p5

α5m〉, 〈p1α1p2
α2p3

α3m〉, 〈p2α2p4
α4p5

α5m〉, 〈p1α1p3
α3p5

α5m〉

form an induced 5-cycle in AG(Zn). The adjacency and non-adjacency follows from

Proposition 1. Hence, by strong perfect graph theorem, the lemma follows.

Next we focus on the case when n has exactly 4 distinct prime factors. We characterize

the condition when AG(Zn) is perfect.

Lemma 2. If n = p1
α1p2

α2p3
α3p4

α4 , then AG(Zn) is perfect if and only if αi = 1 for all
i.
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Proof. Let αi > 1 for some i, say α1 > 1. Then the following five vertices, taken

in order, 〈p1α1p4
α4〉, 〈p2α2p3

α3p4
α4〉, 〈p1α1p2

α2〉, 〈p1p3α3p4
α4〉, 〈p1α1−1p2

α2p3
α3〉 form

an induced 5-cycle in AG(Zn). As earlier, the adjacency and non-adjacency follows

from Proposition 1. Hence, by strong perfect graph theorem, AG(Zn) is not perfect.

Now, we assume that n = p1p2p3p4. Then AG(Zn) has 14 vertices:

1st type: 〈p1〉, 〈p2〉, 〈p3〉, 〈p4〉 4 vertices of degree 1

2nd type: 〈p1p2〉, 〈p2p3〉, . . . , 〈p3p4〉 6 vertices of degree 3

3rd type: 〈p1p2p3〉, 〈p2p3p4〉, 〈p1p3p4〉, 〈p1p2p4〉 4 vertices of degree 7.

If possible, let AG(Zn) have an induced odd cycle C of length t ≥ 5. Thus C must

have a vertex of second type. Without loss of generality, let 〈p1p2〉 be a vertex in C.

As 〈p1p2〉 is adjacent to three vertices, namely 〈p3p4〉, 〈p1p3p4〉, 〈p2p3p4〉, at least two

of them, must lie on C.

Case 1. 〈p1p3p4〉 ∼ 〈p1p2〉 ∼ 〈p3p4〉 is a part of C.

Let 〈x〉 be the next vertex on C, i.e., 〈p1p3p4〉 ∼ 〈p1p2〉 ∼ 〈p3p4〉 ∼ 〈x〉. Then by

the adjacency condition of the last two vertices, we get p1p2 | x. But this imply that

〈x〉 ∼ 〈p1p3p4〉, i.e., we get a chord in C, a contradiction.

Case 2. 〈p2p3p4〉 ∼ 〈p1p2〉 ∼ 〈p3p4〉 is a part of C.

In this case also, proceeding similarly, we get a contradiction.

Case 3. 〈p1p3p4〉 ∼ 〈p1p2〉 ∼ 〈p2p3p4〉 is a part of C.

However, in this case, we get a chord of the form 〈p1p3p4〉 ∼ 〈p2p3p4〉 in C, a contra-

diction.

Thus AG(Zn) has no induced odd cycle C of length t ≥ 5.

Now, we consider the complement graph of AG(Zn). If possible, let C ′ : 〈x1〉 ∼
〈x2〉 ∼ · · · ∼ 〈xt〉 ∼ 〈x1〉 be an induced odd cycle C of length t ≥ 5 in AGc(Zn). As

C ′ consists of t ≥ 5 vertices, at least one of the vertices must be of 1st or 2nd type.

We consider the following.

Case 1. 〈x1〉 is a vertex of 1st type, i.e., without loss of generality, let x1 = p1.

Now, as 〈p1〉 is a pendant vertex in AG(Zn), 〈p1〉 is not adjacent to exactly one vertex

in AGc(Zn). Thus C ′ contains a chord, a contradiction.

Case 2. 〈x1〉 is a vertex of 2nd type, i.e., without loss of generality, let x1 = p1p2.

As degree of 〈p1p2〉 in AG(Zn) is 3, the number of vertices which are not adjacent to

〈p1p2〉 in AGc(Zn) is 3. Thus, as C ′ is chordless cycle of length t, x1 is not adjacent

to (t− 2) vertices in C ′, i.e., (t− 2) ≤ 3. Thus C ′ must be an induced 5-cycle, i.e.,

C ′ : 〈p1p2〉 ∼ 〈x2〉 ∼ 〈x3〉 ∼ 〈x4〉 ∼ 〈x5〉 ∼ 〈p1p2〉.

As 〈x3〉, 〈x4〉 are adjacent to 〈p1p2〉 in AG(Zn), we must have x3, x4 ∈
{p3p4, p1p3p4, p2p3p4}. If {x3, x4} = {p1p3p4, p2p3p4}, then 〈x3〉 ∼ 〈x4〉 in AG(Zn).

Thus, without loss of generality, we can assume x3 = p3p4 and x4 = p1p3p4, i.e.,

C ′ : 〈p1p2〉 ∼ 〈x2〉 ∼ 〈p3p4〉 ∼ 〈p1p3p4〉 ∼ 〈x5〉 ∼ 〈p1p2〉.
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As 〈x5〉 6∼ 〈p3p4〉 in AGc(Zn), we have p1p2 | x5. Thus x5 = p1p2p3 or p1p2p4.

However, in any case, 〈x5〉 ∼ 〈p1p3p4〉 in AG(Zn), a contradiction.

Thus AGc(Zn) has no induced odd cycle C of length t ≥ 5. Hence, by strong perfect

graph theorem, the lemma follows.

Now, we turn towards the case when n has exactly three distinct prime factors and

characterize the perfect graphs among this subfamily.

Lemma 3. If n = p1
α1p2

α2p3
α3 and αi > 1 for at least two i’s, then AG(Zn) is not

perfect.

Proof. Let αi ≥ 2 for at least two i’s, say α1, α2 ≥ 2. Then the following five

vertices, taken in order,

〈p2α2p3
α3〉, 〈p1α1p2〉, 〈p1p2α2−1p3

α3〉, 〈p1α1−1p2
α2〉, 〈p1α1p3

α3〉

form an induced 5-cycle in AG(Zn). As earlier, the adjacency and non-adjacency

follows from Proposition 1. Hence, by strong perfect graph theorem, AG(Zn) is not

perfect.

So, now we assume that n = p1
α1p2p3.

Lemma 4. If n = pαqr, then AG(Zn) has no induced odd cycle of length greater than 3.

Proof. If possible, let AG(Zn) has an induced odd cycle C : 〈x1〉 ∼ 〈x2〉 ∼ · · · ∼
〈xt〉 ∼ 〈x1〉, where xi = pαiqβirγi for i = 1, 2, . . . , t.

In the next two Claims, we prove that both βi and γi can not be simultaneously 1.

Claim 1. For all i ∈ {1, 2, . . . , t}, either αi < α/2 or one of βi, γi 6= 1.

Proof of Claim 1. If possible let αi ≥ α/2 and βi = γi = 1. Now 〈xi〉 � 〈xi+2〉 and

〈xi〉 � 〈xi+3〉 imply αi+2, αi+3 < α/2, hence αi+2+αi+3 < α, which is a contradiction

as 〈xi+2〉 ∼ 〈xi+3〉. �

Claim 2. For all i ∈ {1, 2, . . . , t}, either αi > α/2 or one of βi, γi 6= 1.

Proof of Claim 2. Without loss of generality let α1 ≤ α/2 and β1 = γ1 = 1. Now

〈x1〉 ∼ 〈x2〉 and 〈x1〉 ∼ 〈xt〉 imply α2, αt ≥ α/2. As 〈x2〉 � 〈xt〉 then either β2+βt = 0

or γ2 + γt = 0 or both. Again without loss of generality we can take β2 + βt = 0, i.e.,

β2 = βt = 0 and hence 〈x2〉 ∼ 〈x3〉 and 〈xt〉 ∼ 〈xt−1〉 imply β3 = 1 = βt−1. Now

〈x1〉 ∼ 〈xt〉 and 〈x1〉 � 〈x4〉 imply α1 + αt ≥ α and α1 + α4 < α. From these two

equations we have αt > α4. Therefore α3 +α4 ≥ α imply α3 +αt > α. So 〈xt〉 � 〈x3〉
and β3 = 1 imply γt + γ3 = 0, i.e., γ3 = γt = 0. Therefore γt−1 = 1. As 〈x2〉 � 〈xt−1〉
and βt−1 = γt−1 = 1 hence α2 + αt−1 < α and we know α1 + α2 ≥ α. From these

two equations we have α1 > αt−1. So αt−1 + αt−2 ≥ α imply α1 + αt−2 > α and

β1 = γ1 = 1, so we have 〈x1〉 ∼ 〈xt−2〉, which is a contradiction. �
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From Claim 1 and Claim 2 we see that for any i, both βi and γi can not be 1. Similarly,

it can be shown that both βi and γi can not be 0, because in that case, we must have

βi+1 = γi+1 = 1, a contradiction.

Claim 3. For all i ∈ {1, 2, . . . , t}, αi > α/2 .

Proof of Claim 3. Without loss of generality let α1 ≤ α/2 and β1 = 1, γ1 = 0. Now

〈x1〉 ∼ 〈x2〉 and 〈x1〉 ∼ 〈xt〉 imply α2, αt ≥ α/2 and γ2 = γt = 1. As 〈x2〉 � 〈xt〉,
α2 + αt ≥ α and γ2 + γt = 2, we have β2 + βt = 0, i.e., β2 = βt = 0. Hence

β3 = βt−1 = 1. Now 〈x3〉 � 〈xt〉 and β3 = 1 = γt imply α3 +αt < α and α2 +α3 ≥ α,

hence α2 > αt. Therefore αt + αt−1 ≥ α implies α2 + αt−1 > α. So βt−1 = γ2 = 1

imply 〈x2〉 ∼ 〈xt−1〉, which is impossible and hence the claim holds. �
So from the Claim 1, 2 and 3, we can consider α1 > α/2, β1 = 1 and γ1 = 0. Again,

from Claim 3 we have α3, α4 > α/2. So 〈x1〉 � 〈x3〉, α1 + α3 > α and β1 = 1 imply

γ1 + γ3 = 0, i.e., γ3 = 0, i.e., γ4 = 1. Therefore α1 + α4 > α and β1 = γ4 = 1 imply

〈x1〉 ∼ 〈x4〉, which is a contradiction. This completes the proof.

Lemma 5. If n = pαqr, then AGc(Zn) has no induced odd cycle of length greater than 3.

Proof. We start by noting that 〈a〉 ∼ 〈b〉 in AGc(Zn) if and only if n - ab. If possible,

let AGc(Zn) has an induced odd cycle C : 〈x1〉 ∼ 〈x2〉 ∼ · · · ∼ 〈xt〉 ∼ 〈x1〉, where

xi = pαiqβirγi for i = 1, 2, . . . , t.

In the next two Claims, we prove that both βi and γi can not be simultaneously 1.

Claim 1. For all i ∈ {1, 2, . . . , t}, either αi < α/2 or one of βi, γi 6= 1.

Proof of Claim 1. If possible let αi ≥ α/2 and βi = γi = 1. As 〈xi−1〉 and 〈xi+1〉 ∼
〈xi〉, hence αi−1, αi+1 < α/2, i.e., αi−1 + αi+1 < α and hence 〈xi−1〉 ∼ 〈xi+1〉, which

is a contradiction. �

Claim 2. For all i ∈ {1, 2, . . . , t}, either αi > α/2 or one of βi, γi 6= 1.

Proof of Claim 2. Without loss of generality let α1 ≤ α/2 and β1 = γ1 = 1. As

〈x3〉, 〈x4〉 � 〈x1〉 hence α3, α4 ≥ α/2, i.e., α3 + α4 ≥ α. Now 〈x3〉 ∼ 〈x4〉 implies

either β3 + β4 = 0 or γ3 + γ4 = 0 or both. Without loss of generality we can assume

β3 +β4 = 0, i.e., β3 = 0 = β4. Now 〈x2〉 � 〈x4〉, β4 = 0 imply β2 = 1 and 〈x3〉 � 〈xt〉,
β3 = 0 imply βt = 1. Again 〈x1〉 ∼ 〈x2〉 and β1 = 1 = γ1 imply α1 + α2 < α.

Therefore α2 +αt ≥ α implies αt > α1. So α1 +αt−1 ≥ α imply αt +αt−1 > α. Now

〈xt〉 ∼ 〈xt−1〉 and βt = 1 imply γt + γt−1 = 0, i.e., γt = 0. Again 〈x1〉 ∼ 〈xt〉 and

β1 = 1 = γ1 imply α1 +αt < α. So α2 +αt ≥ α imply α2 > α1. So α1 +α3 ≥ α imply

α2 + α3 > α. Now 〈x2〉 ∼ 〈x3〉 and β2 = 1 imply γ2 + γ3 = 0, i.e., γ2 = 0. Therefore

γ2 = 0 = γt implies 〈x2〉 ∼ 〈xt〉, which is impossible. �
From Claim 1 and Claim 2 we see that for any i, both βi and γi can not be 1. Similarly,

it can be shown that both βi and γi can not be 0, because in that case, we must have

βi+2 = γi+2 = 1, a contradiction.

Claim 3. For all i ∈ {1, 2, . . . , t}, αi > α/2.

Proof of Claim 3. Without loss of generality let α1 ≤ α/2 and β1 = 1, γ1 = 0.

Therefore 〈x3〉, 〈x4〉 � 〈x1〉 imply α3, α4 ≥ α/2 and γ3 = 1 = γ4. So 〈x3〉 ∼ 〈x4〉
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imply β3 + β4 = 0, i.e., β3 = 0 = β4. Now β4 = 0 and 〈x4〉 � 〈x2〉 imply β2 = 1. Now

〈x2〉 ∼ 〈x3〉 and β2 = 1 = γ3 imply α2 + α3 < α. So α1 + α3 ≥ α imply α1 > α2.

Also α2 + αt ≥ α imply α1 + αt > α. So 〈x1〉 � 〈xt〉 and β1 = 1 imply γ1 + γt = 0,

i.e., γt = 0, i.e., γ2 = 1. Hence we have β2 = 1 = γ2, which is not possible by Claim

2. �
So from the Claims 1, 2 and 3, we can consider α1 > α/2, β1 = 1 and γ1 = 0. So

〈x3〉, 〈x4〉 � 〈x1〉 imply γ3 = 1 = γ4. Again from Claim 3 we have α3, α4 > α/2.

So 〈x3〉 ∼ 〈x4〉 implies β3 + β4 = 0, i.e., β3 = 0 = β4. Now 〈x2〉 ∼ 〈x3〉, γ3 = 1

and α2, α3 > α/2 imply β2 + β3 = 0, i.e., β2 = 0. Therefore β2 = 0 = β4 imply

〈x2〉 ∼ 〈x4〉, which is a contradiction and this completes the proof.

Thus, it follows from strong perfect graph theorem and Lemma 4 and Lemma 5, that

if n = pαqr, then AG(Zn) is perfect.

Thus, the case when n has three distinct prime factors is complete. Now, we focus

on the case, when n has two distinct prime factors.

Lemma 6. If n = pαqβ, then AG(Zn) has no induced odd cycle of length greater than 3.

Proof. If possible, let AG(Zn) have an induced odd cycle C : 〈x1〉 ∼ 〈x2〉 ∼ · · · ∼
〈xt〉 ∼ 〈x1〉, where xi = pαiqβi for i = 1, 2, . . . , t.

Claim 1. For all i ∈ {1, 2, . . . , t}, either αi > α/2 or βi > β/2.

Proof of Claim 1. If αi ≤ α/2 and βi ≤ β/2 for some i, then as 〈xi〉 ∼ 〈xi+1〉, we

have αi+1 ≥ α/2 and βi+1 ≥ β/2. Similarly, as 〈xi〉 ∼ 〈xi−1〉, we have αi−1 ≥ α/2

and βi−1 ≥ β/2. But this implies αi+1 + αi−1 ≥ α and βi+1 + βi−1 ≥ β, i.e.,

〈xi−1〉 ∼ 〈xi+1〉, a contradiction. Thus the claim holds. �
In Claim 1, we show that for any i, either αi or βi is greater than α/2 or β/2

respectively. In the next claim, we show that both of them can not be greater or

equal to α/2 and β/2 simultaneously.

Claim 2. For any i ∈ {1, . . . , t}, both αi ≥ α/2 and βi ≥ β/2 can not hold.

Proof of Claim 2. Without loss of generality, suppose α1 ≥ α/2 and β1 ≥ β/2. As

〈x1〉 6∼ 〈x3〉, we have either α1 + α3 < α or β1 + β3 < β, i.e., α3 < α/2 or β3 < β/2.

Again, without loss of generality, we assume that α3 < α/2. So, by Claim 1, we get

β3 > β/2. As 〈x3〉 is adjacent to both 〈x2〉 and 〈x4〉, we have α2, α4 > α/2. As

〈x1〉 6∼ 〈x4〉 and α1, α4 ≥ α/2 and β1 ≥ β/2, we have β4 < β/2. Again as 〈x4〉 ∼ 〈x5〉,
we have β5 > β/2.

Here C is a t-cycle with t odd and t ≥ 5. We show, by strong induction, that for any

odd value of t ≥ 5, we get a contradiction.

We start with t = 5, i.e., 〈x1〉 ∼ 〈x5〉. As 〈x1〉 6∼ 〈x4〉 and α1, α4 ≥ α/2, we have

β1 + β4 < β. Again as 〈x4〉 ∼ 〈x5〉, we have β4 + β5 ≥ β. Thus, we get β5 > β1. As

〈x1〉 ∼ 〈x2〉, we have β1 + β2 ≥ β, i.e., β2 + β5 > β. Thus as 〈x2〉 6∼ 〈x5〉, we must

have α2 + α5 < α. Also, as 〈x1〉 ∼ 〈x5〉, we have α1 + α5 ≥ α. Thus we must have

α1 > α2. Similarly, 〈x2〉 ∼ 〈x3〉 implies α2 + α3 ≥ α, i.e., α1 + α3 > α. On the other
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hand, as β1, β3 ≥ β/2, we have β1 + β3 ≥ β. Thus we have 〈x1〉 ∼ 〈x3〉. Hence we

get a contradiction for t = 5.

For t > 5, as 〈x1〉 6∼ 〈x5〉 and β1, β5 ≥ β/2 and α1 ≥ α/2, we have α5 < α/2. Thus

the induction hypothesis is: For all odd k satisfying 1 < k < t− 2, αi < α/2 for odd

i with 1 < i ≤ k, βi ≥ β/2 for odd i with 1 ≤ i ≤ k, and αj ≥ α/2 and βj < β/2 for

even j with 2 < j ≤ k − 1.

Now 〈xk+1〉 ∼ 〈xk〉 and αk < α/2 imply αk+1 > α/2. Similarly, 〈x1〉 6∼ 〈xk+1〉
and β1 ≥ β/2 implies βk+1 < β/2 and 〈xk+1〉 ∼ 〈xk+2〉 implies βk+2 > β/2. As

k + 2 ≤ t− 2, we have 〈x1〉 6∼ 〈xk+2〉 and β1, βk+2 > β/2, which implies αk+2 < α/2.

Thus, by induction, we have αi < α/2 for odd i with 1 < i ≤ t, βi ≥ β/2 for odd i,

and αj ≥ α/2 and βj < β/2 for even j.

Now, 〈x2〉 6∼ 〈xt〉 implies either β2 + βt < β or α2 + αt < α or both. As t is odd,

t − 1 is even and hence α1, αt−1 ≥ α/2 and β1 > β/2. Thus 〈x1〉 6∼ 〈xt−1〉 implies

β1 + βt−1 < β and 〈xt〉 ∼ 〈xt−1〉 implies βt + βt−1 ≥ β. Therefore βt > β1.

Again 〈x1〉 ∼ 〈x2〉 implies β1 + β2 ≥ β, i.e., βt + β2 > β. Now, as 〈x2〉 6∼ 〈xt〉, we

must have α2 + αt < α.

Also 〈x1〉 ∼ 〈xt〉 implies α1 + αt ≥ α. Therefore α1 > α2. Similarly 〈x2〉 ∼ 〈x3〉
implies α2 +α3 ≥ α. Thus α1 +α3 > α. Again, as β1, β3 > β/2, we have 〈x1〉 ∼ 〈x3〉,
a contradiction. Hence Claim 2 holds. �
From Claim 1 and 2, we see that for any i, both αi, βi can not be simultaneously

‘greater or equal’ or ‘lesser or equal’ to α/2 and β/2 respectively. So for any i, either

αi < α/2, βi > β/2 or αi > α/2, βi < β/2 holds. Without loss of generality, let

α1 < α/2 and β1 > β/2.

Now, as 〈x1〉 ∼ 〈x2〉, we have α1 + α2 ≥ α, which implies α2 > α/2, i.e., β2 < β/2

(by Claim 2). Similarly 〈x2〉 ∼ 〈x3〉 implies β3 > β/2, i.e., α3 < α/2 (by Claim 2).

Proceeding this way, we get αi < α/2 and βi > β/2 when i is odd and, αi > α/2

and βi < β/2 if i is even.

As t is odd, we have αt < α/2. Also, as 〈x1〉 ∼ 〈xt〉, we have α1 + αt ≥ α. However

as α1, αt < α/2, we get a contradiction. Thus AG(Zn) has no induced odd cycle of

length greater than 3.

Lemma 7. If n = pαqβ, then AGc(Zn) has no induced odd cycle of length greater than 3.

Proof. We start by noting that 〈a〉 ∼ 〈b〉 in AGc(Zn) if and only if n - ab. If possible,

let AGc(Zn) has an induced odd cycle C : 〈x1〉 ∼ 〈x2〉 ∼ · · · ∼ 〈xt〉 ∼ 〈x1〉, where

xi = pαiqβi for i = 1, 2, . . . , t.

Claim 1. For all i ∈ {1, 2, . . . , t}, either αi > α/2 or βi > β/2.

Proof of Claim 1. If αi ≤ α/2 and βi ≤ β/2 for some i, then as 〈xi〉 6∼ 〈xi+2〉 and

〈xi〉 6∼ 〈xi+3〉, we have αi+2, αi+3 ≥ α/2 and βi+2, βi+3 ≥ β/2. But this imply that

〈xi+2〉 6∼ 〈xi+3〉 in AGc(Zn), a contradiction. Hence Claim 1 holds. �
In Claim 1, we show that for any i, either αi or βi is greater than α/2 or β/2

respectively. In the next claim, we show that both of them can not be greater or

equal to α/2 and β/2 simultaneously.
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Claim 2. For any i, both αi ≥ α/2 and βi ≥ β/2 can not hold.

Proof of Claim 2. Without loss of generality, suppose α1 ≥ α/2 and β1 ≥ β/2.

〈x1〉 ∼ 〈x2〉 implies either α1 + α2 < α or β1 + β2 < β or both. Again, without loss

of generality, we assume that α1 + α2 < α, i.e., α2 < α/2. Now 〈x2〉 � 〈xt〉 implies

α2 + αt ≥ α, i.e., αt > α/2.

At first we assume that t = 5. Therefore 〈x1〉 ∼ 〈x5〉 and α1, α5 ≥ α/2 imply

β1 + β5 < β. Now 〈x1〉 � 〈x3〉 imply α1 + α3 ≥ α, so α1 + α2 < α implies α3 > α2.

Again 〈x3〉 ∼ 〈x4〉 imply either α3 +α4 < α or β3 +β4 < β or both. Now 〈x2〉 � 〈x4〉
imply α2 + α4 ≥ α. If α3 + α4 < α, then we have α2 > α3, which is a contradiction

as we already have α3 > α2. Now 〈x1〉 � 〈x4〉 implies β1 + β4 ≥ β. If β3 + β4 < β,

then we have β1 > β3. Now 〈x3〉 � 〈x5〉 implies β3 + β5 ≥ β, therefore β1 + β5 > β,

which contradicts the condition β1 + β5 < β. So for t = 5 the Claim 2 is true.

Now assume that t > 5. As α1, αt ≥ α/2 and 〈x1〉 ∼ 〈xt〉, we have β1 + βt < β, i.e.,

βt < β/2 as β1 ≥ β/2. Now α2 < α/2 and 〈x4〉, 〈x5〉 � 〈x2〉 imply α4, α5 > α/2,

hence α4 + α5 > α. Again βt < β/2 and 〈x4〉, 〈x5〉 � 〈xt〉 imply β4, β5 > β/2, hence

β4 + β5 > β, which is a contradiction as 〈x4〉 ∼ 〈x5〉. Hence Claim 2 holds for all odd

t ≥ 5. �
From Claims 1 and 2, we see that for any i, both αi, βi can not be simultaneously

‘greater or equal’ or ‘lesser or equal’ to α/2 and β/2, respectively. So for any i, either

αi < α/2, βi > β/2 or αi > α/2, βi < β/2 holds. Without loss of generality, let

α1 < α/2 and β1 > β/2.

Now 〈x3〉, 〈x4〉 � 〈x1〉 imply α3, α4 > α/2 and hence by Claim 2 we have β3, β4 < β/2.

As 〈x2〉 � 〈x4〉, so β2 > β/2 and by Claim 2 we have α2 < α/2. Now 〈x2〉 � 〈x5〉
implies α5 > α/2. Then by Claim 2 we have β5 < β/2, but β3 < β/2 imply β3 +β5 <

β, which is a contradiction as 〈x3〉 � 〈x5〉. Thus AGc(Zn) has no induced odd cycle

of length greater than 3.

Thus from Lemma 6 and Lemma 7, we have if n = pαqβ , then AG(Zn) is perfect.

Now, we deal with the last case when n is a prime power.

Lemma 8. If n = pα, then AG(Zn) is perfect.

Proof. In this case, the vertices are 〈p〉, 〈p2〉, . . . , 〈pα−1〉 and two vertices 〈pk〉 and

〈pl〉 are adjacent in AG(Zn) if and only if k + l ≥ α.

If possible, let C : 〈pk1〉 ∼ 〈pk2〉 ∼ · · · ∼ 〈pkt〉 ∼ 〈pk1〉 be an induced odd cycle of

length t ≥ 5. By adjacency condition, we have ki + ki+1 ≥ α for each i ∈ {1, . . . , t},
where kt+1 = k1, and hence 2(k1 + k2 + · · ·+ kt) ≥ tα. On the other hand, from non-

adjacency condition we have ki + ki+2 < α for each i ∈ {1, . . . , t}, where kt+2 = k2,

and so 2(k1 + k2 + · · · + kt) ≥ tα which is a contradiction. Thus AG(Zn) has no

induced odd cycle C of length t ≥ 5. Proceeding similarly, it can be shown that

AGc(Zn) also has no induced odd cycle of length t ≥ 5. Hence AG(Zn) is perfect.

Combining all the results in this section, we get the proof of Theorem 1.



M. Saha, S. Biswas, A. Das 181

Acknowledgement

The first and third authors acknowledge the funding of DST-SERB-SRG Sanction

no. SRG/2019/000475 and SRG/2019/000684, Govt. of India. The second author

is supported by the PhD fellowship of CSIR (File no. 08/155(0086)/2020-EMR-I),

Govt. of India.

References

[1] C. AbdIoglu, E.Y. CelIkel, and A. Das, The armendariz graph of a ring, Discuss.

Math. Gen. Algebra Appl. 38 (2018), no. 2, 189–196.

[2] J. Amjadi, R. Khoeilar, and A. Alilou, The annihilator-inclusion ideal graph of

a commutative ring, Commun. Comb. Optim. 6 (2021), no. 2, 231–248.

[3] D.F. Anderson, M.C. Axtell, and J.A. Stickles, Jr., Zero-divisor graphs in com-

mutative rings, Commutative Algebra: Noetherian and Non-Noetherian Perspec-

tives (M. Fontana, S.-E. Kabbaj, B. Olberding, and I. Swanson, eds.), Springer,

2011, pp. 23–45.

[4] D.F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra

320 (2008), no. 7, 2706–2719.

[5] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative

ring, J. Algebra 217 (1999), no. 2, 434–447.

[6] A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra 42

(2014), no. 1, 108–121.

[7] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings

I, J. Algebra . Appl. 10 (2011), no. 4, 727–739.

[8] B. Bose and A. Das, Graph theoretic representation of rings of continuous func-

tions, Filomat 34 (2020), no. 10, 3417–3428.

[9] I. Chakrabarty, S. Ghosh, T.K. Mukherjee, and M.K. Sen, Intersection graphs of

ideals of rings, Discrete Math. 309 (2009), no. 17, 5381–5392.

[10] I. Chakrabarty and J.V. Kureethara, A survey on the intersection graphs of ideals

of rings, Commun. Comb. Optim. (in press).

[11] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The strong perfect

graph theorem, Annals of Math. 164 (2006), no. 1, 51–229.

[12] A. Das, On perfectness of intersection graph of ideals of Zn, Discuss. Math. Gen.

Algebra Appl. 37 (2017), no. 2, 119–126.

[13] M. Ebrahimi, The character graph of a finite group is perfect, Bull. Aust. Math.

Soc. 104 (2021), no. 1, 127–131.

[14] H.R. Maimani, M.R. Pournaki, A. Tehranian, and S. Yassemi, Graphs attached

to rings revisited, Arab. J. Sci. Eng. 36 (2011), no. 6, 997–1011.

[15] R. Nikandish, H.R. Maimani, and H. Izanloo, The annihilating-ideal graph of Zn
is weakly perfect, Contrib. Discrete Math. 11 (2016), no. 1, 16–21.


	Introduction
	Proof of Theorem 1
	Acknowledgement
	References

