- Norrbrand L, Fluckey JD, Pozzo M, Tesch PA. Resistance training using eccentric overload induces early adaptations in skeletal muscle size. European journal of applied physiology. 2008;102(3):271-81.
- Farthing JP, Chilibeck PD. The effects of eccentric and concentric training at different velocities on muscle hypertrophy. European journal of applied physiology. 2003;89(6):578-86.
- Hather B, Tesch P, Buchanan P, Dudley G. Influence of eccentric actions on skeletal muscle adaptations to resistance training. Acta Physiologica Scandinavica. 1991;143(2):177-85.
- Scott W, Stevens J, Binder–Macleod SA. Human skeletal muscle fiber type classifications. Physical therapy. 2001;81(11):1810-6.
- McCARTHY JP, Pozniak MA, Agre JC. Neuromuscular adaptations to concurrent strength and endurance training. Medicine & Science in Sports & Exercise. 2002;34(3):511-9.
- Taipale R, Mikkola J, Vesterinen V, Nummela A, Häkkinen K. Neuromuscular adaptations during combined strength and endurance training in endurance runners: maximal versus explosive strength training or a mix of both. European journal of applied physiology. 2013;113(2):325-35.
- Afsharnezhad T, Amani A, Khorsandi M, Safar Zadeh S. The effects of 8-weeks unilateral resistance training on strength, time to task failure, and synergist co-activation of elbow flexor Muscles in trained and untrained limbs %J Journal of Applied Health Studies in Sport Physiology. 2018;5(1):28-36.
- Knudson D. Mechanics of the musculoskeletal system. Fundamentals of biomechanics: Springer; 2021. p. 55-78.
- Mendell LM. The size principle: a rule describing the recruitment of motoneurons. Journal of neurophysiology. 2005;93(6):3024-6.
- Bolboli L, Sattari M, Hakimi V. Effect of High Intensity Interval Training and Moderate Intensity Continuous Training on Electrocardiographic Indices in Sedentary Men %J Journal of Applied Health Studies in Sport Physiology. 2020;7(2):53-8.
- Hedayatpour N, Falla D. Physiological and neural adaptations to eccentric exercise: mechanisms and considerations for training. BioMed research international. 2015;2015.
- Krustrup P, Söderlund K, Mohr M, González-Alonso J, Bangsbo J. Recruitment of fibre types and quadriceps muscle portions during repeated, intense knee-extensor exercise in humans. Pflügers Archiv. 2004;449(1):56-65.
- Canepa P, Papaxanthis C, Bisio A, Biggio M, Paizis C, Faelli E, et al. Motor cortical excitability changes in preparation to concentric and eccentric movements. Neuroscience. 2021.
- Hedayatpour N, Falla D, Arendt-Nielsen L, Vila-Chã C, Farina D. Motor unit conduction velocity during sustained contraction after eccentric exercise. Med Sci Sports Exerc. 2009;41(10):1927-33.
- Bagheri T, Abedi B, Hedayatpour N. Effects of 12 Weeks Concentric and Eccentric Resistance Training on Neuromuscular Adaptation of Quadriceps Muscle. Journal of Rehabilitation Sciences & Research. 2020;7(4):161-6.
- Nasrabadi R, Izanloo Z, Sharifnezad A, Hamedinia MR, Hedayatpour N. Muscle fiber conduction velocity of the vastus medilais and lateralis muscle after eccentric exercise induced-muscle damage. Journal of Electromyography and Kinesiology. 2018;43:118-26.
- Nuccio S, Del Vecchio A, Casolo A, Labanca L, Rocchi JE, Felici F, et al. Muscle fiber conduction velocity in the vastus lateralis and medialis muscles of soccer players after ACL reconstruction. Scandinavian Journal of Medicine & Science in Sports. 2020;30(10):1976-84.
- Beretta-Piccoli M, Cescon C, Barbero M, D'Antona G. Reliability of surface electromyography in estimating muscle fiber conduction velocity: A systematic review. Journal of Electromyography and Kinesiology. 2019;48:53-68.
- Vaz M, Thangam S, Prabhu A, Shetty P. Maximal voluntary contraction as a functional indicator of adult chronic undernutrition. British Journal of Nutrition. 1996;76(1):9-15.
- Westing S, Cresswell A, Thorstensson A. Muscle activation during maximal voluntary eccentric and concentric knee extension. European journal of applied physiology and occupational physiology. 1991;62(2):104-8.
- Oliveira FB, Oliveira AS, Rizatto GF, Denadai BS. Resistance training for explosive and maximal strength: effects on early and late rate of force development. Journal of sports science & medicine. 2013;12(3):402.
- Klass M, Baudry S, Duchateau J. Voluntary activation during maximal contraction with advancing age: a brief review. European journal of applied physiology. 2007;100(5):543-51.
- Ruas CV, Lima CD, Pinto RS, Oliveira MA, Barros JA, Brown LE. Brain activation differences between muscle actions for strength and fatigue: A brief review. Brazilian Journal of Motor Behavior. 2016;10(1):1-8.
- Hinks A, Hess A, Debenham MI, Chen J, Mazara N, Inkol KA, et al. Power loss is attenuated following a second bout of high-intensity eccentric contractions due to the repeated bout effect’s protection of rate of torque and velocity development. Applied Physiology, Nutrition, and Metabolism. 2021;46(5):461-72.
- Clos P, Mater A, Laroche D, Lepers R. Concentric versus eccentric cycling at equal power output or effort perception: Neuromuscular alterations and muscle pain. Scandinavian Journal of Medicine & Science in Sports. 2021.
- Hedayatpour N, Falla D, Arendt‐Nielsen L, Farina D. Effect of delayed‐onset muscle soreness on muscle recovery after a fatiguing isometric contraction. Scandinavian journal of medicine & science in sports. 2010;20(1):145-53.
- Casolo A, Farina D, Falla D, Bazzucchi I, Felici F, Del Vecchio A. Strength training increases conduction velocity of high-threshold motor units. Med Sci Sports Exerc. 2020;52:955-67.
- Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. Journal of applied physiology. 2002;93(4):1318-26.
|