تعداد نشریات | 5 |
تعداد شمارهها | 108 |
تعداد مقالات | 1,228 |
تعداد مشاهده مقاله | 1,147,424 |
تعداد دریافت فایل اصل مقاله | 1,006,422 |
Signed total Italian domination in digraphs | ||
Communications in Combinatorics and Optimization | ||
مقاله 2، دوره 8، شماره 3، آذر 2023، صفحه 457-466 اصل مقاله (384.7 K) | ||
نوع مقاله: Original paper | ||
شناسه دیجیتال (DOI): 10.22049/cco.2022.27700.1318 | ||
نویسنده | ||
Lutz Volkmann* | ||
RWTH Aachen University | ||
چکیده | ||
Let $D$ be a finite and simple digraph with vertex set $V(D)$. A signed total Italian dominating function (STIDF) on a digraph $D$ is a function $f:V(D)\rightarrow\{-1,1,2\}$ satisfying the conditions that (i) $\sum_{x\in N^-(v)}f(x)\ge 1$ for each $v\in V(D)$, where $N^-(v)$ consists of all vertices of $D$ from which arcs go into $v$, and (ii) every vertex $u$ for which $f(u)=-1$ has an in-neighbor $v$ for which $f(v)=2$ or two in-neighbors $w$ and $z$ with $f(w)=f(z)=1$. The weight of an STIDF $f$ is $\sum_{v\in V(D)}f(v)$. The signed total Italian domination number $\gamma_{stI}(D)$ of $D$ is the minimum weight of an STIDF on $D$. In this paper we initiate the study of the signed total Italian domination number of digraphs, and we present different bounds on $\gamma_{stI}(D)$. In addition, we determine the signed total Italian domination number of some classes of digraphs. | ||
کلیدواژهها | ||
Digraph؛ Signed total Italian domination number؛ signed total Roman domination number | ||
مراجع | ||
[1] H. Abdollahzadeh Ahangar, M.A. Henning, C. L¨owenstein, Y. Zhao, and V. Samodivkin, Signed Roman domination in graphs, J. Comb. Optim. 27 (2014), no. 2, 241–255.
[2] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, A survey on Roman domination parameters in directed graphs, J. Combin. Math. Combin. Comput. 115 (2020), 141–171.
[3] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, The Roman domatic problem in graphs and digraphs: A survey, Discuss. Math. Graph Theory 42 (2022), no. 3, 861–891.
[4] N. Dehgardi and L. Volkmann, Signed total Roman k-domination in directed graphs, Commun. Comb. Optim. 1 (2016), no. 2, 165–178.
[5] G. Hao, X. Chen, and L. Volkmann, Bounds on the signed Roman $k$-domination number of a digraph., Discuss. Math. Graph Theory 39 (2019), no. 1, 67–79.
[6] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Domination in Graphs, Advanced Topics, Marcel Dekker, Inc., New York, 1998.
[7] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998. [8] M.A. Henning and L. Volkmann, Signed Roman k-domination in trees, Discrete Appl. Math. 186 (2015), 98–10.
[9] M.A. Henning and L. Volkmann, Signed Roman k-domination in graphs, Graphs Combin. 32 (2016), no. 1, 175–190. [10] S.M. Sheikholeslami, Signed total domination numbers of directed graphs, Util. Math. 85 (2011), 273–279.
[11] S.M. Sheikholeslami, A. Bodaghli, and L. Volkmann, Twin signed Roman domination numbers in directed graphs, Tamkang J. Math. 47 (2016), no. 3, 357–371.
[12] S.M. Sheikholeslami and L. Volkmann, Signed Roman domination in digraphs, J. Comb. Optim. 30 (2015), no. 3, 456–467.
[13] L. Volkmann, Signed Roman $k$-domination in digraphs, Graphs Combin. 32 (2016), no. 6, 1217–1227.
[14] L. Volkmann, Signed total Roman domination in graphs, J. Comb. Optim. 32 (2016), no. 3, 855–871.
[15] L. Volkmann, Signed total Roman domination in digraphs, Discuss. Math. Graph Theory 37 (2017), no. 1, 261–272.
[16] L. Volkmann, Signed total Roman k-domination in graphs, J. Combin. Math. Combin. Comput. 105 (2018), 105–116.
[17] L. Volkmann, Signed total Italian domination in graphs, J. Combin. Math. Combin. Comput. 115 (2020), 291–305.
[18] B. Zelinka, Signed total domination nnumber of a graph, Czechoslovak Math. J. 51 (2001), no. 2, 225–229. | ||
آمار تعداد مشاهده مقاله: 377 تعداد دریافت فایل اصل مقاله: 1,025 |