تعداد نشریات | 5 |
تعداد شمارهها | 111 |
تعداد مقالات | 1,247 |
تعداد مشاهده مقاله | 1,199,549 |
تعداد دریافت فایل اصل مقاله | 1,060,250 |
On signs of several Toeplitz--Hessenberg determinants whose elements contain central Delannoy numbers | ||
Communications in Combinatorics and Optimization | ||
مقاله 5، دوره 8، شماره 4، اسفند 2023، صفحه 665-671 اصل مقاله (361.04 K) | ||
نوع مقاله: Short notes | ||
شناسه دیجیتال (DOI): 10.22049/cco.2022.27707.1324 | ||
نویسندگان | ||
Da-Wei Niu1؛ Wen-Hui Li2؛ Feng Qi* 3 | ||
1Department of Science, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, Henan, China | ||
2School of Economics, Technology and Media University of Henan Kaifeng, Henan, Kaifeng 475001, China | ||
3Institute of Mathematics, Henan Polytechnic University, Jiaozuo 454003, Henan, China | ||
چکیده | ||
In the paper, by virtue of Wronski's formula and Kaluza's theorem for the power series and its reciprocal, and with the aid of the logarithmic convexity of a sequence constituted by central Delannoy numbers, the authors present negativity of several Toeplitz--Hessenberg determinants whose elements contain central Delannoy numbers and combinatorial numbers. | ||
کلیدواژهها | ||
negativity؛ Toeplitz--Hessenberg determinant؛ central Delannoy number؛ Wronski' s formula؛ Kaluza' s theorem | ||
مراجع | ||
[1] M. Dağli and F. Qi, Several closed and determinantal forms for convolved Fibonacci numbers, Discrete Math. Lett. 7 (2021), 14–20.
[2] V.J.W. Guo and J. Zeng, New congruences for sums involving apéry numbers or central delannoy numbers, Int. J. Number Theory 8 (2012), no. 8, 2003–2016.
[3] P. Henrici, Applied and Computational Complex Analysis. Vol. 1, John Wiley & Sons, Inc., New York, 1988.
[4] R.A. Horn and C.R. Johnson, Matrix Analysis, second ed., Cambridge University Press, Cambridge, 2013.
[5] A. Inselberg, On determinants of Toeplitz-Hessenberg matrices arising in power series, J. Math. Anal. Appl., 63 (1978), no. 2, 347–353.
[6] Th. Kaluza, Über die Koeffizienten reziproker Potenzreihen, Math. Zeitschrift 28 (1928), no. 1, 161–170.
[7] Y.-W. Li, M.C. Dağlı, and F. Qi, Two explicit formulas for degenerate peters numbers and polynomials, Discrete Math. Lett. 8 (2022), 1–5.
[8] F. Qi, Three closed forms for convolved Fibonacci numbers, Results Nonlinear Anal. 3 (2020), no. 4, 185–195.
[9] F. Qi, A determinantal expression and a recursive relation of the Delannoy numbers, Acta Univ. Sapientiae Math. 13 (2021), no. 2, 442–449.
[10] F. Qi, Determinantal expressions and recursive relations of Delannoy polynomials and generalized Fibonacci polynomials, J. Nonlinear Convex Anal. 22 (2021), no. 7, 1225–1239.
[11] F. Qi, On negativity of Toeplitz–Hessenberg determinants whose elements contain large Schr¨oder numbers, Palestine J. Math. 11 (2022), no. 4, 373–378.
[12] F. Qi, On signs of certain Toeplitz–Hessenberg determinants whose elements involve Bernoulli numbers, Contrib. Discrete Math. (In press).
[13] F. Qi, V. Čerňanová, X.-T. Shi, and B.-N. Guo, Some properties of central Delannoy numbers, J. Comput. Appl. Math. 328 (2018), 101–115.
[14] F. Qi and R.J. Chapman, Two closed forms for the Bernoulli polynomials, J. Number Theory 159 (2016), 89–100.
[15] F. Qi, M.C. Dağlı, and W.-S. Du, Determinantal forms and recursive relations of the Delannoy two-functional sequence, Adv. Theory Nonlinear Anal. Appl. 4 (2020), no. 3, 184–193.
[16] F. Qi, P. Natalini, and P.E. Ricci, Recurrences of Stirling and Lah numbers via second kind Bell polynomials, Discrete Math. Lett. 3 (2020), 31–36.
[17] F. Qi, X.-T. Shi, and B.-N. Guo, Some properties of the Schr¨oder numbers, Indian J. Pure Appl. Math. 47 (2016), no. 4, 717–732.
[18] F. Qi, V. Čerňanová, and Y.S. Semenov, Some tridiagonal determinants related to central Delannoy numbers, the Chebyshev polynomials, and the Fibonacci polynomials, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 81 (2019), no. 1, 123–136.
[19] H. Rutishauser, Eine formel von Wronski und ihre bedeutung f¨ur den quotienten-differenzen-algorithmus, Z. Angew. Math. Phys. 7 (1956), 164–169.
[20] D. Serre, Matrices, Graduate Texts in Mathematics, vol. 216, Springer, New York, 2010.
[21] M.H. Wronski, Introduction á la Philosophie des Math´ematiques: Et Technie de l’Algorithmie, Chez COURCIER, Imprimeur-Libraire pour les Math´ematiques, quai des Augustins, no 57, Paris, 1811 (French). | ||
آمار تعداد مشاهده مقاله: 1,004 تعداد دریافت فایل اصل مقاله: 1,357 |