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Abstract: This paper introduces certain relations between 1-edge contraction and

the total vertex stress and the confluence number of a graph. A main result states that
if a graph G with ζ(G) = k ≥ 2 has an edge vivj and a ζ-set CG such that vi, vj ∈ CG
then, ζ(G/vivj) = k− 1. In general, either S(G/ei) ≤ S(G/ej) or S(G/ej) ≤ S(G/ei)
is true. This observation leads to an investigation into the question: for which edge(s)

ei will S(G/ei) = max{S(G/ej) : ej ∈ E(G)} and for which edge(s) will S(G/ej) =

min{S(G/e`) : e` ∈ E(G)}?
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1. Introduction

Unless stated otherwise, initial graphs will be finite, undirected and connected simple

graphs. The path (cycle, complete graph, respectively) of order n is denoted by Pn

(Cn, Kn, respectively). Contracting an edge ei = vjvk in G means to merge vertices

vj and vk into a new vertex say, vj/k such that N(vj/k) = (N(vj)∪N(vk))\{vj , vk}. It

can result in multiple edges. Convention is to eliminate all edges except one, in each

of the multiple edge clusters. The edge contraction operation is denoted by G/vjvk
or G/ei. For clarity of other graph notation and concepts, see [1, 5, 11].

Recall that for a non-complete graph G, a non-empty subset X ⊆ V (G) is said to be

a confluence set if for every unordered pair {u, v} of distinct vertices (if such exist)
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528 1-Edge contraction : Stress and Confluence

in V (G)\X for which dG(u, v) ≥ 2 there exists at least one shortest uv-path with at

least one internal vertex, w ∈ X . Such internal vertex is called a confluence vertex of

G. For a complete graph the convention is that X = ∅.
A minimal confluence set X has no proper subset which is a confluence set of G.

The confluence number of G denoted by ζ(G) is the minimum cardinality of some

minimal confluence set. Put differently, the confluence number of a graph G is the

number of vertices in the smallest confluence set of G. A minimal confluence set

with the minimum cardinality over all minimal confluence sets is simply called a

minimum confluence set or a ζ-set. A minimum confluence set is denoted by CG
or if the context is clear by C. From the definition of a ζ-set, it follows that the

”closest” distinct confluence vertices in a ζ-set are at distance 1 ≤ d(vi, vj) ≤ 3. The

notions of confluence number and confluence sets play an important role in the study

of centrality and betweenness in graphs. See a recent short survey with comprehensive

references in [2].

By convention, we have that for a complete graph, ζ(Kn) = 0. A lollipop graph

L�(m,n), m ≥ 3, n ≥ 1 is obtained from a complete graph Km and a path Pn by

joining one end-vertex of the path with an edge (or bridge) to one vertex of Km.

Clearly ζ(L�(m, 1)) = 1. If the edge viu1, vi ∈ V (Km) is the bridge then, either

{vi} or {u1} is a minimum confluence set. Also, L�(m, 1)/viu1 is complete. So

by convention ζ(L�(m, 1)/viu1) = 0 = ζ(L�(m, 1)) − 1. This trivial reduction in

the value of ζ(G), if possible, finds important consideration in real life applications.

Edge contraction plays an important role in the study of topological properties and

indices of graphs in the field of mathematical chemistry. See [3, 4]. Applications could

possibly arise in the study of biological mutations as well.

Alfonso Shimbel introduced the notion of vertex stress in a graph G denoted by SG(v),

v ∈ V (G) (see [9]). Recall that the vertex stress of vertex v ∈ V (G) is the number

of times v is contained as an internal vertex in all shortest paths between all pairs of

distinct vertices in V (G)\{v}. Formally stated, SG(v) =
∑

u6=w 6=v 6=u

σ(v) with σ(v) the

number of shortest paths between vertices u, w which contain v as an internal vertex.

The total stress of a graph G is defined by S(G) =
∑

v∈V (G) SG(v). Also see [10] in

respect of stress regular graphs.

We observe that in general either S(G/ei) ≤ S(G/ej) or S(G/ej) ≤ S(G/ei) for any

two edges ei, ej ∈ E(G) .This observation leads to an investigation into the question:

for which edge(s) ei will S(G/ei) = max{S(G/ej) : ej ∈ E(G)} and for which edge(s)

will S(G/ej) = min{S(G/e`) : e` ∈ E(G)}? Note that at least one ζ-set must be

found to obtain ζ(G). Also, vertex stress SG(v), ∀ v ∈ V (G) must be determined

to obtain S(G). In certain applications other considerations such as social political,

social demographic or global economical factors may dictate that the reduction in total

vertex stress due to edge contraction must be minimized or maximized. In the final

analysis, the sound principle of studying mathematics for the sake of mathematics

serves as motivation for this research. For the purpose of this paper the aforesaid

narrows the study down to mainly, the relations between edge contraction and the

confluence number and the total vertex stress in graphs.
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Theorem 1. Let G be a graph. Then ζ(G/ei) ≤ ζ(G) for any edge ei in G.

Proof. Consider any shortest path PG/ei in G/ei where ei = vivj . After contraction

of ei label the resultant vertex vi/j . If vi/j /∈ PG/ei , then PG/ei is a path in G and

hence there is a confluence vertex corresponding to PG/ei . If vi/j ∈ PG/ei , then there

is a path P in G such that either vi ∈ P or vj ∈ P or vi, vj /∈ P or ei is an edge of P .

The aforesaid is valid despite the fact that a new shortest path (or paths) may result

in respect of some pair (or pairs) of vertices. If ei is an edge of a path of length 2

in G , then that path reduced to an edge in G/ei. Hence, a vertex vi ∈ CG is either

required and is internal to some shortest path (or paths) in G/ei or it is not required

anymore. Therefore ζ(G/ei) ≤ ζ(G).

The next result is an immediate consequence of Theorem 1.

Corollary 1. If there exists an edge vivj in G such that both vi and vj are not in any
ζ-set of G, then ζ(G/vivj) = ζ(G).

Note that the corollary does not only exclude that the vertices vi, vj must not be in

any identical ζ-set. For some families of graphs F the contraction of any edge ei of

G ∈ F yields G/ei ∈ F . Such graphs are said to be family equivalent or /-equivalent

graphs under the /-operation. Cycle and paths serve as examples of such families.

Theorem 2. For a graph G which is /-equivalent, S(G/ei) ≤ S(G) for any edge ei in G.

Proof. If G is /-equivalent, it implies that G,G/ei ∈ F for some F . Let edge

ei = vjvk ∈ E(G). After contraction of ei label the resultant vertex vj/k. Since

the adjacency of each vj is well-defined in G the parameter SG(vj) is a well-defined

non-decreasing function f(n) (n the order of G). Furthermore the order of G/ei is 1

less than the order of G. Therefore SG/ei(vj/k) ≤ SG(vj) +SG(vk). By the definition

of total vertex stress of a graph the result is settled.

The next corollary is an immediate consequence of Theorem 2.

Corollary 2. In a graph G which is /-equivalent and any edge ej in G, there exists at
least one vertex vi ∈ V (G) ∩ V (G/ej) such that SG/ej (vi) ≤ SG(vi).

2. 1-Edge contraction: Confluence number

This section begins with a main result.

Theorem 3. If a graph G with ζ(G) = k ≥ 2 has an edge vivj and a ζ-set CG such that
vi, vj ∈ CG, then ζ(G/vivj) = k − 1.
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Proof. Let ζ(G) = k ≥ 2 and G has an edge vivj and a ζ-set CG such that vi, vj ∈ CG.

Consider the graph G/vivj . Let the contracted edge constitute the vertex vi/j . We

have

NG/vivj [vi/j ] = (NG(vi)\{vj}) ∪ (NG(vj)\{vi}) ∪ {vi/j}.

Note that all shortest paths in G which contained the internal confluence vertex (or

vertices) vi or vj , now has the vertex vi/j as an internal confluence vertex in G/vivj .

So vi/j is a necessary and sufficient confluence vertex for all such shortest paths in

G/vivj . Furthermore, all shortest paths in G which do not contain either vi or vj
remain shortest paths in G/vivj . Hence, (CG\{vi, vj}) ∪ {vi/j} is a ζ-set of G/vivj
and ζ(G/vivj) = k − 1.

Clearly Theorem 3 holds in respect of G/vivj . As technique of proof it is conve-

nient (and permissible) to refer to either, the ”disappearance” of vertex vi or, the

”disappearance” of vertex vj .

Example 1. Consider the path P6 = v1v2v3v4v5v6. It is easy to verify that the sets

{v1, v4}, {v2, v4}, {v2, v5}, {v3, v4}, {v3, v5} and {v3, v6} are all the possible ζ-sets of

P6. Theorem 3 applies to the existence of the ζ-set, {v3, v4}.
Note that because cycles are /-equivalent, any edge ei ∈ E(C5) yields ζ(C5/ei) = 1 =

2− 1 = ζ(C5)− 1. This observation prompts the next theorem.

Recall that if a graph G does not have an induced subgraph H, then G is said to be

H-free.

Theorem 4. If a C5-free graph G with ζ(G) = k ≥ 2 has ζ(G/vivj) = k − 1 for some
edge vivj, then G has an edge vkvl which is not necessarily distinct from edge vivj, and G
has a ζ-set CG such that vk, vl ∈ CG. Hence, by Theorem 3 it follows that ζ(G/vkvl) = k−1.

Proof. Let G be a C5-free graph with ζ(G) = k ≥ 2 and ζ(G/vivj) = k − 1 for

some edge vivj . If the edge vivj has its vertices vi, vj ∈ CG for some ζ-set the result

is settled. Assume that for all confluence sets CG, all pairs of ”closest” confluence

vertices vk, vt ∈ CG has distance, 2 ≤ d(vk, vt) ≤ 3. Consider any such shortest vkvt-

path. Note that without loss of generality, the cases say, either vi = vk, vj 6= vl or

vi 6= vk, vj 6= vl is implicitly permissible in Cases 1 and 2 below.

Case 1. Assume d(vk, vt) = 2. Consider a shortest path vkvlvt and contract the edge

vlvt. Hence, dG/vlvt(vk, vl/t) = 1.

Subcase 1.1. If the ”disappearance” of vertex vt results in a reduced confluence

number, it implies that vertex vl can substitute vertex vt as a confluence vertex. The

aforesaid is true because contracting the edge vlvt has a commutative interpretation

i.e. either it is stated that vertex vl ”disappeared” or it is stated that vertex vt
”disappeared”. Hence, G/vlvt ∼= G/vtvl. Thus, it implies that both, vk, vl ∈ C for

some smallest confluence set is valid. It means that an edge vkvl does exist in G such

that, ζ(G/vkvl) = k − 1.

Subcase 1.2. If the ‘disappearance’ of vertex vt does not reduce the confluence num-

ber and this remains valid for all possible pairs over all possible smallest confluence
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sets, it implies that either ζ(G) < k in the first instance or ζ(G/vivj) = k. These

possible contradictions yield Subcase 1(a) as the only possibility. This settles the

result.

Case 2. Assume d(vk, vt) = 3. Consider the shortest path vkvlvsvt and contract

the edge vsvt. Hence, dG/vsvt(vk, vs/t) = 2 which implies that a path vkvlvs/t exists.

Furthermore, either ζ(G/vsvt) = k ⇒ ζ(G/vivj) = k which is a contradiction, or the

vertex vl can substitute vertex vt as a confluence vertex. Hence, the edge vkvl exists

in G with vk, vl ∈ CG. This settles the result.

Corollary 3. If a graph G with |E(G)| ≥ 1 has ζ(G/vivj) = k − 1 for any edge
vivj ∈ E(G), then each ζ-set of G/vivj is a subset of some ζ-set of G.

Proof. The corollary is a direct consequence of the proof of Subcase 1.2 together

relaxing the C5-free condition. Furthermore, the vertex vi/j may be argued to be,

either vertex vi or vertex vj .

The following theorem is an immediate consequence of Theorems 3 and 4.

Theorem 5. Let G be a C5-free graph with ζ(G) = k ≥ 2. Then ζ(G/vrvs) = k − 1 for
some edge vrvs if and only if G has a ζ-set CG and an edge vivj such that vi, vj ∈ CG.

Theorem 5 finds illustrative application P6. Let ZG = {all ζ-sets ofG}. From Example

1, it follows that, ZP6
= {{v1, v4}, {v2, v4}, {v2, v5}, {v3, v4}, {v3, v5}, {v3, v6}}. Since

ζ(P6/v1v2) = 1 = ζ(P6) − 1 the edge v3v4 exists and {v3, v4} is a ζ-set of P6 and so

v3, v4 ∈ CP6
. We observe that each vertex vi, i = 1, 2, 3, 4, 5, 6 is in some ζ-set of P6.

This prompts a corollary which is equivalent to Corollary 1.

Corollary 4. If a graph G with ζ(G) = k ≥ 2 has ζ(G/vivj) = k − 1 for some edge vivj
then each vk ∈ V (G) is in some ζ-set of G.

Corollary 4 finds illustrative application in C5. If a graph G with ζ(G) = k ≥ 2 has

ζ(G/vivj) = k − 1 for some edge vivj , then G is said to be, 1e-tractable. Note that

some graphs H with ζ(H) = 1 are 1e-tractable as well. However, complete graphs

are not 1e-tractable. Some well known graph families will be discussed. For sake of

convention to be used, we then recall the definition of each family of graphs.

(a) Double Star Sk1,k2
, k1 ≥ k2 ≥ 1 is obtained by relabeling the two vertices of

path P2 as v0, u0 respectively whereafter, pendant vertices vi, i = 1, 2, 3, . . . , k1 are

attached to v0 and pendant vertices uj , j = 1, 2, 3, . . . , k2 are attached to u0.

(b) A wheel graph Wn, n ≥ 3 is obtained from a cycle Cn (v′is called rim vertices) by

adding a central vertex v0 together with the edges (or spokes) v0vi, 1 ≤ i ≤ n.

(c) A helm graph Hn is obtained from a wheel graph Wn by attaching a pendant

vertex (or leaf) ui to vi, ∀ i.
(d) A flower graph Fln is obtained from a helm graph Hn by adding the edges v0ui,
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∀ i.
(e) A gear graph Gn is obtained from a wheel graph Wn by inserting a vertex ui on

the edge vivi+1, ∀ i and n+ 1 ≡ 1.

(f) A sunlet graph S�n , n ≥ 3 is obtained by taking cycle Cn together the isolated

vertices ui, 1 ≤ i ≤ n and adding the pendant edges viui.

(g) A sun graph S�n , n ≥ 3 is obtained by taking the complete graph Kn on the

vertices v1, v2, v3, . . . , vn together the isolated vertices ui, 1 ≤ i ≤ n and adding the

edges viui, uivi+1 and n + 1 ≡ 1. A sun graph has a boundary cycle denoted by

Cb(S�n ) = v1u1v2u2v3u3 · · ·unv1.

Proposition 1. (a) A path Pn is 1e-tractable if and only if n ≡ 0 (mod 3).
(b) A cycle Cn is 1e-tractable if and only if n ∈ {4, 5, 7 + 3i | i = 0, 1, 2, . . . }.
(c) A double star Sk1,k2 is 1e-tractable if k1 ≥ 2, k2 ≥ 2.
(d) For n = 3, n ≥ 5 a wheel graph is not 1e-tractable. However W4 is 1e-tractable.
(e) A helm graph Hn is 1e-tractable for n ≥ 3.
(f) A flower graph Fln is not 1e-tractable for n ≥ 3.
(g) For n ≥ 5 and odd a gear graph Gn is 1e-tractable. The gear graph G3 and gear graphs
Gn, n ≥ 4 and even are not 1e-tractable.
(h) For n ≥ 3 and odd a sunlet graph S�n is 1e-tractable. For n ≥ 4 and even a sunlet graph
S�n is not 1e-tractable.
(i) S�3 is not 1e-tractable. For n ≥ 4 a sun graph S�n is 1e-tractable.

Proof. (a) Since P1, P2 are complete, they are not 1e-tractable. The path P3 for

which ζ(P3) = 1 is 1e-tractable because contracting any edge results in a complete

graph P2 for which ζ(P2) = 0. Furthermore, it is known from [6] that ζ(Pn) = bn3 c,
n ≥ 3. That settles the result ’1e-tractable if n ≡ 0 (mod 3)’. The converse follows

from an easy contradiction by applying Theorem 3.

(b) The fact that ζ(C3) = 0, ζ(C4) = 1, ζ(C5) = 2 yields the result for the exceptions.

Furthermore, it is known from [6] that ζ(Cn) = dn3 e, n ≥ 5. That settles the result

’1e-tractable if n = 7 + 3i, i = 0, 1, 2, . . . ’. The converse follows from an easy

contradiction provided the exceptions are acknowledged.

(c) If min{k1, k2} = 2, then {v0, u0} is a ζ- set of Sk1,k2
. If k1 ≥ 3 and k2 ≥ 3, then

CSk1,k2
= {v0, u0} is the unique ζ- set of Sk1,k2 . Since v0u0 is an edge of the double

star, Sk1,k2
is 1e-tractable if min{k1, k2} ≥ 2 by Theorem 3.

(d) Since ζ(W3) = 0, it is not 1e-tractable. Since ζ(Wn) = 1, n ≥ 5 and the

contraction of any edge does not yield a complete graph, such wheel graphs are not

1e-tractable. However, contracting a rim edge of W4 yield the complete graph K4.

Therefore, W4 is 1e-tractable.

(e) It is known from [6] that ζ(Hn) = dn2 e+ 1 and that v0 ∈ C. Since some rim vertex

vi ∈ C and the edge v0vi exists, the result follows from Theorem 3.
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(f) It is known from [6] that ζ(Fln) = 1 and contracting any edge does not yield a

complete graph thus the result.

(g) Part 1. The inner-area enclosed by the cycle C ′2n = v1u1v2u2 · · · vnunv1 can

be partitioned into n planar areas, each enclosed by a C4. For all pairs vi, vj it is

necessary and sufficient that v0 ∈ ζ-set. Let n ≥ 5 be odd. Without loss of generality,

an optimal minimal confluence set is given by X1 = {v0, u1, u3, . . . , un−2, un−1} or

X2 = {v0, u1, u3, . . . , un−2, vn} or X3 = {v0, u1, u3, . . . , un−2, un}. It follows that a

gear graph Gn does not have a parametric unique ζ-set for n is odd (see [7]). Since

the edge v0vn exists, the result follows by Theorem 3.

Part 2. For G3 and up to isomorphism the ζ-set {u1, v3} is unique. Since

u1v3 /∈ E(G3), the gear graph G3 is not 1e-tractable. For n ≥ 4 and even,

reasoning similar to that in Part 1 show that up to isomorphism the ζ-set

X1 = {v0, u1, u3, . . . , un−2, un−1} is unique. It follows that since no edge v0ui can

exists that for n ≥ 4 and even the gear graphs Gn are not 1e-tractable.

(h) Part 1. It follows easily that up to isomorphism the sets X1 =

{v1, v3, v5, . . . , vn−2, vn} and X2 = {v1, v3, v5, . . . , vn−2, vn−1} are the only dis-

tinguishable ζ-sets. Since v1, vn ∈ X1 and edge v1vn exists the result follows from

Theorem 3.

Part 2. It is known from [7] that up to isomorphism, the set

X1 = {v1, v3, v5, . . . , vn−2} is the unique ζ-set. Since no pair of distinct vertices

vi, vj ∈ X1 exist such that edge vivj ∈ E(S�n ), the result follows from Theorem 5.

(i) Only the boundary cycle of a sun graph in the cycle Cb(S�n ) requires consideration

because of the existence of the clique Kn.

Part 1. For S�3 and up to isomorphism the ζ-set {v1, u2} is unique. Since v1u2 /∈
E(S�3 ) the result is immediate.

Part 2. It is easy to verify that for n ≥ 4 any ζ-set contains a pair of distinct vertices

vi, vj . Furthermore, vivj ∈ E(S�n ). Hence, the result.

3. 1-Edge contraction: Total vertex stress

Recall that the total vertex stress in a graph G is given by S(G) =
∑

v∈V (G)

SG(v).

Note that an edge vivj ∈ E(G) can be such that for some ζ-set of G: (i) exactly one

vertex say, vi belongs to CG or (ii) both vi, vj belong to CG or (iii) vi, vj /∈ CG.

Consider a lollipop graph L�(m, 1), m ≥ 3 as mentioned in Section 1. It is triv-

ial that S(L�(m, 1)) = m − 1. It is also obvious that S(L�(m, 1)/viu1) = 0,

S(L�(m, 1)/vivj) = m− 2. So the maximum and minimum reduction in total vertex

stress due to some edge contraction is respectively, n − 1 and 1. We observe that

for a graph G the values S(G/vivj) and S(G/vkvl) may differ. Therefore an edge

ei ∈ E(G) exists which yields Smax(G/ei) and an edge ej ∈ E(G) exists which yields



534 1-Edge contraction : Stress and Confluence

Smin(G/ej). It implies that Smin(G/ej) ≤ Smax(G/ei).

Let Ξmax(G/ej) = S(G) − Smin(G/ej) and Ξmin(G/ei) = S(G) − Smax(G/ei),

ei, ej ∈ E(G) denote these respective reductions. A graph G for which Ξmax(G/ej) =

Ξmin(G/ei) is said to be stress-stable or stable in respect of stress. Put differently, G

is stress-stable if and only if S(G)−S(G/ei) = Ξ(G/ei) = constant, for all ei ∈ E(G).

It is trivial that if G is complete then G is stress-stable. Recall a result from [8].

Proposition 2. [8] The total vertex stress in a path Pn, n ≥ 1 is given by S(Pn) =
n(n−1)(n−2)

6
.

Theorem 6. A path Pn, n ≥ 1 is stress-stable.

Proof. Since P1, P2 are complete, the statement holds. It follows that for any edge of

Pn, n ≥ 3 the graph operation i.e. edge contraction yields a reduction in total vertex

stress equal to S(Pn)−S(Pn−1) = (n−1)(n−2)
2 . Our interest lies in n ≥ 3 since n = 1, 2

have been accounted for. For any n ≥ 3 the contraction of any edge yields another

path of order n− 1. It implies that the function f(n) = (n−1)(n−2)
2 is independant of

the selected edge ei = vivi+1, 1 ≤ i ≤ n− 1. Therefore Ξmax(Pn/ei) = Ξmin(Pn/ej),

ei, ej ∈ E(Pn).

From [10] we recall.

Theorem 7. [10] The vertex stress of any vertex in a cycle C2n, n ≥ 2 is SC2n(v) =
n(n−1)

2
.

Theorem 8. [10] The vertex stress of any vertex in a cycle C2n+1, n ≥ 1 is SC2n+1(v) =
n(n−1)

2
.

Theorems 7 and 8 with the definition of total vertex stress imply the next corollary.

Corollary 5. (a) The total vertex stress of a cycle C2n, n ≥ 2 is S(C2n) = 2n2(n−1)
2

.

(b) The total vertex stress of a cycle C2n+1, n ≥ 1 is S(C2n+1) = n(2n+1)(n−1)
2

.

Theorem 9. A cycle Cm, m ≥ 3 is stress-stable.

Proof. Case 1. Let m = 2n, n = 2, 3, . . . . It follows that for any edge of C2n,

n ≥ 1 the graph operation i.e. edge contraction yields a reduction in total vertex

stress equal to S(C2n) − S(C2n−1) = (n−1)(5n−2)
2 . For any m ≥ 3 the contrac-

tion of any edge yields another cycle of order m − 1. It implies that the function

f(n) 7→ (n−1)(5n−2)
2 is independant of the selected edge ei = vivi+1, 1 ≤ i ≤ n(= m

2 ).

Therefore Ξmax(Cm/ei) = Ξmin(Cm/ej), ei, ej ∈ E(Cm).
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Observation 1. If the graphs G/vivj ∼= G/vkvl for any two distinct edges vivj , vkvl ∈
E(G) then S(G/vivj) = S(G/vkvl). Therefore S(G) − S(G/vivj) = S(G) − S(G/vkvl), is
some constant. This implies that Ξmax(G/vivj) = Ξmin(G/vkvl), vivj , vkvl ∈ E(G). So G
is stress-stable.

Recall the useful definition of the total vertex stress induced by a vertex on a graph

G.

Definition 1. Let V (G) = {vi : 1 ≤ i ≤ n} and for the ordered vertex pair (vi, vj) let
there be kG(i, j) distinct shortest paths of length lG(i, j) from vi to vj . Then, define sG(vi)

as
n∑

j=1,j 6=i

kG(i, j)(`G(i, j)− 1).

Lemma 1. Let G be a graph with at least one leaf (pendant vertex). Let vi and viuj be
a leaf and the pendant edge, respectively. Then S(G/viuj) = S(G)− sG(vi).

Proof. Since vertex vi is not internal to any shortest path in G, the result yields.

4. Conclusion

In the paper, the effect of 1-edge contraction was studied at an introductory level.

From Theorem 2, our experimental investigation suggests that S(G/ei) ≤ S(G) for

many graphs which are not /-equivalent. For a sunlet graph with n ≥ 5 and odd, it

is easy to verify that S(S�n /ei) > S(S�n ) if ei = vivi+1.

Problem 1. Under which conditions other than family equivalence, does the result

S(G/ei) ≤ S(G) hold? Alternatively, under which conditions, does S(G/ei) > S(G)

hold?

It is obvious that for any non-complete graph which is not 1e-tractable, there exists

a minimum k number of edges say, set Y ⊂ E(G) for which, if all were contracted,

then S(G/Y) ≤ S(G). Such graph G is said to be ke>1-tractable. This is based on the

next lemma.

Lemma 2. A connected graph G � Kn, n ≥ 3 has a set of edges X = {ei : ei ∈ E(G)},
1 ≤ |X| ≤ |E(G)| − 1 such that ζ(G/X) < ζ(G)− 1.

Proof. Contract any |E(G)| − 1 edge of G to yield P2. Since P2 is complete, the

result ζ(G/X) < ζ(G) − 1 can be achieved with a set of edges say, X, 1 ≤ |X| ≤
|E(G)| − 1.

Based on Lemma 2 the study of ke≥1-tractable graphs remains open.
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Problem 2. Characterize stress-stable graphs.

Conjecture 1. A graph G for which degG(vi) + degG(vj) = degG(vk) + degG(vl) for

each pair of edges vivj , vkvl is stress-stable.

Conjecture 2. A graph G of order n ≥ 4 for which SG(vi)+SG(vj) = SG(vk)+SG(vl)

for each pair of edges vivj , vkvl is stress-stable.

Motivation. The result is true for all complete graphs. Consider non-complete graphs

G of order n ≥ 4. For convenience, a vivj-path will be viewed as ’from vi to vj ’. It

permits the convenient view that an edge ek on a vivj-path has a natural departure

vertex and an arrival vertex without implying orientation in G (directed graph). The

number of shortest paths in G which depart from vi through vj say `(vj) will reduce

the total vertex stress by `(vj) in G/vivj . Similarly, the number of shortest paths in

G which depart from vj through vi say `(vi) will reduce the total vertex stress by `(vi)

in G/vjvi. All shortest paths in G which have vertices vi, vj as internal vertices will

reduce the total vertex stress by `(vi) + `(vj) in G/vjvi. The total reduction in total

vertex stress is given by 2[`(vi) + `(vj)]. Since SG(vi) + SG(vj) = SG(vk) + SG(vl)

for each pair of edges vivj , vkvl it follows that 2[`(vi) + `(vj)] = 2[`(vk) + `(vl)] for

each pair of edges vivj , vkvl.

The outstanding case which requires investigation to settle the result is the shortening

of some paths in G vis-a-vis in G/vivj .

Problem 3. For which graphs does it hold true that, if

degG(v1) ≤ degG(v2) ≤ · · · ≤ degG(vn)

then

SG(v1) ≤ SG(v2) ≤ · · · ≤ SG(vn)?

Motivation. Case 1. The result is trivially true for all complete graphs because

degKn
(vi) = n− 1 and SKn

(vi) = 0 for all i.

Case 2. An almost-complete graph K−1n , n ≥ 3 is obtained by deleting exactly one

edge from Kn. Let V (K−1n ) = {v1, v2, v3, . . . , vn}. Assume without loss of generality

that the edge v1vn was deleted. It follows easily that SK−1
n

(v1) = SK−1
n

(vn) = 0 and

SK−1
n

(vi) = 1, i = 2, 3, 4, . . . , n− 1. Therefore the result holds for all almost-complete

graphs.

Case 3. Let G /∈ {Kn,K
−1
n } be a graph of order n ≥ 3 with clique number ω(G) ≤ 3.

Suppose there exist a pair of distinct vertices vi, vj such that degG(vi) < degG(vj)

and SG(vi) > SG(vj). Since, by definition SG(vl) is the number of times vl, 1 ≤ l ≤ n
is an internal vertex on a shortest path in G it implies that degG(vi) ≤ 2SG(vi) and

degG(vj) ≤ 2SG(vj). Hence, degG(vj)− degG(vi) ≥ 0 and so 2SG(vj)− 2SG(vi) ≥ 0

or, SG(vj)−SG(vi) ≥ 0. The immediate aforesaid implies that SG(vj) ≥ SG(vi). The

latter is a contradiction. Thus by immediate induction it follows that if

degG(v1) ≤ degG(v2) ≤ · · · ≤ degG(vn)
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then

SG(v1) ≤ SG(v2) ≤ · · · ≤ SG(vn).

Note that vertex deletion may result in a disconnected graph. The requirement is

that the initial graph must be a finite, undirected and connected simple graph. The

characterization of graphs G for which ζ(G− v) = ζ(G)− 1 remains open.
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