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Abstract: Let G be a simple connected graph having finite number of vertices

(nodes). Let a coloring game is played on the nodes of G by two players, Alice and

Bob alternately assign colors to the nodes such that the adjacent nodes receive different
colors with Alice taking first turn. Bob wins the game if he is succeeded to assign k

distinct colors in the neighborhood of some vertex, where k is the available number
of colors, otherwise Alice wins. The game chromatic number of G is the minimum

number of colors that are needed for Alice to win this coloring game and is denoted

by χg(G). In this paper, the game chromatic number χg(G) for some interconnecting
networks such as infinite honeycomb network, elementary wall of infinite height and

infinite octagonal network is determined. Also, the bounds for the game chromatic
number χg(G) of infinite oxide network are explored.

Keywords: Coloring; game chromatic number (GCN); infinite honeycomb network;
infinite oxide network; elementary wall of infinite height; infinite octagonal network
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1. Introduction

Let G be a graph. The minimum number of colors that are needed to color the

vertices (or nodes) of a graph G such that the adjacent nodes receive different colors,
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is known as the chromatic number of G and is denoted by χ(G) [10]. The game

chromatic number (GCN) is defined as follows: For a simple finite connected graph

G, a coloring game is played on the nodes of G by two players Alice and Bob with

Alice taking first turn. They alternately allocate the colors from a set of k colors to

the nodes of G in such a way that the adjacent nodes receive different colors. Bob

wins the game for k colors provided he succeeds to allocate k different colors in the

adjacency of an uncolored node of G before the complete coloring of G, otherwise,

Alice wins for k colors after the complete coloring of G. The game chromatic number

of G is the minimum number of colors that are needed for Alice to win this coloring

game and is denoted by χg(G) [10].

The game chromatic number (GCN) is defined as follows: Let G be a simple connected

graph having finite number of nodes. A coloring game is played on the nodes of G

by two players Alice and Bob with Alice taking first turn. They alternately allocate

the colors from a set of k colors to the nodes of the graph G in such a way that the

connected nodes receive distinct colors. Bob wins the coloring game for k colors if

Bob is succeeded to allocate k different colors in the adjacency of an uncolored node

of G before the complete coloring of G, otherwise, Alice wins for k colors after the

complete coloring of G.

The game chromatic number of G is the minimum number of colors that are needed

for Alice to win this coloring game and is denoted by χg(G) [18]. The well-known

result for the GCN of any graph G is:

χ(G) ≤ χg(G) ≤ ∆(G) + 1 (1)

where χ(G) denotes the chromatic number and ∆(G) represents the maximum degree

of G.

This game coloring problem is an interesting topic, which has attracted the researchers

in network science and game theory and a lot of work in this interesting field has done

in the recent years. Game theory plays an important role in the World of Business and

trading and makes strong impact on the economy of the country. Coloring of World

Map is one of the important application of graph coloring. This research on game

chromatic number work was started by Faigle et al. [12], who computed GCN for

different families of graphs. Later, Kierstead and Trotter [16] (also, see [20]) showed

that the upper bound for the GCN of a forest is 4 and the maximum GCN of planar

graphs is 33. In [5], Bodlaender computed that the GCN of the cartesian product

graph is less than or equal to some number for the class of planar graphs. Later,

authors in [3], computed the exact values of χg(G�H), when G and H are in some

special classes of graphs and proved that in general χg(G�H) is not bounded above

by some function of game chromatic numbers of G and H, where G�H represent the

cartesian product of G and H. Sia and Gallian [18], computed the exact values of

GCN for cartesian product of graphs like Sm�Pn, Sm�Cn, and P2�Wn. Enomoto,

Fujisawa and Matsumoto [11] studied the game chromatic number for strong product

of graphs. Furtado et al. [13] identified caterpillars with game chromatic number 4,

Akthar et al. [2] established results on game chromatic number for splitting graphs of
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path and cycle. Chakraborti et al. [9] generalized concept of game chromatic number

to hypergraphs. In [6], Bokhary et al. found the GCN of some convex polytope

graphs of degree 4, see also [7]. Guan and Zhu [14], gave the results related to game

chromatic number of outerplanar graphs. In this work, we have extended this study to

some interconnecting networks and computed the exact value of the GCN of infinite

honeycomb network, elementary wall of infinite height and infinite octagonal network.

Also, the bounds for the GCN of infinite oxide network are determined.

We give definitions/notations, which are used in the results later on. Assume that

the coloring game is played by Alice and Bob with k colors. We say that an uncolored

node v is under a threat if there are k-1 colors in the neighbor of v, and it may be

possible to color a node that is adjacent to v with the remaining color, so that all the

k colors would occur in the neighborhood of v. The threat to v is said to be blocked

or dealt provided v is allocated a color, or it is imppossible for v to get all k colors in

its neighborhood. Also, we note that the color numbers are only used to differentiate

different colors. Like, if colors 1 and 2 are already used, so far a new color, 3 (say),

can be assigned to any color that is different from 1 or 2.

2. Preliminaries

A simple finite graph G consists of a set V (G) of elements called vertices (or nodes),

and a finite set E(G) called edges. A graph G is said to be connected, if we can find

a path between any two vertices of G. The degree of a node v ∈ V (G) is the number

of edges incident with v in G. The maximum and the minimum degree v in G are

denoted by ∆(G) and δ(G), respectively. The distance between two different vertices

u and v in G is the length of a shortest path between them. The diameter of G,

denoted by D, is defined as the maximum pairwise distance between the vertices of

G. A simple connected graph G is said to be k-colorable, if we can assign one of k

colors to each vertex of G so that adjacent vertices have different colors. A k-colorable

graph is said to be k-chromatic if it is not (k − 1) colorable [8].

3. Methodology

In this paper, the game chromatic number denoted by χg(G) for some interconnecting

networks such as infinite honeycomb network, elementary wall of infinite height and

infinite octagonal network is explored. Since these networks are 3-regular, so by using

Equation (1) and Bobs winning strategy for 3 colours, we find the exact value of the

game chromatic number of these networks. Also, the bounds for the game chromatic

number χg(G) of infinite oxide network are determined by using the Bobs winning

strategy for 3 colours.
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4. Results and Discussion

Game chromatic number of an infinite Honeycomb network

Honeycomb network is an interesting network which we see in daily life on the trees

in which honeybees make honey and it has a lot of practical applications. In Holub,

et al. [15] found the extremal graphs in the honeycomb network with restrictions on

its valency and diameter. In this section, we have explored another graph property

GCN of an infinite Honeycomb network.

Definition 1. A honeycomb network can be constructed from a hexagon. The honeycomb
network HC(1) is a single hexagon. The honeycomb network HC(2) is designed from HC(1)
when six hexagons are connected to the boundary edges of HC(1). By induction, honeycomb
network HC(n) is constructed from HC(n− 1) when a layer of hexagons is attached to the
boundary of HC(n− 1).

The following is a key lemma for our results. Prepare an even cycle v1v2 . . . vk (k ≥ 4)

and add a pendant vertex ui to vi for every even number i, where all vertices are

distinct. Let Bk denote the resulting graph; see Figure 1. As shown in the following

lemma, Bk is good for Bob.

v1

v2

u2uk

u4u6

v3

v4

v5

v6

vk−1

vk

Figure 1. The graph Bk

Lemma 1. For an integer k ≥ 4, let G = Bk. Suppose that Alice first allocates some
color to v1. Then Bob can force Alice to use a fourth color.

Proof. It suffices to show that Bob can win the game using three colors. Without loss

of generality, Alice allocates color 1 to v1. After that, Bob alternately allocates colors

2 and 3 to v3, v5, . . . , vk−1 in this order. By Bob’s coloring, v2, v4, . . . , vk−2, vkrequires

colors 3 and 2 alternately. For each even i = 2, 4, . . . , k−2, if Alice allocates any color

to neither ui nor vi just after Bob colors vi+1, Bob can force Alice to use a fourth

color by allocating a third color (2 or 3) to ui. However, after Bob allocates a color

to vk − 1, Alice needs to allocate a third color to both one of uk−2 and vk−2 and that

of uk and vk, which is impossible.
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By the above lemma, we have the following important corollary.

Corollary 1. Let G be a graph. In some Bob’s turn, if G contains an induced subgraph
S isomorphic to Bk for some even k ≥ 4 where only one vertex v in S is coloured and v is of
degree 2, then Bob can force Alice to use a fourth color.

Theorem 1. Let H be the infinite Honeycomb network then
χg(H) = 4

a

b

c
d

e

f

g

h

k t

m n

o

p q

Figure 2. A small part R of infinite Honeycomb network H

Proof. The infinite honeycomb network H consists of infinite number of hexagons.

We select a small part R of dimension 3 of infinite honeycomb network H as shown

in the Figure 2 and find the GCN of H. Since each hexagon in H is surrounded

by infinite number of layers of hexagons and symmetry can be seen in the network

therefore Bob has the same winning strategy for each hexagon that is selected by

Alice to start the game. Some nodes of the small part R of H are labelled for our

convenience as shown in the Figure 2. Since the maximum degree of H is 3, Equation

(1) implies that χg(H) ≤ 4. Hence it suffices to show that χg(H) > 3. Without loss of

generality, Alice first allocates color 1 to the vertex a. In this case, the nine vertices

{a, b, c, d, e, f, t, h, k} induce B6 in which only one vertex of degree 2 in the B6, a, is

coloured. Thus, we have χg(H) > 3 by Corollary 1.
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Game chromatic number of an infinite oxide network

Chemical graph theory is an important branch of Mathematics which deals with

chemical structures. Silicate and oxide networks are very interesting structures of

chemistry which we study in the chemical graph theory. A lot of work has done on

these structures and properties of these networks are computed by the Mathemati-

cians. In [17, 19], Manuel et al. and Simonraj studied silicate and oxide networks in

different aspects. In this section, we explored the GCN of an infinite oxide network.

Definition 2. Silicate network can be designed in many ways. Here, we have designed
the graph of silicate network from a honeycomb network. Take a honeycomb network HC(n)
which has dimension n. All the nodes of HC(n) are replaced by the silicon atoms. Every
edge of HC(n) is subdivided exactly once. Oxygen atoms are placed on new nodes. 6n
new pendant edges at each of 2-degree silicon atoms of HC(n) are introduced and oxygen
atoms are placed at the pendant nodes (see the Figure 3). With each silicon atom, relate the
three connected oxygen atoms and make a tetrahedron unit. The resulting network obtained
is then the silicate network of dimension n, which is denoted by SL(n) having 15n2 + 3n
nodes and 36n2 edges. When all the silicon vertices are removed from a silicate network,
new network is formed which is called the oxide network. oxide network of dimension n is
designated by OX(n) with 9n2 +3n nodes and 18n2 edges [17]. Oxide network of dimension
two is shown in the Figure 3 (b).

Figure 3. Silicate network SL(2) and Oxide network OX(2)

Theorem 2. Let X be the infinite Oxide network. Then

4 ≤ χg(X) ≤ 5.

Proof. The infinite oxide network X contains infinite number of triangles. We select

a small part T of dimension 2 (See Figure 4) of infinite oxide network X to play the
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Figure 4. A small part T of infinite Oxide network X

game and find the bounds for the GCN of X. Since each triangle in X is attached

with three triangles and there is symmetry in the network therefore Bob has the same

winning strategy for every triangle, which, is selected by Alice to start the game.

Some nodes of the small part T are labelled to play the game as shown in the Figure

4. Since maximum degree of X is 4, from Equation 1, we have χg(X) ≤ 5. Hence

it suffices to show that χg(X) > 3. Without loss of generality, Alice first allocates

color 1 to the vertex w. In this case, we consider the subgraph S induced by the nine

vertices {w, y, s, z, x, v, n,m, u}. Observe that S is obtained from B6 by adding three

additional edges sn, xm and wu. As in the proof of Lemma 1, Bob allocates colors 2

and 3 to s and x in this order, which requires the third colors 3 and 2 for y and {z, v}.
It is not prevented by the existence of the additional three edges that Bob allocates

colors 3 or 2 to vertices n or m,u (after Alice’s move). Therefore, similarly to the

proof of Theorem 1, we have χg(X) > 3.

Game chromatic number of elementary walls of infinite height

The grid graph is an important network which is designed from the cartesian product

of paths Pm and Pn. The grid graph is studied in different aspects in graph theory

and many other networks are designed from the grid graph such as Enhanced mesh

network and enhanced grid network. Elementary wall is also designed from the grid

graph which is defined below. The structure of W-4-Immersion-Free Graphs such

as elementary walls of different heights is studied by Belmonte, Giannopoulou, Lok-

shtanov and Thilikos in [4]. In this section, we find the GCN of the elementary wall

of infinite height.



754 Game chromatic number of honeycomb related networks

Definition 3. Let r be a natural number. The (s, s)-grid is the graph which
is obtained from the cartesian product of path Ps with Ps. The (elementary) wall
of height s is designed from the (s, s)-grid and is denoted by Ws whose node set is

V (Ws) = {(x, y)|x ∈ [s+1], y ∈ [2s+2]} in which we make two nodes (x, y) and (x
′
, y

′
) are

adjacent if and only if either x = x
′
and y

′
∈ {y− 1, y+1} or y

′
= y and x

′
= x+ (−1)x+y,

and then return all nodes of valency 1; see the Figure 5 for elementary wall of height 4.
The nodes of this node set are called original nodes of the wall. From the construction, it is
observed that the graphWs has number of nodes 2s2+4s and number of edges 3s2+4s−1 [4].

Theorem 3. Let W be the elementary wall of infinite height. Then

χg(W ) = 4.

Figure 5. A small part P of elementary wall of infinite height W

Proof. The elementary wall of infinite height W in the Euclidean plane has maximum

degree 3. We choose a small part P (See Figure 5) of height 4 of W to play the game

and find the exact values for the GCN of W. Some nodes of the small part P are labeled

for our convenience as shown in the Figure 5. Since each node of W has degree 3 and

there is a symmetry in the network, therefore, Bob has the same strategy for every

node of W , which, is selected by Alice to start the game. Since maximum degree

of W is 3, from Equation (1) we have χg(W ) ≤ 4. Hence it suffices to show that

χg(W ) > 3. Without loss of generality, Alice first allocates color 1 to the vertex a. In

this case, the nine vertices {a, c, f, e, d, b, k, g, h} induce B6 in which only one vertex

of degree 2 in the B6, a, is coloured. Thus, we have χg(H) > 3 by Corollary 1.

5. Game chromatic number of an infinite octagonal network

The Octagonal network is also an important network which is obtained by arranging

octagons row wise and column wise as defined below. In [1], Ahmad, Afzal, Nazeer

and Kang found the topological indices of octagonal network. In this section we find

the GCN of an infinite Octagonal network.
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Definition 4. Octagonal network by On,m for n,m ≥ 2. Its planer represen-
tation of On,m is shown in [1] with m rows and n columns of octagonal. The
vertex set V and edge E of On,m are V = {xji , 1 ≤ i ≤ 2n − 1, i is odd and
1 ≤ j ≤ 3m+1}

⋃
{x3j−2

i ; 1 ≤ i ≤ 2n, i is even and 1 ≤ j ≤ m+1}
⋃
{x3j−1

2n x3j2n, 1 ≤ j ≤ m}
and E = {xjix

j+1
i , 1 ≤ i ≤ 2n − 1, i is odd and 1 ≤ j ≤ 3m}

⋃
{x3j−2

i x3j−2
i+1 , 1 ≤ i ≤ 2n − 1,

i is odd and 1 ≤ j ≤ m + 1}
⋃
{x3j−2

i x3j−1
i+1 , 1 ≤ i ≤ 2n − 2, i is even and

1 ≤ j ≤ m}
⋃
{x3ji x

3j+1
i−1 , 3 ≤ i ≤ 2n− 1, i is odd and 1 ≤ j ≤ m}

⋃
{xj2nx

j+1
2n , 1 ≤ j ≤ 3m}.

The number of nodes in octagonal network is (4m + 2)n + 2m and number of edges in an
octagonal network is (6m+ 1)n+m [1].

Theorem 4. Let O be the infinite Octagonal network. Then

χg(O) = 4.

Figure 6. A small part O5,3 of infinite Octagonal network O

Proof. The infinite octagonal network O contains an infinite number of octagons.

We select a small part O5,3 (See Figure 6) of infinite Octagonal network O as shown

in the Figure 6 and find the GCN of Octagonal network O. Since each octagon in

O is surrounded by infinite number of layers of Octagons and symmetry can be seen

in the network therefore Bob has the same winning strategy for each Octagon that

is selected by Alice to start the game. Some nodes of the small part O5,3 of O are

labelled for our convenience as shown in the Figure 6. Since maximum degree of O

is 3, from equation 1 we have χg(O) ≤ 4. Hence it suffices to show that χg(O) > 3.

Without loss of generality, Alice first allocates color 1 to the vertex m. In this case,

the twelve vertices {m,n, p, q, r, s, t, g, k, y, w, v} induce B8 in which only one vertex

of degree 2 in the B8, m, is coloured. Thus, we have χg(H) > 3 by Corollary 1.
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6. Conclusion

Game theory plays an important role in the world of business and makes strong

and significant impact on the economy of the country. In this paper, we have

found the game chromatic number of three important classes of networks, that is,

infinite honeycomb network, elementary wall of infinite height and infinite octagonal

network. We have also explored the bounds for the game chromatic number of

infinite oxide network. This study can be further extended for the silicate network

and other chemically important networks.
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