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Abstract: Let G be a simple connected graph with diameter d, and k ∈ [1, d]

be an integer. A radio k-coloring of graph G is a mapping g : V (G) → {0} ∪ N
satisfying |g(u) − g(v)| ≥ 1 + k − d(u, v) for any pair of distinct vertices u and

v of the graph G, where d(u, v) denotes distance between vertices u and v in G.

The number max{g(u) : u ∈ V (G)} is known as the span of g and is denoted by
rck(g). The radio k-chromatic number of graph G, denoted by rck(G), is defined as

min{rck(g) : g is a radio k-coloring of G}. For k = d− 1, the radio k-coloring of graph
G is called an antipodal coloring. So rcd−1(G) is called the antipodal number of G

and is denoted by ac(G). Here, we study antipodal coloring of the Cartesian product

of the complete graph Kr and cycle Cs, Kr�Cs, for r ≥ 4 and s ≥ 3. We determine
the antipodal number of Kr�Cs, for even r ≥ 4 with s ≡ 1 (mod 4); and for any r ≥ 4

with s = 4t + 2, t odd. Also, for the remaining values of r and s, we give lower and

upper bounds for ac(Kr�Cs).

Keywords: radio k-coloring, antipodal coloring, antipodal number, Cartesian prod-
uct.

AMS Subject classification: 05C15, 05C78, 05C90

1. Introduction

An important motivation for coloring of graphs is the frequency assignment problem.

In this problem, radio transmitters are assigned frequencies in a manner that prevents

interference. One of the natural reasons for the interference is that when nearer

transmitters receive closer frequencies. Frequency bands are defined simultaneously
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for all wireless networks based on usage type and relevance. The primary goal is,

therefore, to allocate radio frequencies for transmitters at various places with the

least possible spread and without causing interference, as demonstrated in [3]. So

the frequency assignment problem can be considered as an allocation of numbers

(color numbers) to vertices of G so that color numbers of nearer vertices have desired

separation, where vertices of G are the transmitters and two of them are adjacent if

they have close proximity. So for a simple and connected graph G having diameter d

and an integer k ∈ [1, d], a radio k-coloring of G is a mapping g : V (G) → {0} ∪ N
satisfying |g(u) − g(v)| ≥ 1 + k − d(u, v), for any pair of distinct vertices u and v

of the graph G, where d(u, v) denotes distance between vertices u and v in G. The

largest positive integer (or color number) allocated by g, termed as the span of g, and

is denoted by span(g) or rck(g). The notation rck(G) stands for radio k-chromatic

number of the graph G, and is defined by

rck(G) = min{rck(g) : g is a radio k-coloring of G}

Throughout the paper, we consider simple and connected graphs only. Chartrand

et al. [1] proposed the idea of radio k-coloring of graphs. It may be noted that

for k = 1, the radio k-coloring problem coincides with the usual proper coloring of

graphs. For particular values of k, there are specific names of a radio k-coloring, such

as, if k = d, then this coloring is simply known as radio coloring; and if k = d − 1

then it is known as an antipodal coloring. So rcd(G) and rcd−1(G) are respectively

called the radio number (also represented by rn(G)) and antipodal number (also

represented by ac(G)) of graph G. A radio k-coloring g of a graph G is called a

minimal radio k-coloring if rck(g) = rck(G).

The definition below is useful in the paper.

Definition 1. For a graph G of order r, and a radio k-coloring g of G, let v1, v2, . . . , vr
be an arrangement of vertices in such a way that g(vj) ≤ g(vj+1), for all j = 1, 2, . . . , r − 1.
Then εj , j = 2, 3, . . . , r, is defined as εj = g(vj) − g(vj−1) − (1 + k − d(vj , vj−1)). We note
that εj are non-negative integers.

The lemma presented below gives information about the radio k-chromatic number

of any arbitrary graph.

Lemma 1. [9] Consider a graph G with order r. Then for any radio k-coloring g of G,
we have

rck(g) = (r − 1)(k + 1)−
r∑
j=2

d(vj , vj−1) +
r∑
j=2

εj (1.1)

where the vertices vj, j = 1, 2, . . . , r, are arranged in the order given in Definition 1.
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Remark 1. In equation (1.1), for a particular k and a fixed graph G, the term
(k + 1)(r − 1) is a constant. So a radio k-coloring g of graph G becomes a minimal col-
oring if

∑r
j=2 d(vj−1, vj) and

∑r
j=2 εj attain respectively the maximum and minimum value

simultaneously among all possible radio k-colorings of G.

The notation G1�G2 stands for Cartesian product of any two graphs G1 and G2.

The vertex set of G1�G2 is V (G1) × V (G2), and any two arbitrary vertices (u1, v1)

and (u2, v2) are adjacent in G1�G2 if and only if u1 = u2 and {v1, v2} is an edge in

G2, or v1 = v2 and {u1, u2} is an edge in G1. A complete graph Kr is a simple and

connected graph with r vertices so that there is an edge between every two distinct

vertices in it. Kchikech et al. [5] obtained some upper bounds for rck(G), whenever

G is the Cartesian product of two graphs. The same authors found lower and upper

bounds for rck(Pn�Pn) when k ≥ 2n − 3. Kim et al. [8] determined the radio

number for Cartesian product of a complete graph with a path. The radio number

of GP (n, 1) is obtained by Kola and Panigrahi [10]. The radio number of toroidal

grid Cs�Cs is determined by Morris-Rivera et al. [13]. Saha and Panigrahi [15]

determined rn(Cs�Cr) whenever sr is even. For an arbitrary graph G, Kola and

Panigrahi [11] have given a lower bound of rck(G) . Additionally, they have proved

that for some values of r, the above lower bound agrees with rn(Cr�P2). Chartrand

et al. [2] have obtained the antipodal number of some classes of paths, and for an

arbitrary graph G, they have also found bounds for ac(G) in terms of the antipodal

number of paths. The same authors had conjectured about the antipodal number of

paths and this has been proved by Khennoufa and Togni [6]. Khennoufa and Togni

[7] have determined ac(Qn), where Qn is the n-dimensional hypercube. Juan and Liu

[4] obtained the antipodal number of a cycle. Saha and Panigrahi [14] obtained the

antipodal number of powers of cycles.

In this research article, we compute the antipodal number of Kr�Cs, for an even

integer r ≥ 4 with s ≡ 1 (mod 4); and for any r ≥ 4 with s = 4t + 2, t odd. Then,

for the rest of the values of r and s, we give lower and upper bounds for ac(Kr�Cs).

2. Antipodal number of Kr�Cs

To determine a lower bound for ac(Kr�Cs), we need the theorem below, given by

Kola and Panigrahi [11].

Theorem 1. [11] Let G be a simple and connected graph having order r with diameter
d. If d(x, y) + d(x, z) + d(y, z) ≤M , for every triplet of vertices x, y and z of G, then

rck(G) ≥


(r−1)(3(k+1)−M)

4
if r is odd and M 6≡ k (mod 2),

(r−1)(3(k+1)−M+1)
4

if r is odd and M ≡ k (mod 2),
(r−2)(3(k+1)−M)

4
+ k − d+ 1 if r is even and M 6≡ k (mod 2),

(r−2)(3(k+1)−M+1)
4

+ k − d+ 1 if r is even and M ≡ k (mod 2).
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Definition 2. The smallest integer M for which d(x, y) + d(x, z) + d(y, z) ≤M for every
triplet of vertices x, y and z of a graph G, is known as the triameter of the graph G, and
denoted by tr(G).

Lemma 2. [11] For connected graphs G1 and G2, we have tr(G1�G2 ) = tr(G1 )+
tr(G2 ).

Since tr(Kr ) = 3 and tr(Cs) = s (Saha and Panigrahi [14]), the following lemma is

immediate from Lemma 2.

Lemma 3. For r ≥ 3 and s ≥ 3, the triameter of Kr�Cs is s+ 3.

The lemma below gives the diameter of the Cartesian product between two graphs in

terms of the diameter of the individual graphs.

Lemma 4. [15] If G1 and G2 are simple and connected graphs then diam(G1�G2) =
diam(G1) + diam(G2).

Since the diameter of cycle Cs is b s2c and the diameter of complete graph Kr is 1, the

following lemma is immediate from Lemma 4.

Lemma 5. The diameter of Kr�Cs is given by

diam(Kr�Cs) =

{
s+1
2

if s odd,
s
2

+ 1 if s even.

The theorem below gives a lower bound for ac(Kr�Cs).

Theorem 2. For the even positive integer r,

ac(Kr�Cs) ≥


1
8
(s2r − 2s) if s ≡ 0 (mod 4),

1
8
(s2r − sr − 2s+ 2) if s ≡ 1 (mod 4),

1
8
(s2r + 2sr − 2s− 4) if s ≡ 2 (mod 4),

1
8
(s2r − 3sr − 2s+ 6) if s ≡ 3 (mod 4).

Proof. By Lemma 3, the triameter of Kr�Cs is M = s + 3. Depending on values

of s, we consider four cases.

Case I. s ≡ 0 (mod 4).
Here diam(Kr�Cs)=

s
2 + 1, by Lemma 5. In this case M = s + 3 is odd integer and

s
2 is even integer. So M 6≡ s

2 (mod 2). Then by Theorem 1, we get

ac(Kr�Cs) ≥
(sr − 2)

[
3
(
s
2

+ 1
)
− s− 3

]
4

+ d− 1− d+ 1 =
1

8
(s2r − 2s).
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Case II. s ≡ 1 (mod 4).
In this case diam(Kr�Cs)=

s+1
2 , by Lemma 5. Also both s−1

2 and M = s + 3 are

even integers, so we get M ≡ s−1
2 (mod 2). Then by Theorem 1, we have

ac(Kr�Cs) ≥
(sr − 2)

[
3
(
s+1
2

)
− s− 3 + 1

]
4

+ d− 1− d+ 1 =
1

8
(s2r − sr − 2s+ 2).

Case III. s ≡ 2 (mod 4).
In this case diam(Kr�Cs)=

s
2 + 1, by Lemma 5. Also both s

2 and M = s+ 3 are odd
integers, so we get M ≡ s

2 (mod 2). Then by Theorem 1, we have

ac(Kr�Cs) ≥
(sr − 2)

[
3
(
s
2

+ 1
)
− s− 3 + 1

]
4

+ d− 1− d+ 1 =
1

8
(s2r + 2sr − 2s− 4).

Case IV. s ≡ 3 (mod 4).
In this case diam(Kr�Cs)=

s+1
2 , by Lemma 5. Here s−1

2 is an odd and M = s+ 3 is
an even integer. So M 6≡ s

2 (mod 2). Then by Theorem 1, we get

ac(Kr�Cs) ≥
(sr − 2)

[
3
(
s+1
2

)
− s− 3

]
4

+ d− 1− d+ 1 =
1

8
(s2r − 3sr − 2s+ 6).

Theorem 3. For odd positive integer r,

ac(Kr�Cs) ≥


1
8
(s2r − 2s) if s ≡ 0 (mod 4),

1
8
(s2r − sr − s+ 1) if s ≡ 1 (mod 4),

1
8
(s2r + 2sr − 2s− 4) if s ≡ 2 (mod 4),

1
8
(s2r − 3sr − s+ 3) if s ≡ 3 (mod 4).

Proof. By Lemma 3, the triameter of Kr�Cs is M = s + 3. Depending on values

of s, we consider four cases.

Case I. s ≡ 0 (mod 4).

Here diam(Kr�Cs)=
s
2 + 1, by Lemma 5. In this case M = s + 3 is odd integer and

s
2 is even integer. So M 6≡ s

2 (mod 2). Then by Theorem 1, we get

ac(Kr�Cs) ≥
(sr − 2)

[
3
(
s
2

+ 1
)
− s− 3

]
4

+ d− 1− d+ 1 =
1

8
(s2r − 2s).

Case II. s ≡ 1 (mod 4).

In this case diam(Kr�Cs)=
s+1
2 , by Lemma 5. Also both s−1

2 and M = s + 3 are

even integers, so we get M ≡ s−1
2 (mod 2). Then by Theorem 1, we have
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ac(Kr�Cs) ≥
(sr − 1)

[
3
(
s+1
2

)
− s− 3 + 1

]
4

=
1

8
(s2r − sr − s+ 1).

Case III. s ≡ 2 (mod 4).

In this case diam(Kr�Cs)=
s
2 + 1, by Lemma 5. Also both s

2 and M = s+ 3 are odd

integers, so we get M ≡ s
2 (mod 2). Then by Theorem 1, we have

ac(Kr�Cs) ≥
(sr − 2)

[
3
(
s
2

+ 1
)
− s− 3 + 1

]
4

+ d− 1− d+ 1 =
1

8
(s2r + 2sr − 2s− 4).

Case IV. s ≡ 3 (mod 4).
In this case diam(Kr�Cs)=

s+1
2 , by Lemma 5. Here s−1

2 is an odd and M = s+ 3 is
an even integer. So M 6≡ s

2 (mod 2). Then by Theorem 1, we get

ac(Kr�Cs) ≥
(sr − 1)

[
3
(
s+1
2

)
− s− 3

]
4

=
1

8
(s2r − 3sr − s+ 3).

The following lemma gives an ordering of vertices of Kr�Cs, for r even and s ≡ 1

(mod 4), with some distance separation among them. This ordering of vertices is

useful to give antipodal coloring.

Lemma 6. For the even integer r, r ≥ 4, and s ≡ 1 (mod 4), there is an ordering
v1, v2, . . . , vsr of vertices of Kr�Cs such that d(v2j , v2j−1) = s+1

2
for j = 1, 2, . . . , sr

2
, and

d(v2j+1, v2j) = s+3
4

for j = 1, 2, . . . , sr
2
− 1. Moreover, d(vj , vj−2) = s+3

4
for j = 3, 4, . . . , sr.

Proof. In Kr�Cs, there are r copies of cycle Cs, say, C
(0)
s , C

(1)
s , . . . , C

(r−1)
s . For

i = 0, 1, . . . , r − 1, let x
(i)
0 , x

(i)
2 , . . . , x

(i)
s−1 be the vertices of C

(i)
s . Now we define an

ordering of the vertices of Kr�Cs as

v2j+1 = x
((2j)( mod r))

(j( s−1
4 ))( mod s)

and

v2j+2 = x
((2j+1)( mod r))

(j( s−1
4 )+ s−1

2 )( mod s)

for all j ∈
{

0, 1, . . . , sr
2 − 1

}
. From the above ordering of the vertices of Kr�Cs, vj

and vj−2 lie on different cycles with d (vj , vj−2) = s−1
4 + 1 for all j = 3, 4, . . . , sr.

Also, d(vj , vj+1) = s−1
2 + 1 for all j = 1, 3, . . . , sr − 1, and d(vj+1, vj+2) = s−1

4 + 1

for all j = 1, 3, . . . , sr − 3. Since s and s−1
4 are co-prime. So all the vertices of
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C
(0)
s , C

(2)
s , . . . , C

(r−2)
s are covered by the ordering of the vertices v1, v3, . . . , vsr−1,

and the vertices of C
(1)
s , C

(3)
s , . . . , C

(r−1)
s are covered by the ordering of the ver-

tices v2, v4, . . . , vsr. Therefore, we obtain an ordering of the vertices of Kr�Cs as

v1, v2, . . . , vsr so that the sequence {d (vj , vj+1))}sr−1
j=1 is an alternating sequence of

s+1
2 and s+3

4 with d (vj , vj−2) = s+3
4 for all j = 3, 4, . . . , sr.

Theorem 4. For even integer r ≥ 4, and s ≡ 1 (mod 4), the antipodal number of Kr�Cs
is given by

ac(Kr�Cs) =
1

8
(s2r − sr − 2s+ 2).

Proof. We consider the ordering v1, v2, . . . , vsr of vertices of Kr�Cs as given in

Lemma 6. Now, we define a mapping g : V (Kr�Cs) → N ∪ {0} such that g(v1) = 0

and g(vj) = g(vj−1)+
(
s+1
2

)
−d(vj , vj−1), 2 ≤ j ≤ sr. We show that g is an antipodal

coloring of Kr�Cs. Clearly, for 4 ≤ l ≤ sr, l + 1 ≤ j ≤ sr, the pair of vertices vj
and vj−l satisfy the antipodal coloring condition. So we need to show that g satisfies

antipodal coloring condition for the pair of vertices vj and vj−2, 3 ≤ j ≤ sr; and vj
and vj−3, 4 ≤ j ≤ sr. When j is odd, d(vj , vj−1) = s+3

4 , d(vj−1, vj−2) = s+1
2 and

d(vj , vj−2) = s+3
4 . Therefore

g(vj)− g(vj−2) = g(vj)− g(vj−1) + g(vj−1)− g(vj−2)

=

(
s+ 1

2

)
− d(vj , vj−1) +

(
s+ 1

2

)
− d(vj−1, vj−2)

=

(
s+ 1

2

)
−
(
s+ 3

4

)
= 1 +

s− 1

2
− d(vj , vj−2).

g(vj)− g(vj−3) = g(vj)− g(vj−2) + g(vj−2)− g(vj−3)

=
s− 1

4
+

(
s+ 1

2

)
− d(vj−2, vj−3)

=

(
1 +

s− 1

2

)
− 1

≥ 1 +
s− 1

2
− d(vj , vj−3),

as d(vj , vj−3) ≥ 1.

When j is even, d(vj , vj−1) = s+1
2 , d(vj−1, vj−2) = s+3

4 and d(vj , vj−2) = s+3
4 .
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Therefore

g(vj)− g(vj−2) = g(vj)− g(vj−1) + g(vj−1)− g(vj−2)

=

(
s+ 1

2

)
− d(vj , vj−1) +

(
s+ 1

2

)
− d(vj−1, vj−2)

=

(
s+ 1

2

)
−
(
s+ 3

4

)
= 1 +

s− 1

2
− d(vj , vj−2)

g(vj)− g(vj−3) = g(vj)− g(vj−2) + g(vj−2)− g(vj−3)

=
s− 1

4
+

(
s+ 1

2

)
− d(vj−2, vj−3)

=

(
1 +

s− 1

2

)
−
(
s+ 3

4

)
≥ 1 +

s− 1

2
− d(vj , vj−3).

For j = 4, 5, . . . , sr, the vertices vj , vj−2 and vj−3 all lie on different cycles, we get
d(vj , vj−3) ≥ d(vj−2, vj−3) − d(vj , vj−2) ≥ s+1

2 −
s+3
4 + 1 = s+3

4 . Hence g is an
antipodal coloring. From the definition of the mapping g and ordering of the vertices
vj , we get

sr∑
j=2

d(vj , vj−1) =
sr

2

(
s+ 1

2

)
+
( sr

2
− 1
)( s+ 3

4

)
and

sr∑
j=2

εj = 0.

From Lemma 1 we get,

span(g) = g(vsr)

= (sr − 1)

(
s+ 1

2

)
−
sr

2

(
s+ 1

2

)
−
( sr

2
− 1
)( s+ 3

4

)
=

1

8
(s2r − sr − 2s+ 2).

So ac(Kr�Cs) ≤ span(g) = 1
8 (s2r − sr − 2s + 2). This upper bound matches the

lower bound found in Case II of Theorem 2, and so the result follows.

The example below illustrates Lemma 6 and Theorem 4.

Example 1. Here we consider the graph K6�C5. So r = 6 and s = 5. Figure 1 represents
ordering of vertices given in Lemma 6, and Figure 2 gives the antipodal coloring obtained
in Theorem 4 with span 14.

In the lemma below, we give an ordering of the vertices of Kr�Cs, for any positive

integer r ≥ 4 and s = 4t + 2 with t odd. This ordering of vertices will be useful to

determine a minimal antipodal coloring.
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Figure 1. Ordering of vertices K6�C5 as described in Lemma 6

Figure 2. The antipodal coloring of K6�C5 as described in Theorem 4 with span 14.

Lemma 7. For any positive integer r ≥ 4 and s = 4t + 2 with t odd, there is an
arrangement v1, v2, . . . , vsr of vertices of Kr�Cs such that d(v2j , v2j−1) = s

2
+ 1 for j =

1, 2, . . . , sr
2

, and d(v2j+1, v2j) = s+2
4

for j = 1, 2, . . . , sr
2
−1. Moreover, d(vj , vj−2) = s+2

4
+1

for j = 3, 4, . . . , sr.

Proof. In Kr�Cs, there are s copies of cycle Kr, say, K
(0)
r ,K

(1)
r , . . . ,K

(s−1)
r . For

i = 0, 1, . . . , s − 1, let x
(i)
0 , x

(i)
2 , . . . , x

(i)
r−1 be the vertices of K

(i)
r . Now we define an

ordering of the vertices of Kr�Cs as

v2j+1 = x
(j( s+2

4 ))( mod s)

j( mod r)

and

v2j+2 = x
(j( s+2

4 )+ s
2 )( mod s)

(j+3)( mod r)

for all j ∈
{

0, 1, . . . , sr
2 − 1

}
. From the above ordering of the vertices of Kr�Cs, vj

and vj−2 lie on different cycles with d (vj , vj−2) = s+2
4 + 1 for all j = 3, 4, . . . , sr.
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Also, d(vj , vj+1) = s
2 + 1 for all j = 1, 3, . . . , sr − 1, and d(vj+1, vj+2) = s+2

4

for all j = 1, 3, . . . , sr − 3. Since s and s+2
4 are co-prime, all the vertices of

K
(0)
r ,K

(2)
r , . . . ,K

(s−2)
r are covered by the ordering of the vertices v1, v3, . . . , vsr−1,

and the vertices of K
(1)
r ,K

(3)
r , . . . ,K

(s−1)
r are covered by the ordering of the vertices

v2, v4, . . . , vsr. Thus we obtain an ordering of the vertices of Kr�Cs as v1, v2, . . . , vsr
so that the sequence {d (vj , vj+1))}sr−1

j=1 is an alternating sequence of s
2 + 1 and s+2

4

with d (vj , vj−2) = s+2
4 + 1 for all j = 3, 4, . . . , sr.

Theorem 5. For any positive integer r ≥ 4 and s = 4t + 2 with t odd, the antipodal
number of the graph Kr�Cs is given by

ac(Kr�Cs) = 1
8

(s2r + 2sr − 2s− 4).

Proof. We consider the ordering v1, v2, . . . , vsr of vertices of Kr�Cs as given in

Lemma 7. Now, we define a mapping g : V (Kr�Cs) → N ∪ {0} such that g(v1) = 0

and g(vj) = g(vj−1) +
(
s
2 + 1

)
− d(vj , vj−1), 2 ≤ j ≤ sr. We can show that g is an

antipodal coloring of Kr�Cs. By Lemma 1,

span(g) = g(vsr)

= (sr − 1)
( s

2
+ 1
)
−
sr

2

( s
2

+ 1
)
−
( sr

2
− 1
)( s+ 2

4

)
=

1

8
(s2r + 2sr − 2s− 4).

So ac(Kr�Cs) ≤ 1
8 (s2r + 2sr − 2s − 4). This upper bound coincides with the lower

bound obtained in Case III of Theorems 2 and 3, and hence the result follows.

Example 2. Here we consider the graph K5�C6. So r = 5 and s = 6. Figure 3 represents
ordering of vertices given in Lemma 7, and Figure 4 gives the antipodal coloring obtained
in Theorem 5 with span 28.

Figure 3. Ordering of vertices K5�C6 as described in Lemma 7
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Figure 4. The antipodal coloring of K5�C6 as described in Theorem 5 with span 28.

We give an upper bound of ac(Kr�Cs), for the remaining values of r and s, applying

the following result by Kchikech et al. [5], which holds true for radio and antipodal

numbers only.

Theorem 6. [5] For two graphs G1 and G2 of order r ≥ 2 and s respectively, and for
any integer k ≥ diam(G1�G2)− 1,

rck(G1�G2) ≤ s (rck(G1)) + (s− 1)k −
∑

(G2),

where
∑

(G2) = max
π

∑s−2
j=0 dG2(π(j+1), π(j)), and π is a permutation on vertex set V (G2) =

{0, 1, . . . , s− 1}.

The following result is due to Liu and Zhu [12].

Lemma 8. [12] For cycle Cs, s ≥ 3, the radio number rn(Cs) is

rn(Cs) =


1
8

(s2 + 6s− 8) if s ≡ 0 (mod 4),
1
8

(s2 + 2s− 3) if s ≡ 1 (mod 4),
1
8

(s2 + 4s− 4) if s ≡ 2 (mod 4),
1
8

(s2 + 4s− 5) if s ≡ 3 (mod 4).

Since the distance between every pair of distinct vertices of the complete graph Kr is

1, we get
∑

(Kr) = r− 1. Then we obtain the result of Theorem 7 below by applying

Theorem 6 and Lemma 8.

Theorem 7. For positive integer r ≥ 2 and s ≥ 3,

ac(Kr�Cs) = ac(Cs�Kr) ≤


1
8

(s2r + 10sr − 16r − 4s+ 8) if s ≡ 0 (mod 4),
1
8

(s2r + 6sr − 15r − 4s+ 12) if s ≡ 1 (mod 4),
1
8

(s2r + 8sr − 12r − 4s+ 8) if s ≡ 2 (mod 4),
1
8

(s2r + 8sr − 17r − 4s+ 12) if s ≡ 3 (mod 4).
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One sees that bounds given in Theorems 2 and 3 are sharp for many values of r and s

as proved in Theorems 4 and 5. The example below gives some light on the sharpness

of bounds for remaining values of r and s.

Example 3. We obtain that antipodal number of K2�C5 and K2�C6 are 8 and 15
respectively, see Figure 5 and 6. However from Theorems 2 and 3 one gets that the lower
bounds for ac(K2�C5) and ac(K2�C6) are 4 and 10 respectively. We find that antipodal
number of K3�C6 is 16, as given in Figure 7. This number coincides with the lower bound
given in Theorem 3 for ac(K3�C6).

Figure 5. Minimal antipodal coloring of K2�C5 with span 8

Figure 6. Minimal antipodal coloring of K2�C6 with span 15

Figure 7. Minimal antipodal coloring of K3�C6 with span 16
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We have also checked that lower bound obtained in Theorem 3 is sharp for r = 3 and

several values of s when s ≡ 2 (mod 4). Hence we state the open problem below.

Open Problem 1. Lower bound obtained in Theorem 3 is sharp for r = 3 and s ≡ 2

(mod 4).

Example 4. From Theorem 7, we obtain the upper bound of ac(K2�C5) and ac(K2�C6)
as 9 and 16 respectively. However we have seen in Example 3 that the antipodal numbers
of K2�C5 and K2�C6 are 8 and 15 respectively. Hence the bounds given in Theorem 7 are
very close to the exact numbers for some values of r and s.
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