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Abstract: A signed graph is a graph whose edges are labeled either as positive or

negative. The concepts of vector valued switching and balancing dimension of signed

graphs were introduced by S. Hameed et al. In this paper, we deal with the balancing
dimension of various products of signed graphs, namely the Cartesian product, the

lexicographic product, the tensor product, and the strong product.

Keywords: Signed graph, vector valued switching, balancing dimension, product of

signed graphs

AMS Subject classification: 05C22, 05C76

1. Introduction

Throughout this paper, unless otherwise mentioned, we consider only finite, simple,

connected, and undirected signed graphs. For the standard notation and terminology

in graphs and signed graphs, not given here, the reader may refer to [6] and [10, 11]

respectively.

A signed graph Σ = (G, σ) is a graph G, together with a function σ that assigns a

sign +1 or −1 to each of its edges. The sign of a cycle in Σ is defined as the product of

the signs of its edges, and Σ is balanced if it does not contain any negative cycles. A

signed graph Σ = (G, σ) is said to be “antibalanced” if the signed graph −Σ = (G,−σ)

is balanced. A switching function for Σ is a function ζ : V (Σ) → {−1, 1}. For an

edge e = uv in Σ, the switched signature σζ is defined as σζ(e) = ζ(u)σ(e)ζ(v),

and the switched signed graph is Σζ = (G, σζ) . The signs of cycles are unchanged

by switching and every balanced (antibalanced) signed graph can be switched to an
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760 Vector valued switching in the products of signed graphs

all-positive (all-negative) signed graph. We call Σ1 and Σ2 switching equivalent, and

write Σ1 ∼ Σ2, if there is a switching function ζ such that Σ2 = Σζ1 (see [10, Section

3]).

The notions of vector valued switching and balancing dimension of signed graphs were

defined by Hameed et al. in [5]. In this paper, we focus on computing the balancing

dimensions of various products of signed graphs such as the Cartesian product, the

lexicographic product, the tensor product, and the strong product.

To begin with, we recall some notations, definitions and fundamental results from [5].

In what follows, Ω = {−1, 0, 1} and the inner product used is the same as that on Rk
restricted to Ωk.

Definition 1. (Vector Valued Switching or k-switching) [5] Let Σ = (G, σ) be a given
signed graph where G = (V,E). A vector valued switching function is a function ζ : V →
Ωk ⊂ Rk such that 〈ζ(u), ζ(v)〉 6= 0 for all edges uv ∈ E. The switched signed graph
Σζ = (G, σζ) has the signing

σζ(uv) = σ(uv) sgn(〈ζ(u), ζ(v)〉).

Note that the switching that has been discussed so far in literature [10] can be con-

sidered as 1-switching. Using vector valued switching, the balancing dimension for a

signed graph is defined as follows.

Definition 2. (Balancing Dimension) [5] Let Σ = (G, σ) be a given signed graph where
G = (V,E). We say that the balancing dimension of Σ is k, and write it as bdim(Σ), if k ≥ 1
is the least integer such that a vector-valued switching function ζ : V → Ωk ⊂ Rk switches
Σ to an all positive signed graph.
Such a k-switching function ζ is called a positive k-switching function (briefly a k-positive
function) for Σ.

One may note that bdim(Σ) = 1 if and only if Σ is balanced. Also, the balancing

dimension of a subgraph of Σ cannot exceed the balancing dimension of Σ. We will

also make use of the fact that the balancing dimension is 1-switching invariant (see

[5]).

2. Balancing dimension of the product of signed graphs

In this section, we establish some results regarding the balancing dimension of the

Cartesian product, the lexicographic product, the tensor product, and the strong

product of signed graphs.

2.1. Balancing dimension of the Cartesian product

The Cartesian product of two signed graphs is defined by Germina et al. in [3].
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Definition 3. [3] The Cartesian product Σ12Σ2 of two signed graphs Σ1 = (G1, σ1) and
Σ2 = (G2, σ2) is defined as the Cartesian product of the underlying unsigned graphs with
the signature function σ for the labeling of the edges defined by

σ((ui, vj)(uk, vl)) =

{
σ1(uiuk), if j = l,

σ2(vjvl), if i = k.

If Σ1 and Σ2 are balanced, then their Cartesian product Σ12Σ2 is also balanced (see

[3]) and hence bdim(Σ12Σ2) = 1. We now consider the case where one of the factors

is balanced.

Theorem 1. Let Σ1 = (G1, σ1) and Σ2 = (G2, σ2) be two signed graphs and let Σ12Σ2

be their Cartesian product. Then

bdim(Σ12Σ2) =

{
bdim(Σ1), if Σ2 is balanced

bdim(Σ2), if Σ1 is balanced.

Proof. Suppose bdim(Σ1) = k and Σ2 is balanced. Let ζ1 : V (Σ1) → Ωk and

ζ2 : V (Σ2) → {−1, 1} be the corresponding switching functions. We now define

ζ : V (Σ1 × Σ2) → Ωk by ζ((ui, vj)) = ζ1(ui)ζ2(vj) for 1 ≤ i ≤ |V (Σ1)| and 1 ≤ j ≤
|V (Σ2)|.
Now for any edge e = (ui, vj)(uk, vl) in Σ12Σ2, we have,

σζ((ui, vj)(uk, vl)) = σ((ui, vj)(uk, vl)) sgn(〈ζ((ui, vj)), ζ((uk, vl))〉). (2.1)

If j = l, Equation 2.1 becomes

σζ((ui, vl)(uk, vj)) = σ1(uiuk) sgn(〈ζ((ui, vj)), ζ((uk, vl))〉)
= σ1(uiuk) sgn(〈ζ1(ui)ζ2(vl), ζ1(uk)ζ2(vl)〉)
= (ζ2(vl))

2σ1(uiuk) sgn(〈ζ1(ui), ζ1(uk)〉)

= (ζ2(vl))
2σζ11 (uiuk)

= +1.

Similarly, if i = k, Equation 2.1 becomes

σζ((ui, vj)(uk, vl)) = σ2(vjvl) sgn(〈ζ((uk, vj)), ζ((uk, vl))〉)
= σ2(vjvl) sgn(〈ζ1(uk)ζ2(vj), ζ1(uk)ζ2(vl)〉)
= σ2(vjvl)ζ2(vj)ζ2(vl) sgn(〈ζ1(uk), ζ1(uk)〉)

= σζ22 (vjvl) sgn(‖ζ1(uk)‖2)

= +1.

Thus, ζ switches Σ12Σ2 to all-positive, and hence bdim(Σ12Σ2) ≤ k. However, since

Σ1 is a subgraph of Σ12Σ2, we must have bdim(Σ12Σ2) = k = bdim(Σ1).

Similar is the proof of the next part.
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Theorem 2. [7] Let Σ1 and Σ2 be two signed graphs and let Σ12Σ2 be their Cartesian
product. If Σ1 ∼ Σ′1 and Σ2 ∼ Σ′2, then Σ12Σ2 ∼ Σ′12Σ′2.

Theorem 3. [5] If Σ contains a negative triangle, then bdim(Σ) ≥ 3.

We now compute the balancing dimension of the Cartesian product of two unbalanced

signed graphs. To begin with, we consider the Cartesian product of two unbalanced

cycles.

Proposition 1. Let C−m and C−n , m,n ≥ 3 be two unbalanced cycles, and let C−m2C−n be
their Cartesian product. Then,

bdim(C−m2C−n ) =

{
2, if m,n > 3

3, otherwise.

Proof. Since balancing dimension is 1 - switching invariant, by using Theorem 2,

we can consider C−m = u1u2 · · ·um and C−n = v1v2 · · · vn, where u1u2 and v1v2 are

the only negative edges of C−m and C−n respectively. Since the Cartesian product is

commutative, it suffices to consider three cases: m,n > 3, m = 3 and n > 3, and

n = m = 3.

In the first case, since C−m2C−n is unbalanced, we have bdim(C−m2C−n ) ≥ 2. Now,

the function ζ1 : V (C−m2C−n )→ Ω2 given in Table 1 switches C−m2C−n to all-positive.

Hence, bdim(C−m2C−n ) = 2. In the remaining two cases, C−m2C−n contains a negative

triangle and hence bdim(C−m2C−n ) ≥ 3 . Now, the functions ζi : V (C−m2C−n ) → Ω3,

where i ∈ {2, 3}, given in Tables 2 and 3 respectively, switches C−m2C−n to all-positive.

Hence bdim(C−m2C−n ) = 3 in each of these cases.

ζ1((ui, vj)) v1 v2 v3, v4, · · · , vn−1 vn
u1 (−1, 1) (1, 0) (1, 1) (0, 1)

u2 (1, 0) (−1,−1) (0,−1) (1,−1)

u3, u4, · · · , um−1 (1, 1) (0,−1) (1,−1) (1, 0)

um (0, 1) (1,−1) (1, 0) (1, 1)

Table 1. A 2 - positive function for C−m2C−n for m,n > 3.

ζ2((ui, vj)) v1 v2, v3, · · · , vn−1 vn
u1 (−1,−1, 1) (1,−1,−1) (−1,−1,−1)

u2 (1,−1,−1) (1, 1, 1) (1, 0, 0)

u3 (−1,−1,−1) (1, 0, 0) (1,−1,−1)

Table 2. A 3 - positive function for C−3 2C−n for n > 3.
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ζ3((ui, vj)) v1 v2 v3
u1 (−1,−1, 1) (1,−1,−1) (−1,−1,−1)

u2 (1,−1,−1) (1, 1, 1) (1, 0, 0)

u3 (−1,−1,−1) (1, 0, 0) (1,−1,−1)

Table 3. A 3 - positive function for C−3 2C−3 .

Next, we consider antibalanced signed complete graphs. We denote the antibalanced

signed complete graph on n vertices by K−n , and the balancing dimension of K−n is

defined as ν̄(n) [5].

Proposition 2. Let K−m and K−n be antibalanced signed complete graphs of order m and
n respectively, and let K−m2K−n be their Cartesian product. Then bdim(K−m2K−n ) = ν̄(h),
where, h = max{m,n}.

Proof. By adequate 1-switching, we can consider K−m and K−n as all-negative. Then,

the Cartesian product K−m2K−n is also all-negative.

Without loss of generality, assume that m ≥ n. Suppose bdim(K−m) = k and let

ζ ′ : V (K−m) → Ωk be the k - positive function. Since K−m is a subgraph of K−m2K−n ,

we have bdim(K−m2K−n ) ≥ k. Now, the function ζ : V (K−m2K−n ) → Ωk given in

Table 4 switches K−m2K−n to all-positive. Hence, bdim(K−m2K−n ) = k = ν̄(m).

Similar is the proof of the next part.

ζ((ui, vj)) v1 v2 v3 · · · vn
u1 ζ′(u1) ζ′(u2) ζ′(u3) · · · ζ′(un)

u2 ζ′(u2) ζ′(u3) ζ′(u4) · · · ζ′(un+1)

u3 ζ′(u3) ζ′(u4) ζ′(u5) · · · ζ′(un+2)

.

..
.
..

.

..
.
..

.

..
.
..
.
..

.

..

um ζ′(um) ζ′(u1) ζ′(u2) · · · ζ′(un−1)

Table 4. A k - positive function for K−m2K−n

Corollary 1. For any antibalanced signed graph Σ on n vertices, bdim(Σ2K−n ) =
bdim(K−n ).

2.2. Balancing dimension of the lexicographic product

We now focus on the lexicographic product (also called composition) of signed graphs.

Two definitions for the lexicographic product of signed graphs are available in the

literature. We call the definition given by Hameed et al. [4] the HG-lexicographic

product and the definition given by Brunetti et al. [2] the BCD-lexicographic product.

Definition 4. [4] The HG-lexicographic product of two signed graphs Σ1 = (G1, σ1) and
Σ2 = (G2, σ2) is the signed graph whose underlying graph is the lexicographic product of
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the underlying unsigned graphs and whose signature function σ for the labeling of the edges
is defined by

σ((ui, vj)(uk, vl)) =

{
σ1(uiuk) if i 6= k,

σ2(vjvl) if i = k.

We denote the HG-lexicographic product of Σ1 and Σ2 by Σ1[Σ2].

Definition 5. [2] The BCD-lexicographic product of two signed graphs Σ1 = (G1, σ1) and
Σ2 = (G2, σ2) as the signed graph whose underlying graph is the lexicographic product of
the underlying unsigned graphs and whose signature function σ for the labeling of the edges
is defined by

σ((ui, vj)(uk, vl)) =


σ1(uiuk) if ui ∼ uk and vj � vl,
σ1(uiuk)σ2(vjvl) if ui ∼ uk and vj ∼ vl,
σ2(vjvl) if ui = uk and vj ∼ vl.

We denote the BCD-lexicographic product of Σ1 and Σ2 by Σ1 ∗ Σ2.

The HG-lexicographic product and BCD-lexicographic product of two balanced signed

graphs need not be balanced. However, a criterion for the balance of HG-lexicographic

product of two signed graphs is proved in [4] .

Theorem 4. [4] If Σ1 and Σ2 are two signed graphs with at least one edge for each, then
their HG-lexicographic product is balanced if and only if Σ1 is balanced and Σ2 is all-positive.

Theorem 5. Let Σ1 and Σ2 be two signed graphs, with Σ2 having at least one negative
edge. Then bdim(Σ1[Σ2]) ≥ 3.

Proof. Let vjvj+1 be a negative edge of Σ2. Then for any edge uiui+1 of Σ1,

(ui, vj)(ui, vj+1)(ui+1, vj)(ui, vj) forms a negative triangle in Σ1[Σ2]. Hence, by The-

orem 3, bdim(Σ1[Σ2]) ≥ 3.

Proposition 3. For any signed graph Σ, bdim(Nk[Σ]) = bdim(Σ[Nk]) = bdim(Σ), where
Nk is the graph on k vertices without edges.

Proof. Suppose bdim(Σ) = k and ζ : V (Σ)→ Ωk be the k-positive function. Then,

ζ ′ : V (Nk[Σ])→ Ωk, defined by ζ ′((wi, uj)) = ζ(uj) for 1 ≤ i ≤ k and 1 ≤ j ≤ |V (Σ)|,
switches Nk[Σ] to all-positive. Hence, bdim(Nk[Σ]) ≤ k. However, since Σ is a

subgraph of Nk[Σ], we must have bdim(Nk[Σ]) = k = bdim(Σ).

Similarly, ζ ′′ : V (Σ[Nk]) → Ωk, defined by ζ ′′((ui, wj)) = ζ(ui) for 1 ≤ i ≤ |V (Σ)|
and 1 ≤ j ≤ k, switches Σ[Nk] to all-positive, and hence bdim(Σ[Nk]) = k.
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Remark 1. The above results show that, even though the lexicographic product is not
commutative, there exist signed graphs satisfying bdim(Σ1[Σ2]) = bdim(Σ2[Σ1]). However,
in general, bdim(Σ1[Σ2]) 6= bdim(Σ2[Σ1]). As an example, consider Σ1 as the balanced
triangle having two negative edges and Σ2 as the all-positive K2. Then, Theorem 4 and
Theorem 5 respectively shows that bdim(Σ1[Σ2]) = 1 and bdim(Σ2[Σ1]) ≥ 3.

Theorem 6. Let Σ1 and Σ2 be two signed graphs and let Σ1[Σ2] be their HG - lexicographic
product. If Σ1 ∼ Σ′1, then Σ1[Σ2] ∼ Σ′1[Σ2].

Proof. Let σ1, σ′1, σ2, σ and σ′ denote the signatures of Σ1, Σ′1, Σ2, Σ1[Σ2] and

Σ′1[Σ2] respectively. Since Σ1 ∼ Σ′1, there exists a switching function η : V (Σ1) →
{−1, 1} such that Ση1 = Σ′1. Define the map η′ : V (Σ1[Σ2])→ {−1, 1} as η′((ui, vj)) =

η(ui) for 1 ≤ i ≤ |V (Σ1)| and 1 ≤ j ≤ |V (Σ2)|. Then, for any edge (ui, vj)(uk, vl) in

Σ1[Σ2], we have,

ση
′
((ui, vj)(uk, vl)) = η′((ui, vj))σ((ui, vj)(uk, vl))η

′((uk, vl))

= η(ui)σ((ui, vj)(uk, vl))η(uk)

=

{
η(ui)σ1(uiuk)η(uk) if i 6= k,

η(uk)σ2(vjvl)η(uk) if i = k.

=

{
ση1 (uiuk) if i 6= k,

σ2(vjvl) if i = k.

=

{
σ′1(uiuk) if i 6= k,

σ2(vjvl) if i = k.

= σ′((ui, vj)(uk, vl)).

Thus,(Σ1[Σ2])η
′

= Σ′1[Σ2] and hence, Σ1[Σ2] ∼ Σ′1[Σ2].

Since the balancing dimension is 1-switching invariant, we have the following result.

Corollary 2. If Σ1 and Σ2 are any two signed graphs and if Σ1 ∼ Σ′1, then
bdim(Σ1[Σ2]) = bdim(Σ′1[Σ2]).

Corollary 3. If Σ1 is antibalanced and Σ2 is all-negative, then Σ1[Σ2] is antibalanced.

Proof. Since Σ1 is antibalanced, we have Σ1 ∼ Σ′1, where Σ′1 is all- negative. Now,

since Σ2 is all-negative, Σ′1[Σ2] is all-negative, and hence antibalanced. Thus, by

Theorem 6, Σ1[Σ2] is antibalanced .

We now consider complete graphs. To begin with, observe that the lexicographic

product of two complete graphs, say Km and Kn is the complete graph Kmn. To see

this, consider any two vertices u = (ui, vj) and v = (uk, vl) in Km[Kn]. Then ui, uk
are adjacent in Km and vj , vl are adjacent in Kn. Therefore, if ui 6= uk, then since ui
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and uk are adjacent in Km, u and v are adjacent in Km[Kn]. On the other hand, if

ui = uk, then since vj , vl are adjacent in Kn, u and v are adjacent in Km[Kn]. Thus,

any two of the mn vertices of Km[Kn] are adjacent.

The next result follows immediately from Corollary 3.

Proposition 4. If Σ1 and Σ2 denote the antibalanced signed complete graph K−m and
the all-negative signed complete graph −Kn respectively, then bdim(Σ1[Σ2]) = ν̄(mn), where
ν̄(mn) is the balancing dimension of the antibalanced signed complete graph K−mn.

Theorem 7. Let Σ1 = (G1, σ1) and Σ2 = (G2, σ2) be two signed graphs, where Σ2 is
all-positive. Then bdim(Σ1[Σ2]) = bdim(Σ1).

Proof. Suppose Σ2 is all positive. Let bdim(Σ1) = k and ζ1 : V (Σ1) → Ωk be the

k-positive function. Now, the function ζ : V (Σ1[Σ2]) → Ωk, defined by ζ((ui, vj)) =

ζ1(ui) for 1 ≤ i ≤ |V (Σ1)| and 1 ≤ j ≤ |V (Σ2)|, switches Σ1[Σ2] to all-positive, and

hence bdim(Σ1[Σ2]) ≤ k. However, since Σ1 is a subgraph of Σ1[Σ2], we must have

bdim(Σ1[Σ2]) = k = bdim(Σ1).

Remark 2. Let Σ1 = +K2 and Σ2 = −K2. Then Σ1[Σ2] is the antibalanced signed
complete graph K−4 and hence bdim(Σ1[Σ2]) = ν̄(4) = 3 6= bdim(Σ2). Thus, bdim(Σ1[Σ2])
and bdim(Σ2) need not be equal if Σ1 is all-positive.

We now focus on the BCD-lexicographic product of two signed graphs. To begin with,

we restate Theorem 2.3 from [2], by removing the incorrect part (see [1]) and provide

an alternate proof for it.

Theorem 8. Let Σ1 and Σ2 be two signed graphs and let Σ1 ∗ Σ2 be their BCD -
lexicographic product. If Σ1 ∼ Σ′1, then Σ1 ∗ Σ2 ∼ Σ′1 ∗ Σ2.

Proof. Let σ1, σ′1, σ2, σ and σ′ denote the signatures of Σ1, Σ′1, Σ2, Σ1∗Σ2 and Σ′1∗
Σ2 respectively. Since Σ1 ∼ Σ′1, there exists a switching function η : V (Σ1)→ {−1, 1}
such that Ση1 = Σ′1. Define the map η′ : V (Σ1 ∗ Σ2)→ {−1, 1} as η′((ui, vj)) = η(ui)

for 1 ≤ i ≤ |V (Σ1)| and 1 ≤ j ≤ |V (Σ2)|. Then, for any edge (ui, vj)(uk, vl) in Σ1∗Σ2,

we have, ση
′
((ui, vj)(uk, vl)) = σ′((ui, vj)(uk, vl)). Thus, (Σ1 ∗ Σ2)η

′
= Σ′1 ∗ Σ2 and

hence Σ1 ∗ Σ2 ∼ Σ′1 ∗ Σ2.

Since the balancing dimension is 1-switching invariant, we have the following result.

Corollary 4. If Σ1 and Σ2 are any two signed graphs and if Σ1 ∼ Σ′1, then bdim(Σ1 ∗
Σ2) = bdim(Σ′1 ∗ Σ2).

Remark 3. Note that Corollary 3 does not hold in the case of BCD-lexicographic prod-
uct. To illustrate this consider Σ1 = (P3, σ) and Σ2 = −P2 depicted in Figure 1. Then,
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(u1, v1)(u2, v1)(u2, v2)(u1, v1) forms a negative triangle in −(Σ1 ∗Σ2), making it unbalanced.
Thus, Σ1 ∗ Σ2 is not antibalanced, though Σ1 is antibalanced and Σ2 is all-negative.

Figure 1. The BCD-lexicographic product Σ1 ∗ Σ2 is not antibalanced

Theorem 9. Let Σ1 = (G1, σ1) and Σ2 = (G2, σ2) be two signed graphs, where Σ2 is
all-positive. Then bdim(Σ1 ∗ Σ2) = bdim(Σ1).

Proof. Suppose Σ2 is all positive and let bdim(Σ1) = k. Then the function ζ : V (Σ1∗
Σ2) → Ωk, defined by ζ((ui, vj)) = ζ1(ui) for 1 ≤ i ≤ |V (Σ1)| and 1 ≤ j ≤ |V (Σ2)|,
where ζ1 : V (Σ1) → Ωk is the k-positive function for Σ1, switches Σ1 ∗ Σ2 to all-

positive, and hence bdim(Σ1 ∗ Σ2) ≤ k. However, since Σ1 is a subgraph of Σ1 ∗ Σ2,

we must have bdim(Σ1 ∗ Σ2) = k = bdim(Σ1).

Theorem 10. Let Σ1 = (G1, σ1) be a balanced signed graph and Σ2 = (Kn, σ2) be a
signed complete graph. Then bdim(Σ1 ∗ Σ2) = bdim(Σ2).

Proof. Since, Σ1 is balanced, by Theorem 8, we can consider it as all-positive.

Let bdim(Σ2) = k and let ζ2 : V (Σ2) → Ωk be the corresponding k-positive func-

tion. Then the vector valued switching function ζ : V (Σ1 ∗ Σ2) → Ωk, defined by

ζ((ui, vj)) = ζ2(vj) for 1 ≤ i ≤ |V (Σ1)| and 1 ≤ j ≤ n, switches Σ1 ∗ Σ2 to all-

positive, and hence bdim(Σ1 ∗ Σ2) ≤ k. However, since Σ2 is a subgraph of Σ1 ∗ Σ2,

we must have bdim(Σ1 ∗ Σ2) = k = bdim(Σ2).

Remark 4. Theorem 10 does not hold for the HG-lexicographic product of signed graphs.
As an example, let Σ1 = +K2 and Σ2 = −K2. Then the HG-lexicographic product Σ1[Σ2]
is the antibalanced signed complete graph (K4, σ) and hence bdim(Σ1[Σ2]) = ν̄(4) = 3 6=
bdim(Σ2). Thus, bdim(Σ1[Σ2]) and bdim(Σ2) need not be equal if Σ1 is balanced and Σ2 is
a signed complete graph.
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2.3. Balancing dimension of the tensor product

We now focus on the tensor product of signed graphs. The tensor product of two

signed graphs is given in [8] as follows.

Definition 6. The tensor product of two signed graphs Σ1 = (G1, σ1) and Σ2 = (G2, σ2)
is the signed graph Σ = Σ1 ×Σ2 whose underlying graph is G = G1 ×G2 and with the sign
of an edge (ui, vj)(uk, vl) of G given by

σ(((ui, vj)(uk, vl)) = σ1(u1uk)σ2(vjvl).

Theorem 11. [9] Let Σ1 and Σ2 be two connected signed graphs of order at least 2.
Then, the tensor product Σ1 × Σ2 is balanced if and only if Σ1 and Σ2 are both balanced or
both antibalanced.

Theorem 12. Let Σ1 = (G1, σ1) and Σ2 = (G2, σ2) be two signed graphs and Σ1 × Σ2

be their tensor product. Then

(i) bdim(Σ1 × Σ2) ≤ bdim(Σ1), if Σ2 is balanced.

(ii) bdim(Σ1 × Σ2) ≤ bdim(Σ2), if Σ1 is balanced

Proof. Suppose bdim(Σ1) = k and Σ2 is balanced. Let ζ1 : V (Σ1) → Ωk and ζ2 :

V (Σ2)→ {−1,+1} be the corresponding switching functions. Then ζ : V (Σ1×Σ2)→
Ωk, defined by ζ((ui, vj)) = ζ1(ui)ζ2(vj) for 1 ≤ i ≤ |V (Σ1)| and 1 ≤ j ≤ |V (Σ2)|,
switches Σ1 × Σ2 to all-positive, and hence bdim(Σ1 × Σ2) ≤ k.

Similar is the proof of the next part.

Remark 5. Let Σ1 = −K3 and Σ2 = −K2 denote the all-negative signed complete
graphs. Then by Theorem 11, bdim(Σ1 × Σ2) = 1. However, bdim(Σ1) = ν̄(3) = 3. Hence,
unlike the Cartesian product and the lexicographic products, there exist cases in which the
balancing dimension of the tensor product is strictly less than the balancing dimension of
its factor(s).
As an example for the case where equality holds, consider Σ3 = u1u2u3 and Σ4 = v1v2v3
as the all-negative and all-positive signed complete graphs on three vertices respectively.
Then (u1, v1)(u2, v2)(u3, v3) forms a negative triangle in Σ3 × Σ4. Thus, bdim(Σ3 × Σ4) =
bdim(Σ4).

2.4. Balancing dimension of the strong product

Finally, we consider the strong product of signed graphs.

Definition 7. [2] The strong product of two signed graphs Σ1 = (G1, σ1) and Σ2 =
(G2, σ2) is the signed graph Σ = Σ1 � Σ2 whose underlying graph is G = G1 �G2 and with
the sign of an edge (ui, vj)(uk, vl) of G given by

σ((ui, vj)(uk, vl)) =


σ1(uiuk) if ui ∼ uk and vj = vl,
σ2(vjvl) if ui = uk and vj ∼ vl,
σ1(uiuk)σ2(vjvl) if ui ∼ uk and vj ∼ vl.
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Lemma 1. Let Σ1 and Σ2 be two signed graphs and let Σ1 � Σ2 be their strong product.

(i) If Σ1 ∼ Σ′1, then Σ1 � Σ2 ∼ Σ′1 � Σ2.

(ii) If Σ2 ∼ Σ′2, then Σ1 � Σ2 ∼ Σ1 � Σ′2.

Proof. Let σ1, σ′1, σ2, σ′2, σ, σ′ and σ′′ denote the signatures of Σ1, Σ′1, Σ2, Σ′2,

Σ1 � Σ2, Σ′1 � Σ2, and Σ1 � Σ′2 respectively.

Since Σ1 ∼ Σ′1, there exists a switching function η : V (Σ1) → {−1, 1} such that

Ση1 = Σ′1. Define the map η′ : V (Σ1 � Σ2) → {−1, 1} as η′((ui, vj)) = η(ui) for

1 ≤ i ≤ |V (Σ1)| and 1 ≤ j ≤ |V (Σ2)|. Then, for any edge (ui, vj)(uk, vl) in Σ1 � Σ2,

we have, ση
′
((ui, vj)(uk, vl)) = σ′((ui, vj)(uk, vl)). Thus, (Σ1 � Σ2)η

′
= Σ′1 � Σ2 and

hence Σ1 � Σ2 ∼ Σ′1 � Σ2.

To prove (ii), consider the map µ′ : V (Σ1 � Σ2) → {−1, 1} defined by µ′((ui, vj)) =

µ(vj) for 1 ≤ i ≤ |V (Σ1)| and 1 ≤ j ≤ |V (Σ2)|, where µ is the switching function

that switches Σ2 to Σ′2.

Using Lemma 1 we arrive at the following theorem.

Theorem 13. Let Σ1 and Σ2 be two signed graphs and let Σ1�Σ2 be their strong product.
If Σ1 ∼ Σ′1 and Σ2 ∼ Σ′2, then Σ1 � Σ2 ∼ Σ′1 � Σ′2.

Corollary 5. If Σ1 and Σ2 are balanced, then so is Σ1 � Σ2.

Remark 6. If Σ1 and Σ2 are antibalanced, it need not imply that their strong product
Σ1�Σ2 is antibalanced. As an example, consider Σ1 = Σ2 = −K2. Then their strong product
is the balanced signed graph Σ1 � Σ2 = (K4, σ). Hence the signed graph −(Σ1 � Σ2) =
(K4,−σ) contains an unbalanced triangle, making it unbalanced. Thus, Σ1 � Σ2 is not
antibalanced.

Theorem 14. Let Σ1 = (G1, σ1) and Σ2 = (G2, σ2) be two signed graphs and Σ1 � Σ2

be their strong product. Then

bdim(Σ1 � Σ2) =

{
bdim(Σ1), if Σ2 is balanced

bdim(Σ2), if Σ1 is balanced.

Proof. Suppose bdim(Σ1) = k and Σ2 is balanced. Let ζ1 : V (Σ1) → Ωk and

ζ2 : V (Σ2) → {−1, 1} be the corresponding switching functions. Now, the function

ζ : V (Σ1 � Σ2) → Ωk, defined by ζ((ui, vj)) = ζ1(ui)ζ2(vj), switches Σ1 � Σ2 to all-

positive, and hence bdim(Σ1 �Σ2) ≤ k. However, since Σ1 is a subgraph of Σ1 �Σ2,

we must have bdim(Σ1 � Σ2) = k = bdim(Σ1).

Similar is the proof of the next part.
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3. Conclusion and Scope

In this paper, we have studied the properties of balancing dimension of various

products of signed graphs, namely, the Cartesian product, the lexicographic product,

the tensor product, and the strong product. We found the relationship between the

balancing dimensions of various signed graph products and their factors, provided one

of them is balanced or all-positive. We also computed the balancing dimensions of the

Cartesian product of unbalanced cycles, the Cartesian product of antibalanced signed

complete graphs, and the lexicographic product of antibalanced signed complete

graphs. We also proved some results on switching equivalence in the case of the

lexicographic products and the strong product. Finding the balancing dimensions of

products of general unbalanced signed graphs, finding the relation between balancing

dimensions of signed graph products and their factors, and studying properties of

balancing dimensions of other existing products of signed graphs are some exciting

areas for further investigation.
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