Research Article

NP-completeness of some generalized hop and step domination parameters in graphs

Ghazaleh Asemian $^{1,\dagger},$ Nader Jafari Rad $^{2,\ast},$ Abolfazl Tehranian $^{1,\ddagger},$ Hamid Rasouli^{1,§}

1 Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran †ghasemian@gmail.com

‡tehranian@srbiau.ac.ir §hrasouli@srbiau.ac.ir

2 Department of Mathematics, Shahed University, Tehran, Iran n.jafarirad@gmail.com

Received: 31 May 2023; Accepted: 17 October 2023 Published Online: 25 October 2023

Abstract: Let $r > 2$. A subset S of vertices of a graph G is a r-hop independent dominating set if every vertex outside S is at distance r from a vertex of S , and for any pair $v, w \in S$, $d(v, w) \neq r$. A r-hop Roman dominating function (rHRDF) is a function f on $V(G)$ with values 0, 1 and 2 having the property that for every vertex $v \in V$ with $f(v) = 0$ there is a vertex u with $f(u) = 2$ and $d(u, v) = r$. A r-step Roman dominating function (rSRDF) is a function f on $V(G)$ with values 0, 1 and 2 having the property that for every vertex v with $f(v) = 0$ or 2, there is a vertex u with $f(u) = 2$ and $d(u, v) = r$. A rHRDF f is a r-hop Roman independent dominating function if for any pair v, w with non-zero labels under $f, d(v, w) \neq r$. We show that the decision problem associated with each of r-hop independent domination, r-hop Roman domination, r-hop Roman independent domination and r-step Roman domination is NP-complete even when restricted to planar bipartite graphs or planar chordal graphs.

Keywords: dominating set, hop dominating set, step dominating set, hop independent set, hop Roman dominating function, hop Roman independent dominating function, complexity.

AMS Subject classification: 05C69

1. Introduction

For a graph $G = (V, E)$ with vertex set $V = V(G)$ and edge set $E = E(G)$, the order of G is $n(G) = n_G = |V(G)|$ and the size of G is $m(G) = m_G = |E(G)|$. The open neighborhood of a vertex v is $N_G(v) = \{u \in V(G) | uv \in E(G)\}\.$ The degree

[∗] Corresponding Author

c 2025 Azarbaijan Shahid Madani University

of v, denoted by deg(v), is $|N_G(v)|$, and the *open neighborhood* of a subset $S \subseteq V$, is $N_G(S) = \bigcup_{v \in S} N_G(v)$. The *distance* between two vertices u and v in G, denoted by $d(u, v)$, is the minimum length of a (u, v) -path in G. A bipartite graph is a graph whose vertices can *chordal graph* is a graph that does not contain an induced cycle of length greater than 3. A *planar graph* is a graph which can be drawn in the plane without any edges crossing. A *vertex cover* of a graph is a set of vertices such that each edge of the graph is incident with at least one vertex of the set. A subset S of vertices of a graph G is a *dominating set* of G if every vertex in $V(G) - S$ has a neighbor in S. For notation and graph theory terminology not given here, we refer to [\[12\]](#page-11-0).

Chartrand, Harary, Hossain, and Schultz [\[5\]](#page-11-1) introduced the concept of r-step domination in graphs. For an integer $r \geq 1$, two vertices in a graph G are said to r-step *dominate* each other if they are at distance exactly r apart in G . A set S of vertices in G is a r-step dominating set of G if every vertex in $V(G)$ is r-step dominated by some vertex of S. The r-step domination number, $\gamma_{rstep}(G)$ of G, is the minimum cardinality of a r-step dominating set of G . The concept of r-step was further studied, for example in $[4, 11, 14, 25]$ $[4, 11, 14, 25]$ $[4, 11, 14, 25]$ $[4, 11, 14, 25]$ $[4, 11, 14, 25]$ $[4, 11, 14, 25]$ $[4, 11, 14, 25]$. Ayyaswamy et al. $[3, 20]$ $[3, 20]$ $[3, 20]$ introduced the a similar concept, namely, hop domination in graphs. A subset S of vertices of a graph G is a hop dominating set (HDS) if every vertex outside S is at distance two from a vertex of S. The hop domination number, $\gamma_h(G)$ of G, is the minimum cardinality of an HDS of G . A subset S of vertices of a graph G is a hop independent dominating set (HIDS) if S is a HDS and for any pair $v, w \in S$, $d(v, w) \neq 2$. The hop independent *domination number* of G is the minimum cardinality of an HIDS of G . The concept of hop domination was further studied, for example, in [\[2,](#page-11-6) [13,](#page-11-7) [17\]](#page-12-2). A generalized version of hop domination, namely r-hop domination, (for any $r \geq 2$) is studied in [\[17\]](#page-12-2). For $r \geq 2$, a subset S of vertices of G is a r-hop dominating set (rHDS) if every vertex outside S is at distance r from a vertex of S. The r-hop domination number of G , is the minimum cardinality of a rHDS of G. For a subset $S \subseteq V(G)$ and a vertex $v \in V(G)$, we say that v is r-hop dominated by S (or S r-hop dominates v) if either $v \in S$ or $v \notin S$ and $d(u, v) = r$ for some vertex $u \in S$. Likewise, a subset S of vertices of G is a r-hop independent dominating set (rHIDS) if every vertex outside S is at distance r from a vertex of S, and for any pair $v, w \in S$, $d(v, w) \neq r$.

A function $f: V \longrightarrow \{0, 1, 2\}$ having the property that for every vertex $v \in V$ with $f(v) = 0$, there exists a vertex $u \in N(v)$ with $f(u) = 2$, is called a Roman dominating function or just an RDF. The weight of an RDF f is the sum $f(V) = \sum_{v \in V} f(v)$. The minimum weight of an RDF on G is called the Roman domination number of G and is denoted by $\gamma_R(G)$. For an RDF f in a graph G, we denote by V_i (or V_i^f to refer to f) the set of all vertices of G with label i under f . Thus an RDF f can be represented by a triple (V_0, V_1, V_2) , and we can use the notation $f = (V_0, V_1, V_2)$. The mathematical concept of Roman domination, was defined and discussed by Stewart [\[24\]](#page-12-3), and ReVelle and Rosing [\[21\]](#page-12-4), and was subsequently developed by Cockayne et al. [\[10\]](#page-11-8). Many variations, generalizations and applications of Roman dominations parameters have been studied, and to see the latest progress until 2020 see $[6-9]$ $[6-9]$.

Shabani at al. [\[23\]](#page-12-5) introduced the concept of hop Roman dominating functions. A

hop Roman dominating function (HRDF) is a function $f: V \longrightarrow \{0, 1, 2\}$ having the property that for every vertex $v \in V$ with $f(v) = 0$ there is a vertex u with $f(u) = 2$ and $d(u, v) = 2$. The weight of an HRDF f is the sum $f(V) = \sum_{v \in V} f(v)$. The minimum weight of an HRDF on G is called the *hop Roman domination number* of G and is denoted $\gamma_{hR}(G)$. For an HRDF f in a graph G, we denote by V_i (or V_i^f to refer to f) the set of all vertices of G with label i under f. Thus an HRDF f can be represented by a triple (V_0, V_1, V_2) , and we can use the notation $f = (V_0, V_1, V_2)$. For a function $f = (V_0, V_1, V_2)$ and a vertex $v \in V(G)$, we say that v is hop Roman dominated by f (or f hop Roman dominates v), if either $v \in V_1 \cup V_2$ or there exist $u \in V_2$, such that $d(v, u) = 2$. An HRDF $f = (V_0, V_1, V_2)$ is a hop Roman independent dominating function(HRIDF) if for any pair $v, w \in V_1 \cup V_2$, $d(v, w) \neq 2$. The minimum weight of an HRIDF on G is called the *hop Roman independent domination number* of G. The concept of hop Roman domination was further studied, for example in [\[1,](#page-11-11) [15,](#page-12-6) [22\]](#page-12-7).

We consider a generalized version of hop Roman domination. For $r \geq 2$, a r-hop Roman dominating function (rHRDF) is a function $f: V \longrightarrow \{0, 1, 2\}$ having the property that for every vertex $v \in V$ with $f(v) = 0$ there is a vertex u with $f(u) = 2$ and $d(u, v) = r$. The weight of a rHRDF f is the sum $f(V) = \sum_{v \in V} f(v)$. The minimum weight of a r HRDF on G is called the r -hop Roman domination number of G and is denoted $\gamma_{rhR}(G)$. For a function $f = (V_0, V_1, V_2)$ and a vertex $v \in V(G)$, we say that v is r-hop Roman dominated by f (or f r-hop Roman dominates v), if either $v \in V_1 \cup V_2$ or there exist $u \in V_2$, such that $d(v, u) = r$. A rHRDF $f = (V_0, V_1, V_2)$ is a r-hop Roman independent dominating function(rHRIDF) if for any pair $v, w \in V_1 \cup V_2$, $d(v, w) \neq r$. The minimum weight of a rHRIDF on G is called the r-hop Roman independent domination number of G. Likewise, a r-step Roman dominating function (rSRDF) is a function $f: V \longrightarrow \{0, 1, 2\}$ having the property that for every vertex $v \in V_0 \cup V_2$ there is a vertex $u \in V_2$ such that $d(u, v) = r$. The weight of a rSRDF f is the sum $f(V) = \sum_{v \in V} f(v)$. The minimum weight of a rSRDF on G is called the r-step Roman domination number of G.

Farhadi et al. [\[17\]](#page-12-2) proved that for $r \geq 2$, the decision problems associated with both r-step domination and r-hop domination are NP-complete for planar bipartite graphs and planar chordal graphs. Jafari Rad et al. [\[16\]](#page-12-8) proved that the decision problems associated with hop independent domination, r-hop Roman domination and the hop Roman independent domination are NP-complete even when restricted to planar bipartite graphs or planar chordal graphs.

In this paper we study the complexity of decision problems associated with the r-hop independent domination, r-hop Roman domination, r-hop Roman independent domination and r-step Roman domination. We show that the decision problem associated to each of these problems is NP-complete even when restricted to planar bipartite graphs or planar chordal graphs. We use a transformation of the Vertex Cover Problem which was one of Karp's 21 NP-complete problems [\[19\]](#page-12-9) (see also [\[18\]](#page-12-10)). The Vertex Cover Problem is the following decision problem.

Vertex Cover Problem (VCP).

Instance: A non-empty graph G , and a positive integer k .

Question: Does G have a vertex cover of size at most k ?

2. r-Hop Independent Domination

Consider the following decision problem:

r-Hop Independent Dominating Problem (rHIDP).

Instance: A non-empty graph G and two positive integers $r \geq 2$ and $k \geq 1$. **Question:** Does G have a r-hop independent dominating set of size at most k ? We show that the decision problem for rHIDP is NP-complete even when restricted to planar bipartite graphs or planar chordal graphs.

Theorem 1. r-HIDP is NP-complete for planar bipartite graphs.

Proof. Clearly, the rHIDP is NP, since it is easy to verify a "yes" instance of the rHIDP in polynomial time. Now we transform the vertex cover problem to the rHIDP so that one of them has a solution if and only if the other has a solution. Let G be a connected planar bipartite graph of order n_G and size $m_G \ge 2$. Let H be the graph obtained from G as follows. For each edge $e = uv \in E(G)$, we subdivide the edge e, $2r-1$ times. Let $x_e^1, x_e^2, \ldots, x_e^{2r-1}$ be the subdivided vertices that are produced by subdividing e, where x_e^i is adjacent to x_e^{i+1} , for $i = 1, 2, ..., 2r - 2$, u is adjacent to x_e^1 , and v is adjacent to x_e^{2r-1} . For every vertex $v \in V(G) \cup \{x_e^1, x_e^2, \ldots, x_e^{2r-1}\},$ we add a P_{2r+1} -path $P_{2r+1}^v : v_1v_2 \ldots v_{2r+1}$, and join v_{r+1} to v, and then subdivide the edge $v_{r+1}v$ 2r – 2 times. Let $y_v^1, y_v^2, \ldots, y_v^{2r-2}$ be the subdivided vertices that were produced by subdividing the edge $v_{r+1}v$, where y_v^1 is adjacent v_{r+1} and y_v^{2r-2} is adjacent to v. For every vertex $v \in \{x_e^r \mid e \in E(G)\}\$ we subdivide the edge vy_v^{2r-2} , and let z_v be the subdivided vertex, where z_v is adjacent to both v and y_v^{2r-2} . Finally, for every vertex $v \in \{x_e^r \mid e \in E(G)\}\$, add a vertex v' and join v' to both x_e^1 and x_e^{2r-1} and then subdivide each edge $v'x_e^1$ and $v'x_e^{2r-1}$, $r-2$ times. The resulting graph H has order $n_H = 4rn_G + (8r^2 - 2r - 2)m_G$ and size $m_H = (4r - 1)n_G + (8r^2 - 2r - 1)m_G$. Figure 1 illustrates the graph H if G is a path P_3 and $r = 2$.

We show that G has a vertex cover of size at most k if and only if H has an rHIDS of size at most $k + rn_G + rm_G(2r - 1)$. Assume S_G is a vertex cover of size at most k. Let

$$
S_H = S_G \cup \{v_{r+1}, v_{r+2}, \dots, v_{2r} \mid v \in S_G\}
$$

$$
\cup \{v_{r+1}, y_v^1, y_v^2, \dots, y_v^{r-1} \mid v \in ((V(G) - S_G) \cup \{x_e^1, x_e^2, \dots, x_e^{2r-1} \mid e \in E(G)\})\}.
$$

Clearly $d(a, b) \neq r$ for any pair $a, b \in S_H$. We show S_H is a rHIDS of size at most $k + r n_G + r m_G(2r - 1)$ 1). For each $e \in E(G)$, the vertices x_e^r and $x_e^{r'}$ are r-hop dominated by S_G , any vertex on the path from $x_e^{r'}$ to x_e^1 is r-hop dominated by $\{x_{e_r+1}^1, y_{x_e^1}^1, y_{x_e^1}^2, \ldots, y_{x_e^1}^{r-1}\}$, and any vertex on the path from x_e^{r} to x_e^{2r-1} is r-hop dominated by $\{x_e^{2r-1}{}_{r+1}, y_{x_e^{2r-1}}^1, y_{x_e^{2r-1}}^2, \ldots, y_{x_e^{2r}}^{r-1}$ x_{e}^{r-1} . For any vertex $v \in S_G$, any vertex in $\{v_1, v_2, \ldots, v_{2r+1}\} \cup \{y_v^1, y_v^2, \ldots, y_v^{2r-2}\}$ is hop dominated by $\{v_{r+1}, v_{r+2}, \ldots, v_{2r}\}$. For any vertex $v \in V(G) - S_G$, any vertex in $\{v_1, v_2, \ldots, v_{2r+1}\} \cup \{y_v^1, y_v^2, \ldots, y_v^{2r-2}\}$ is hop dominated

Figure [1](#page-3-0). The graphs G and H in the proof of Theorem 1

by $\{v_{r+1}, y_v^1, y_v^2, \ldots, y_v^{r-1}\}$. For any edge $e \in E(G)$, any vertex in

$$
\{x_{e\,1}^r,x_{e\,2}^r,\ldots,x_{e\,2r+1}^r\}\cup\{y_{x_e^r}^1,y_{x_e^r}^2,\ldots,y_{x_e^r}^{2r-2}\}
$$

is r-hop dominated by $\{x_{e,r+1}^r, y_{x_e^r}^1, y_{x_e^r}^2, \ldots, y_{x_e^r}^{r-1}\}$. Similarly, for any edge $e \in E(G)$, any vertex in $\{x_e^i, x_{e_1}^i, x_{e_2}^i, \ldots, x_{e_{2r+1}}^i\} \cup \{y_{x_e^i}^1, y_{x_e^i}^2, \ldots, y_{x_e^i}^{2r-2}\}$, where $i \neq r$, is r-hop dominated by ${x_{e}^i}_{r+1}, y_{x_e^i}^1, y_{x_e^i}^2, \ldots, y_{x_e^i}^{r-1}$. Consequently, S_H is a rHIDS of size at most $k + r n_G + r m_G(2r - 1)$.

Assume next that H has a rHIDS, S_H , of size at most $k + rn_G + rm_G(2r - 1)$. It is evident that for any vertex $v \in V(G) \cup \{x_e^1, x_e^2, \ldots, x_e^{2r-1} \mid e \in E(G)\},$

$$
|S_H \cap \{v_1, v_2, \dots, v_{2r+1}, y_v^1, y_v^2, \dots, y_v^{2r-2}\}| \geq r.
$$

Let

$$
A = S_H \cap \bigcup_{v \in V(G) \cup \{x_e^1, x_e^2, \dots, x_e^{2r-1} \mid e \in E(G)\}} (\{v_1, v_2, \dots, v_{2r+1}, y_v^1, y_v^2, \dots, y_v^{2r-2}\}).
$$

Then $|A| \geq rn_G + rm_G(2r - 1)$, and so $|S_H - A| \leq k$. For any edge $e = uv$, since $x_e^{r'}$ is r-hop dominated by S_H , either $x_e^{r'} \in S_H$ or $S_H \cap \{u, v\} \neq \emptyset$. If for an edge $e = uv$, $S_H \cap \{u, v\} = \emptyset$, then $x_e^{r'} \in S_H$, and we replace S_H by $(S_H - \{x_e^{r'}\}) \cup \{u\}$. Thus we assume that for any edge $e = uv$, $S_H \cap \{u, v\} \neq \emptyset$. Thus $S_H \cap V(G)$ is a vertex cover for G of size at most k. Therefore G has a vertex cover of size at most k , as desired. \Box

We next prove the NP-completeness of rHIDP for planar chordal graphs.

Theorem 2. rHIDP is NP-complete for planar chordal graphs.

Proof. Let G be a planar chordal graph of order n_G and size $m_G \geq 2$, and let H be the graph presented in the proof of Theorem [1.](#page-3-0) For any edge $e \in E(G)$, let $\langle \ldots, x_e^{r-1} \rangle$ x_i^r be vertices on the path from x_e^1 to $x_e^{r'}$, and $x_e^{r'}$, x_e^{r+1} $\langle , \ldots, x_e^{2r-1} \rangle$ x_e^1, x_e^2 $\sum_{i=1}^{\infty}$ and x_e^{i+1} $\frac{1}{\tau}$ for be the vertices on the path from $x_e^{r'}$ to x_e^{2r-1} . We join x_e^i to both x_e^i '. Let H' be the constructed graph. each $i = 2, 3, ..., 2r - 3$, and join x_e^{2r-2} to x_e^{2r-2} Clearly H' is a planar chordal graph. Now with the same argument given in the proof of Theorem [1,](#page-3-0) we can see that G has a vertex cover of size at most k if and only if H' has an rHIDS of size at most $k + rn_G + rm_G(2r - 1)$. \Box

3. r-Hop Roman Domination

Consider the following decision problem:

r-Hop Roman Dominating Function Problem (rHRDFP).

Instance: A non-empty graph G, and two positive integers $r \geq 2$ and $k \geq 1$. **Question:** Does G have a r-hop Roman dominating function of weight at most k ?

We show that the decision problem for the rHRDFP is NP-complete even when restricted to planar bipartite graphs or planar chordal graphs.

Theorem 3. For $r \geq 2$, rHRDFP is NP-complete for planar bipartite graphs.

Proof. Clearly, the rHRDFP is in NP. We transform the vertex cover problem to the rHRDFP so that one of them has a solution if and only if the other one has a solution. Let G be a connected planar bipartite graph of order n_G and size $m_G \ge 2$, and let H be the graph obtained from G as follows: We convert each edge $e = vu \in E(G)$ into a double edge $e_1 = vu$, and $e_2 = vu$, and then subdivide each of edges e_1 and e_2 , $2r-1$ times. Let the vertices $x_{e_i}^1, x_{e_i}^2, \ldots, x_{e_i}^{2r-2}$ be the vertices that were produced from subdividing the edge e_i , for $i = 1, 2$, where the vertex $x_{e_i}^1$ is adjacent to v, for $i = 1, 2$. For each edge $e = vu \in E(G)$, we add a new vertex e_{vu} and a P_{2r+1} path $v_e^1 v_e^2 \dots v_e^{2r+1}$, join the vertex e_{vu} to u, v and v_e^{r+1} . Finally, we subdivide the edge $e_{vu}v_e^{r+1}$, $r-2$ times. Let y_v^1, \ldots, y_v^{r-2} be the subdivided vertices produced by subdivision of $e_{vu}v_e^{r+1}$, where y_v^1 is adjacent to v_e^{r+1} and y_v^{r-2} is adjacent to e_{uv} . The resulting graph H has order $n_H = n_G + (7r - 2)m_G$ and size $m_H = (7r + 1)m_G$. Figure 2 illustrates the graph H if G is a path P_3 and $r = 2$. We note that since G is connected and planar, so H is connected and planar. Further, by construction, H is bipartite. Thus, H is a connected planar bipartite graph.

We show that G has a vertex cover of size at most k if and only if H has a rHRDF of weight $2k + 2rm_G$. Assume that G has a vertex cover, S_G , of size at most k. Let

$$
S_H = S_G \cup \bigcup_{e=uv \in E(G)} \{v_e^{r+1}, y_v^1, \dots, y_v^{r-2}, e_{vu}\}.
$$

Figure 2. The graph G and H in the proof of Theorem [3](#page-5-0)

We show that $f = (V(H) - S_H, \emptyset, S_H)$ is an rHRDF for H of weight at most $2k + 2rm_G$. For every edge $e = vu \in E(G)$, the vertex v_e^{r+1} r-hop Roman dominates the vertices v_e^1 , v_e^{2r+1} , u and v in H, while the vertex y_v^i $(i = 1, 2, ..., r - 2)$ r-hop dominates the vertices v_e^{i+1} , v_e^{2r+1-i} , $x_{e_1}^i$, $x_{e_2}^i$, $x_{e_1}^{2r-i}$ and $x_{e_2}^{2r-i}$. Furthermore, e_{vu} r-hop Roman dominates the vertices $x_{e_1}^{r+1}$ and $x_{e_2}^{r+1}$, since S_G is a vertex cover in G. Therefore, the function f is a rHRDF for H of weight at most $2k + 2rm_G$.

Assume next that $f = (V_0^f, V_1^f, V_2^f)$ is a rHRDF for H of weight $2k + 2rm_G$. Without loss of generality we assume that f has minimum weight. If for an edge $e \in$ $E(G), f(v_e^1) + \cdots + f(v_e^{2r+1}) + f(y_v^1) + \cdots + f(y_v^{r-2}) + f(e_{vu}) < 2r$, then there is a vertex in $\{v_e^1, \ldots, v_e^{2r+1}\}$ such that it is not r-hop Roman dominated by f, a contradiction. Therefore, $f(v_e^1) + \cdots + f(v_e^{2r+1}) + f(y_v^1) + \cdots + f(y_v^{r-2}) + f(e_{vu}) \ge 2r$ for every edge $e \in E(G)$. If for an edge $e \in E(G)$, $f(v_2^e) + f(v_4^e) + f(e_{vu}) \leq 1$, then v_2^e or v_4^e is not hop Roman dominated by f, a contradiction. Therefore, $f(v_2^e) + f(v_4^e) + f(e_{vu}) \geq 2$ for every edge $e \in E(G)$. Suppose that there exists an edge $e = uv \in E(G)$ such that $f(x_{e_i}^r) > 0$ for each $i = 1, 2$. Assume that $f(u) \ge f(v)$. Then the function g defined by $g(x_{e_1}^r) = g(x_{e_2}^r) = 0$, $g(u) = \max\{f(u), 2\}$ and $g(z) = f(z)$ otherwise, is an rHRDF. If $f(u) \neq 0$ then $g(V) < f(V)$, a contradiction by the choice of f. Thus, assume that $f(u) = 0$, and so g is a minimum rHRDF. Thus we may assume that $f(x_{e_1}^r) = f(x_{e_2}^r) = 0$ for any edge $e = uv \in E(G)$. Then either $f(u) = 2$ or $f(v) = 2$. Hence, $S_G = V_2^f \cap V(G)$ is a vertex cover of G of size at most $\frac{1}{2}(w(f) - 2rm_G)$. Thus, G has a vertex cover of size at most k. \Box

4. r-Hop Roman Independent Domination

We next study the complexity issue of the r-hop Roman independent domination. Consider the following decision problem:

r-Hop Roman Independent Dominating Function Problem (HRIDFP). **Instance:** A non-empty graph G, and two positive integers $r \geq 2$ and $k \geq 1$. Question: Does G have a r-hop Roman independent dominating function of weight at most k?

We show that the decision problem for *r*HRIDFP is NP-complete even when restricted to planar bipartite graphs or planar chordal graphs.

Theorem 4. For $r \geq 2$, rHRIDFP is NP-complete for planar bipartite graphs.

Proof. Let G be a graph of order n_G and size m_G , and let H be the connected planar bipartite graph constructed in the proof of Theorem [1.](#page-3-0) Note that H has order $n_H = 4rn_G + (8r^2 - 2r - 2)m_G$ and size $m_H = (4r - 1)n_G + (8r^2 - 2r - 1)m_G$. We show that G has a vertex cover of size at most k if and only if H has an r HRIDF of weight at most $2k + 2rn_G + 2rm_G(2r - 1)$. Assume first that G has a vertex cover, S_G , of size at most k. Let

$$
S_H = S_G \cup \{v_{r+1}, v_{r+2}, \dots, v_{2r} \mid v \in S_G\}
$$

$$
\cup \{v_{r+1}, y_v^1, y_v^2, \dots, y_v^{r-1} \mid v \in ((V(G) - S_G) \cup \{x_e^1, x_e^2, \dots, x_e^{2r-1} \mid e \in E(G)\})\}.
$$

Clearly $d(a, b) \neq r$ for any pair $a, b \in S_H$. We set $f = (V(H) - S_H, \emptyset, S_H)$. As it is proved in the proof of Theorem [1,](#page-3-0) that S_H is a rHIDS for H, we conclude that any vertex v with $f(v) = 0$ is r-hop dominated by a vertex u with $f(u) = 2$. Hence H has a rHRIDF of weight at most $2k + 2rn_G + 2rm_G(2r - 1)$.

Assume now that H has a rHRIDF f, of weight at most $2k + 2rn_G + 2rm_G(2r - 1)$. It is evident that for any vertex $v \in V(G) \cup \{x_e^1, x_e^2, \ldots, x_e^{2r-1} \mid e \in E(G)\}\,$

$$
\sum_{v \in \{v_1, v_2, \dots, v_{2r+1}, y_v^1, y_v^2, \dots, y_v^{2r-2}\}} f(v) \ge 2r.
$$

Let

$$
A = S_H \cap \bigcup_{v \in V(G) \cup \{x_e^1, x_e^2, \dots, x_e^{2r-1} \mid e \in E(G)\}} (\{v_1, v_2, \dots, v_{2r+1}, y_v^1, y_v^2, \dots, y_v^{2r-2}\}).
$$

Then $\sum_{v \in A} f(v) \geq 2rn_G + 2rm_G(2r-1)$. For any edge $e = uv$, since both x_e^r and $x_e^{r'}$ are r-hop dominated by f, either $f(x_e^r) \geq 1$ and $f(x_e^{r'}) \geq 1$, or $2 \in \{f(u), f(v)\}$. If

 $2 \notin \{f(u), f(v)\}\$, then we replace $f(u)$ by 2 and both $f(x_e^r)$ and $f(x_e^{r'})$ by 0. Thus we my assume that for any edge $e = uv$, $2 \in \{f(u), f(v)\}\)$. Then $\{v \in V(G) : f(v) = 2\}$ is a vertex cover for G of size at most $2k$. Therefore G has a vertex cover of size at most 2k. \Box

Theorem 5. For $r \geq 2$, rHRIDFP is NP-complete for planar chordal graphs.

Proof. Let G be a graph of order n_G and size m_G , and let H' be the connected planar chordal graph constructed in the proof of Theorem [2.](#page-5-1) With a similar argument as it is given in proof of Theorem [4,](#page-7-0) we can see that G has a vertex cover of size at most k if and only if H' has an rHRIDS of weight at most $2k + 2rn_G + 2rm_G(2r - 1)$. \Box

5. r-Step Roman domination

Consider the following decision problem:

r-Step Roman Dominating Function Problem (rSRDFP). **Instance:** A non-empty graph G, and two positive integers $r \geq 2$ and $k \geq 1$.

Question: Does G have a r-step Roman dominating function of weight at most k?

We show that the decision problem for r SRDFP is NP-complete even when restricted to planar bipartite graphs or planar chordal graphs.

Theorem 6. For $r \geq 2$, rSRDFP is NP-complete for planar bipartite graphs.

Proof. Clearly, the rSRDFP is in NP, since it is easy to verify a "yes" instance of rSRDFP in polynomial time. Now we transform the vertex cover problem to the rSRDFP so that one of them has a solution if and only if the other has a solution. Let G be a connected planar bipartite graph of order n_G and size $m_G \geq 2$. Let H be the graph obtained from G as follows. For each edge $e = uv \in E(G)$ we subdivide the edge $e, 2r - 1$ times, and add a path $v_1^e v_2^e \dots v_{2r}^e$, and join v_1^e to both u and v. For any edge $e = uv \in E(G)$, let e_{uv} be the subdivided vertex at distance r from both u and v in H that resulted from subdividing the edge e, $2r - 1$ times. Then add a vertex e_{uv} ' and join it to both neighbors of e_{uv} . Let H be the resulted graph. Then H has order $n_H = n_G + 4rm_G$ and size $m_H = (4r + 3)m_G$. The transformation can clearly be performed in polynomial time. We note that since G is connected and planar, so H is connected and planar. Further, by construction, H is bipartite. Thus, H is a connected planar bipartite graph. Figure 3 depicts the graph H if $r = 2$ and $G = P_3$.

We show that G has a vertex cover of size at most k if and only if H has a r-step Roman dominating function of weight at most $2k + 2rm_G$. Assume that G has a

Figure 3. The graphs G and H in the proof of Theorem [6](#page-8-0) for $r = 2$

vertex cover, namely S_G , of size at most k. Let

$$
S_H = S_G \cup \bigcup_{e \in E(G)} \{v_e^1, v_e^2, \dots, v_e^r\}.
$$

We show that $f = (V(H) - S_H, \emptyset, S_H)$ is a r-step Roman dominating function. Clearly $S_G \neq \emptyset$, since $m_G \geq 2$. For every edge $e = uv \in E(G)$, the vertex v_r^e r-step dominates the vertices v_e^{2r} , u and v in H, while the vertex v_e^i $(i = 1, 2, \ldots, r-1)r$ -step dominates the vertex v_e^{i+r} and the r-neighbors of u and v in H that belong to the (u, v) -path in H that resulted from subdividing the edge $e = uv$ of G. Since S_G is a vertex cover in G, every subdivided vertex that is not a neighbor of a vertex in $V(G)$ is r-step dominated by the set S_G in H. Further, the set S_G r-step dominates the vertex v_e^r for every edge $e \in E(G)$. Since G is connected and $m_G \geq 2$, for every two adjacent edges e and f in G the vertices v_e^i and v_f^j r-step dominate each other for $1 \le i, j < r$, where $i + j = r$. Therefore, S_H is a r-step dominating set for H, and thus $f = (V(H) - S_H, \emptyset, S_H)$ is a r-step Roman dominating function for H of weight at most $2k + 2rm_G$ in H.

Suppose next that H has a r-step Roman dominating function f of weight at most $2k + 2rm_G$. Without loss of generality we assume that f has minimum weight. Let $e = uv \in E(G)$. For $i = r+1, \ldots, 2r$, in order to r-step Roman dominate v_e^i in H, it is required that $\sum_{i=1}^{2r} f(v_e^i) \ge 2r$. If $2 \notin \{f(u), f(v)\}\)$, then $f(e_{uv}) \ne 0$ and $f(e_{uv'}) \ne 0$. Let g be a function obtained by changing both $f(e_{uv})$ and $f(e_{uv})$ to 0 and $f(u)$ to 2. Since f has minimum weight, we find that $w(g) = w(f)$. Thus we may assume that $2 \in \{f(u), f(v)\}.$ Hence, $\{v \in V(G) : f(v) = 2\}$ is a vertex cover of G. Further, $|\{v \in V(G) : f(v) = 2\}| \leq k$, since $\sum_{i=1}^{2r} f(v_e^i) \geq 2r$ for every edge $e \in E(G)$. Thus, G has a vertex cover of size at most k . \Box

Theorem 7. For $r \geq 2$, rSRDFP is NP-complete for planar chordal graphs.

Proof. Let G be a connected planar chordal graph of order n_G and size $m_G \geq 2$. Let H be the graph obtained from G as follows. For each edge $e = uv \in E(G)$ we add a new vertex e_{uv} adjacent to both u and v in H and we add a P_{r-1} -path $e^1{}_{uv}e^2{}_{uv}\ldots e^{r-1}{}_{uv}$ and join e_{uv} to e^1_{uv} . Further, we add a P_{2r} -path $v^1_e v^2_e \ldots v^{2r}_e$,

and join v_e^1 to u and v. Finally for each edge $e = uv \in E(G)$ add a new vertex $e^{r-1}w'$ and join it to the neighbor of $e^{r-1}w$. The resulting graph H has order $n_H =$ $n_G + (3r + 1)m_G$ and size $m_H = (3r + 4)m_G$. The transformation can clearly be performed in polynomial time. We note that since H is a connected planar chordal graph.

Figure 4. The graphs G and H in the proof of Theorem [7](#page-9-0) for $r = 2$

We show that G has a vertex cover of size at most k if and only if H has a r-step Roman dominating function of weight at most $2k + 2rm_G$. Let S_G be a vertex cover of size at most k , and let

$$
S_H = S_G \cup \bigcup_{e \in E(G)} \{v_e^1, v_e^2, \dots, v_e^r\}.
$$

Let $f = (V(H) - S_H, \emptyset, S_H)$. Note that $S_G \neq \emptyset$. For every edge $e = uv \in E(G)$, the vertex v_e^r r-step dominates the vertices v_e^{2r} , u and v in H, while the vertex v_e^i $(1 \leq i < r)$ r-step dominates the vertices v_e^{i+r} and e_{uv}^{r-i-1} , where $e_{uv}^{0} =: e_{uv}$. Since S_G is a vertex cover in G, every vertex e_{uv}^{r-1} is r-step dominated by S_G in H. Further, S_G r-step dominates v_e^r for every edge $e \in E(G)$. Since G is connected and $m_G \geq 2$, for every two adjacent edges e and f in G the vertices v_e^i and v_f^j r-step dominate each other for $1 \leq i, j < r$, where $i + j = r$. Therefore, f is a r-step Roman dominating function of weight at most $2k + 2rm$ _G.

Suppose next that H has a r-step Roman dominating function f of weight at most $2k+$ $2rm_G$. Let $e = uv \in E(G)$. For $i = r + 1, ..., 2r$, in order to r-step Roman dominate v_e^i in H, it is required that $\sum_{i=1}^{2r} f(v_e^i) \ge 2r$. If $2 \notin \{f(u), f(v)\}\)$, then $f(e^{r-1}w') \ne 0$ and $f(e^{r-1}uv) \neq 0$. Let g be a function obtained by changing both $f(e^{r-1}uv)$ and $f(e^{r-1}w')$ to 0 and $f(u)$ to 2. Since f has minimum weight, we find that $w(g) = w(f)$. Thus we may assume that $2 \in \{f(u), f(v)\}.$ Hence, $\{v \in V(G) : f(v) = 2\}$ is a vertex cover of G. Further, $|\{v \in V(G) : f(v) = 2\}| \leq k$, since $\sum_{i=1}^{2r} f(v_e^i) \geq 2r$ for every edge $e \in E(G)$. Thus, G has a vertex cover of size at most k. \Box

Conflict of Interest: The authors declare that they have no conflict of interest.

Data Availability: Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

[1] H. Abdollahzadeh Ahangar, M. Chellali, S.M. Sheikholeslami, and M. Soroudi, Hop total Roman domination in graphs, AKCE Int. J. Graphs Comb. 20 (2023), no. 1, 73–78.

https://doi.org/10.1080/09728600.2023.2184288.

[2] S.K. Ayyaswamy, B. Krishnakumari, C. Natarajan, and Y.B. Venkatakrishnan, Bounds on the hop domination number of a tree, Proceedings Math. Sci. 125 (2015), 449–455.

https://doi.org/10.1007/s12044-015-0251-6.

- [3] S.K. Ayyaswamy, C. Natarajan, and Y.B. Venkatakrishnan, Hop domination in graphs, Manuscript (2015).
- [4] Y. Caro, A. Lev, and Y. Roditty, Some results in step domination of graphs, Ars Combin. 68 (2003), 105–114.
- [5] G. Chartrand, F. Harary, M. Hossain, and K. Schultz, Exact 2-step domination in graphs, Math. Bohem. 120 (1995), no. 2, 125–134. http://doi.org/10.21136/MB.1995.126228.
- [6] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, Roman domination in graphs, Topics in Domination in Graphs (T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, eds.), Springer, Berlin/Heidelberg, 2020, p. 365–409.
- [7] , A survey on Roman domination parameters in directed graphs, J. Combin. Math. Comb. Comput. 115 (2020), 141–171.
- [8] \Box , Varieties of Roman domination II, AKCE J. Graphs Combin. 17 (2020), no. 3, 966–984.

https://doi.org/10.1016/j.akcej.2019.12.001.

- [9] , Varieties of Roman domination, Structures of Domination in Graphs (T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, eds.), Springer, Berlin/Heidelberg, 2021, p. 273–307.
- [10] E.J. Cockayne, P.A. Dreyer Jr, S.M. Hedetniemi, and S.T. Hedetniemi, Roman *domination in graphs*, Discrete Math. **278** (2004), no. 1-3, 11-22. https://doi.org/10.1016/j.disc.2003.06.004.
- [11] G. Dror, A. Lev, and Y. Roditty, A note: some results in step domination of trees, Discrete Math. 289 (2004), no. 1-3, 137–144. https://doi.org/10.1016/j.disc.2004.08.007.
- [12] T.W. Haynes, S.T. Hedetniemi, and P.J. Salter, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [13] M.A. Henning and N. Jafati Rad, On 2-step and hop dominating sets in graphs, Graphs Combin. 33 (2017), 913–927. https://doi.org/10.1007/s00373-017-1789-0.
- [14] P. Hersh, On exact n-step domination, Discrete Math. 205 (1999), no. 1-3, 235– 239.

https://doi.org/10.1016/S0012-365X(99)00024-2.

- [15] N. Jafari Rad and A. Poureidi, On hop Roman domination in trees, Commun. Comb. Optim. 4, no. 2, 201–208. https://doi.org/10.22049/cco.2019.26469.1116.
- [16] N. Jafari Rad and E. Shabani, On the complexity of some hop domination parameters, Electron. J. Graph Theory Appl. 7 (2019), no. 1, 77–89. https://doi.org/10.5614/ejgta.2019.7.1.6.
- [17] M.F. Jalalvand and N. Jafari Rad, On the complexity of k-step and k-hop dominating sets in graphs, Math. Montisnigri 40 (2017), 36–41.
- [18] D.S. Johnson and M.R. Garey, Computers and intractability: A guide to the theory of NP-completeness, Freeman, 1979.
- [19] R.M. Karp, Reducibility Among Combinatorial Problems, Springer, 2010.
- [20] C. Natarajan and S.K. Ayyaswamy, Hop domination in graphs-II, An. Stt. Univ. Ovidius Constanta 23 (2015), no. 2, 187–199. https://doi.org/10.1515/auom-2015-0036.
- [21] C.S. ReVelle and K.E. Rosing, Defendens imperium romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (2000), no. 7, 585–594. https://doi.org/10.1080/00029890.2000.12005243.
- [22] E. Shabani, N. Jafari Rad, and A. Poureidi, Graphs with large hop Roman domination number, Computer Sci. J. Moldova 79 (2019), no. 1, 3–22.
- [23] E. Shabani, N. Jafari Rad, A. Poureidi, and A. Alhevaz, Hop Roman domination in graphs, Manuscript.
- [24] I. Stewart, Defend the Roman empire!, Sci. Amer. 281 (1999), no. 6, 136–138.
- [25] Y. Zhao, L. Miao, and Z. Liao, A linear-time algorithm for 2-step domination in block graphs, J. Math. Res. Appl. 35 (2015), no. 3, 136–138. http://doi.org/10.3770/j.issn:2095-2651.2015.03.006.