تعداد نشریات | 5 |
تعداد شمارهها | 108 |
تعداد مقالات | 1,228 |
تعداد مشاهده مقاله | 1,147,656 |
تعداد دریافت فایل اصل مقاله | 1,007,037 |
A characterization of locating Roman domination edge critical graphs | ||
Communications in Combinatorics and Optimization | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 05 دی 1402 اصل مقاله (369.07 K) | ||
نوع مقاله: Original paper | ||
شناسه دیجیتال (DOI): 10.22049/cco.2023.29108.1853 | ||
نویسندگان | ||
Hossein Abdollahzadeh Ahangar* 1؛ Hadi Rahbani1؛ MOHAMMAD REZA RAFSANJANI SADEGHI2 | ||
1Babol Noshirvani University of Technology | ||
2Amirkabir University of Technology | ||
چکیده | ||
A Roman dominating function (or just \textit{RDF}) on a graph $G =(V, E)$ is a function $f: V \longrightarrow \{0, 1, 2\}$ satisfying the condition that every vertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex $v$ for which $f(v) = 2$. The weight of an \textit{RDF} $f$ is the value $f(V)=\sum_{u \in {V}}f(u)$. An \textit{RDF} $f$ can be represented as $f=(V_0,V_1,V_2)$, where $V_i=\{v\in V:f(v)=i\}$ for $i=0,1,2$. An \textit{RDF} $f=(V_0,V_1,V_2)$ is called a locating Roman dominating function (or just \textit{L\textit{RDF}}) if $N(u)\cap V_2\neq N(v)\cap V_2$ for any pair $u,v$ of distinct vertices of $V_0$. The locating-Roman domination number $\gamma_R^L(G)$ is the minimum weight of an \textit{L\textit{RDF}} of $G$. A graph $G$ is said to be a locating Roman domination edge critical graph, or just $\gamma_R^L$-edge critical graph, if $\gamma_R^L(G-e)>\gamma_R^L(G)$ for all $e\in E$. The purpose of this paper is to characterize the class of $\gamma_R^L$-edge critical graphs. | ||
کلیدواژهها | ||
Roman domination؛ locating Roman domination number؛ critical graph | ||
آمار تعداد مشاهده مقاله: 125 تعداد دریافت فایل اصل مقاله: 719 |