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Abstract: Let G = (V,E) be a simple, undirected and connected graph. A Roman

dominating function (RDF) on the graph G is a function f : V → {0, 1, 2} such that
each vertex v ∈ V with f(v) = 0 is adjacent to at least one vertex u ∈ V with f(u) = 2.

A total Roman dominating function (TRDF) of G is a function f : V → {0, 1, 2} such

that (i) it is a Roman dominating function, and (ii) the vertices with non-zero weights
induce a subgraph with no isolated vertex. The total Roman dominating set (TRDS)

problem is to minimize the associated weight, f(V ) =
∑

u∈V f(u), called the total

Roman domination number (γtR(G)). Similarly, a subset S ⊆ V is said to be a total
dominating set (TDS) on the graph G if (i) S is a dominating set of G, and (ii) the

induced subgraph G[S] does not have any isolated vertex. The objective of the TDS
problem is to minimize the cardinality of the TDS of a given graph. The TDS prob-

lem is NP-complete for general graphs. In this paper, we propose a simple 10.5 -factor

approximation algorithm for TRDS problem in UDGs. The running time of the pro-
posed algorithm is O(|V | log k), where k is the number of vertices with weights 2. It is
an improvement over the best-known 12-factor approximation algorithm with running

time O(|V | log k) available in the literature. Next, we propose another algorithm for
the TDS problem in UDGs, which improves the previously best-known approximation
factor from 8 to 7.79. The running time of the proposed algorithm is O(|V |+ |E|).
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1. Introduction

Let G = (V,E) be a simple, undirected, and connected graph, where V (G) and E(G)

are the vertex set and edge set of G, respectively1. Given a vertex v ∈ V (G), a set

NG(v) denotes the open neighborhood of v, and it is defined as NG(v) = {u ∈ V :

uv ∈ E(G)}. On the other hand, the closed neighborhood NG[v] of v is defined as

NG[v] = NG(v)∪{v}. For any subset S ⊆ V , G[S] represents the subgraph induced by

the vertex set S in G (i.e., for each x, y ∈ S, xy ∈ E(G[S]) if and only if xy ∈ E(G)).

The boundary of a set T ⊆ V (G) is the set B(T ) such that B(T ) = NG(T ) \ T . A

subset D ⊆ V (G) is said to be a dominating set (DS) of G if each vertex v ∈ V (G),

|NG[v] ∩D| ≥ 1. We denote the domination number as γ(G), and it is the minimum

cardinality among all dominating sets in G. A vertex v ∈ V (G) dominates NG[v],

and a subset S ⊆ V (G) dominates
⋃
v∈S NG[v]. A subset Dt ⊆ V (G) is said to be

a total dominating set (TDS) of G if (i) Dt is a dominating set of G (domination

property), and (ii) the induced subgraph G[Dt] does not have any isolated vertex

(total property). The cardinality of the minimum total dominating set is called the

total domination number. We denote the total domination number of the graph G as

γt(G).

The Roman dominating set (RDS) is an ordered partition of V (G), say (V0, V1, V2)

induced by a function f : V → {0, 1, 2} called Roman dominating function (RDF)

such that (i) Vi = {v ∈ V (G) : f(v) = i}, for i = 0, 1, 2, and (ii) for each v ∈ V0, there

exists at least a vertex u ∈ V2 such that uv ∈ E(G). The RDF with minimum weight,

f(V ) =
∑
u∈V (G) f(u), is called the Roman domination number, and it is denoted by

γR(G). The total Roman dominating set (TRDS) is an ordered partition of V , say

(V0, V1, V2) induced by a function, f : V → {0, 1, 2} called total Roman dominating

function (TRDF) such that (i) f is a Roman dominating function (Roman property),

and (ii) the induced subgraph G[V1 ∪ V2] does not contain any isolated vertex (total

property). The TRDF with minimum weight, f(V ) =
∑
u∈V (G) f(u), is called the

Roman domination number. We define the total Roman domination number γtR(G)

as the minimum weight among all TRDFs on G. We often refer to the weight of a

vertex as the Roman value of the vertex.

A unit disk graph (UDG) is an intersection graph formed from a collection of unit

disks on the Euclidean plane. Let D = {D1, D2, . . . , Dn} be a set of unit disks and

C = {c1, c2, . . . , cn} be the set of corresponding centers, where ci is the center of

the disk Di. A graph G = (V,E) is said to be a geometric UDG if a one-to-one

correspondence exists between each vi ∈ V (G) with ci ∈ C and an edge vivj ∈ E(G)

if and only if d(ci, cj) ≤ 1, where d(., .) is the Euclidean distance between two points

in R2.

An ad-hoc (or IoT) network consists of heterogeneous nodes, where each node is as-

sociated with an inherent cost. The efficacy of the network is enhanced by installing

1 In this article, we refer V (G) and V interchangeably.
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additional security features to the node in terms of hardware and/or software, of-

ten called monitoring devices, such as cameras, sensors, intrusion detection systems

(IDSs), etc. Nodes with such devices are called monitoring nodes. Monitoring node

with added security features consumes additional operational costs, where the op-

erational cost is directly proportional to the level of security provided by the node

to the network. It may be noted that the nodes without any security devices have

negligible operational costs. Let each node in the network is mapped to a security

function f → {0, 1, 2} such that each node with security level 0 is directly surveil-

lance by a node with security level 2 and a node with security level 1 surveillance itself

only. In addition, each monitoring node actively exchanges “still alive” messages at

regular intervals with other monitoring nodes in its neighborhood. Since each node

acts within a specific range, the properties of these types of networks can be studied

through a UDG. The RDS problem helps the network to locate the installation sites

for the monitoring devices such that the incurred cost is minimized, and the inclusion

of total property to the RDS problem ensures that at least one of the monitoring

nodes remains informed about the faulty monitoring node(s) (if any) in the network.

1.1. Related Work

The domination problem and its variations are studied extensively in the literature

[11–13]. In 1990, Clark et al. [6] showed that the minimum dominating set problem is

NP-complete when the graph is restricted to UDGs. Subsequently, Marathe et al. [17]

gave a 5 -factor approximation algorithm for the dominating set problem in UDGs.

Cockayne et al. [7] introduced the concept of the total dominating set and showed

that γt ≤ 2
3n for a connected graph with n > 3 vertices. The detailed literature

on TDS can be found in [14, 15]. In 2004, Cockayne et al. [8] introduced a new

variation on domination called Roman domination, which was motivated by article

[24] and was based on legion deployment to enhance security with limited resources.

Some more variations on Roman domination can be found in [3–5, 9, 20]. Shang

et al. [22] introduced the concept of Roman dominating set (RDS) in UDGs and

gave 5 -factor and 7.5 - factor approximation algorithms for Roman dominating set

(RDS) problem and connected Roman dominating set (CRDS) problem, respectively,

in UDGs. However, the latter was achieved using a distributed algorithm from [25].

One of the variations, called total Roman domination, was introduced in [16]. In [1],

authors established lower and upper bounds on total Roman dominating set (TRDS)

and related the total Roman domination number (γtR(G)) to domination parameters

such as the domination number (γ(G)), Roman domination number (γR(G)) and total

domination number (γt(G)). In [18], authors gave a new lower and upper bound for

γtR(G), which was even tighter than the well known bound, 2γ(G) ≤ γtR(G) ≤ 3γ(G).

In 2020, A. Poureidi [19] gave a linear time algorithm to compute the total Roman

domination number for proper interval graphs. For general graphs, more results and

variations on TRDS can be found in [2, 10, 23].

The connected Roman dominating set (CRDS) problem is closely related to the TRDS

problem since every CRDS is a TRDS. As seen in [22], the authors gave a 7.5 -factor
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approximation algorithm for the CRDS problem in UDGs. However, the factor was

achieved through a distributed algorithm that appeared in [25], which has an extra

message passing overhead. We observe that the heuristic in [21] can be modified to

obtain a 12 -factor approximation algorithm for the TRDS problem in UDG. So any

constant factor algorithm below 12 for the TRDS problem without message passing

overhead is noteworthy.

Recently, in 2021, Jena and Das [21] showed that the TDS problem in UDGs is NP-

complete and gave an 8 -factor approximation algorithm which runs in O(|V | log |Dt|)
time, where |Dt| is the size of the output. In the same paper, the authors presented

a polynomial time approximation scheme (PTAS) that runs in O(k2n2(d2
√
2ke)2) time

to compute a total dominating set of size at most (1 + 1
k )2|D∗t |, where k ≥ 1 and D∗t

is the minimum TDS. The scheme calculates a total dominating set of size at most

4|D∗t | in O(n18) time, which is quite high, and for better approximation, the time

complexity even worsens. So, there is scope for improvements in the approximation

factor and running time.

1.2. Our Contribution

The remaining part of this paper is organized as follows. In Section 2, we introduce

the required preliminaries. We also establish some new lemmas and observations

pertinent to the article. In Section 3, we detail the approach for finding a 10.5 -factor

approximation algorithm for the TRDS problem in UDGs, which is an improvement

over the previously best-known approximation factor 12 [21]. In Section 4, we propose

a 7.79 -factor approximation algorithm for the TDS problem in UDGs, which is an

improvement over the best known 8 -factor approximation algorithm [21]. Finally, we

conclude the paper in Section 5.

2. Preliminaries

In this section, we define some notations and definitions that are pertinent to the

article. We revisit some of the already-known facts and properties of the unit disk

graphs (UDGs) and the total Roman dominating set (TRDS) in general graphs. Here,

we also establish some lemmas that are relevant to the article.

UDG: Let G = (V,E) be a unit disk graph with the vertex set V and edge set

E, where V = {p1, p2, . . . , pn} ⊆ R2 is the set of disk centers and pipj ∈ E iff

d(pi, pj) ≤ 1. In this article, we often refer to a point as a vertex or node. Let ∆(p)

denote the disk of radius 1 centered at the point p ∈ V and ∆(P ) = {∆(p) : p ∈ P}.
The set of disks ∆(P ) is said to be independent if for any pair p, q ∈ P , p /∈ ∆(q).

In a graph G, we use the symbol x
G
; y to denote a path between x and y consisting

of multiple edges, and we use multiple paths to denote a cycle. For an example, the

symbol x
G
; y

G
; x represents a cycle consisting of paths x

G
; y and y

G
; x.
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Lemma 1. [21] Consider two points p, q ∈ R2 such that d(p, q) ≤ 1. If S is the set of
independent disks of radius 1 such that each disk in S contains the points p and/or q, then
|S| ≤ 8.

c

c2c1 p

( 2π
13
)

( 2π
26
)

2 unit

(a) Measuring distance of c1c2
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c11

c12
Z

X Y1

11
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UV
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HD

(b) Illustration of independent unit

disks inside a disk of radius 2

Figure 1. Illustration of Lemma 2.

Lemma 2. Let D be a unit disk centered at c. If S = {c1, c2, . . . , ct} is the set of centers of
the independent set of disks ∆(S) such that 1 < d(c, ci) ≤ 2 for 1 ≤ i ≤ t, then t = |S| ≤ 18.

Proof. Let D and D be the disks of radius 2 and 1, respectively, centered at a single

point c. We have to show that at most 18 independent unit disks exist whose centers

lie on the disk D and are also independent from the disk D. We prove the result in two

steps. In the first step, we show that there exists at most 12 independent unit disks’

centers on the periphery of D . Let S1 = {c1, c2, . . . , c12} be the set of corresponding

disks’ centers such that d(c, ci) = 2 for i = 1, 2, . . . , 12. In the second step, we show

that if d(c, ci) = 2 for i = 1, 2, . . . , 12; then there exists at most 6 independent unit

disks, say S2 = {c′1, c′2, . . . , c′6} such that ∆(S) is independent where S = S1 ∪S2 and

1 < d(c, c′i) < 2 for i = 1, 2, . . . , 6.

(i) On contrary assume that S1 = {c1, c2, . . . , c13} is the set of 13 points such that

d(c, ci) = 2, for 1 ≤ i ≤ 13. Let the points c1, c2,. . . , c13 be placed sequentially in

clockwise order on the periphery of the disk D (i.e., d(c, ci) = 2 for 1 ≤ i ≤ 13). Let

cci be the line segment joining the point c with ci, where 1 ≤ i ≤ 13. Then there

exists at least one pair of consecutive segments ccj and cck such that ∠cjcck ≤ 2π
13 .

Without loss of generality, let the two segments be cc1 and cc2 such that ∠c1cc2 ≤ 2π
13 .

We need to show that the points c1 and c2 are not independent. Let’s consider the

triangle ∆cc1c2 as shown in Figure 1(a). Let cp be the perpendicular bisector of c1c2.

Then |c1c2| = 4 sin( 2π
13×2 ) < 1. This leads to the contradiction that c1 and c2 are

independent. This proves that |S1| ≤ 12 (refer to Figure 1(b) for an orientation of 12
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independent disks whose centers are placed on the periphery (dotted line) of the disk

D).

(ii) From the first step, it is proved that there can be at most 12 independent unit

disks whose centers lie on the periphery of a disk of radius 2. Let S1 = {c1, c2, . . . , c12}
be the set of disks’ centers that lie on the periphery of D as shown in Figure 1(b).

Let D be a unit disk centered at point c; then there exists a set of 12 regions, say

R = D \D \
12⋃
i=1

∆(ci) (the 12 regions are shaded in Red colour in Figure 1(b), which

are still independent from S1. Now, we have to show that at most 6 independent unit

disk centers can lie in these regions. Let HD (TUVWXY ) be the hexagon inscribed

in disk D as shown in Figure 1(b). Since D is a unit disk, each arm of the hexagon HD

is of unit length. Let us extend the line segments WX and TY such that they meet at

point Z. Now, the ∆XY Z is an equilateral triangle with side length of 1 unit. Since

each such triangle contains two red regions, no consecutive regions can contain the

centers of two independent unit disks (since the maximum distance between any two

points in an equilateral triangle of side length 1 is upper bounded by 1). Therefore,

12 regions can contain at most 6 independent unit disks. Let S2 = {c′1, c′2, . . . , c′6} be

the independent unit disks on those 12 regions.

From the first step, there exists at most 12 independent unit disks at a distance 2 from

the point c. If the independent disks become nearer to c, then the independency among

the disk decreases along with the decrease in the area of the 12 regions. Hence, placing

12 disks’ centers on the periphery ensures the maximum value of |S| = |S1 ∪ S2| ≤
18.

TRDS: For a given graph G = (V,E), let F ∗ = {f∗1 , f∗2 , . . . , f∗m} be the set of

all TRDFs with W (f∗i ) = γtR(G) for 1 6 i 6 m. Let f∗ ∈ F ∗ be a TRDF and

let (V ∗0 , V
∗
1 , V

∗
2 ) be the ordered partition of V induced by f∗ such that f∗ attains

minimum |V ∗1 |. We partition the set V ∗1 into subsets V ∗11 and V ∗12 such that V ∗12 is the

set of vertices in V ∗1 which have neighbors in V ∗2 and V ∗11 = V ∗1 \ V ∗12. Similarly, we

partition V ∗2 into subsets V ∗22 and V ∗21 such that V ∗21 is the set of vertices in V ∗2 which

have neighbors in V ∗1 and V ∗22 = V ∗2 \ V ∗21. In Figure 2(a) (respectively, Figure 2(b)),

3 rectangles enclosed within solid line represent the sets V ∗0 , V ∗1 and V ∗2 . The dashed

lines in Figure 2(a) (respectively, Figure 2(b)) segregate V ∗1 into V ∗11 and V ∗12, and V ∗2
into V ∗22 and V ∗21.

Lemma 3. [1] If f∗ = (V ∗0 , V
∗
1 , V

∗
2 ) is an optimal TRDF on a graph G = (V,E) such

that f∗ attains minimum |V ∗1 |, then either (i) V ∗2 is a dominating set (DS) of G, or (ii)
G[V ∗11] = αK2 for some integer α ≥ 1, where K2 represents the complete graph of two
vertices.

From Lemma 3, the following observations can be noted.

Observation 1. If f∗ = (V ∗0 , V
∗
1 , V

∗
2 ) is an optimal TRDF on the graph G = (V,E)

such that f∗ attains minimum |V ∗1 |, then for each edge pq ∈ V ∗11, B({p, q}) ⊆ V ∗0 (refer to
Figure 2(a)).
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Figure 2. Illustration of G[V ∗
1 ∪ V

∗
2 ].

Proof. It is sufficient to prove that there does not exist any vertex v ∈ B({p, q})
such that f(v) = 1 or f(v) = 2. On the contrary, assume that there exists a vertex

v ∈ B({p, q}) with f(v) = 1. Let vp ∈ E(G). If so, then we define another optimal

TRDF f∗′ = (V ∗′0 , V ∗′1 , V ∗′2 ), where V ∗′0 = V ∗0 ∪ {v}, V ∗′1 = V ∗1 \ {v, p} and V ∗′2 =

V ∗2 ∪ {p} such that W (f∗′) = W (f∗) and |V ∗′1 | < |V ∗1 |. This leads to a contradiction

that |V ∗1 | is the minimum.

To prove the second part, assume that there exists a vertex v ∈ B({p, q}) with f(v) =

2. Let vp ∈ E(G). If so, then we define another optimal TRDF f∗′ = (V ∗′0 , V ∗′1 , V ∗′2 ),

where V ∗′0 = V ∗0 ∪{q}, V ∗′1 = V ∗1 \{p, q} and V ∗′2 = V ∗2 ∪{p} such that W (f∗′) = W (f∗)

and |V ∗′1 | < |V ∗1 |. This leads to a contradiction that |V ∗1 | is the minimum.

Observation 2. Let f∗ = (V ∗0 , V
∗
1 , V

∗
2 ) is an optimal TRDF on a graph G = (V,E)

such that f∗ attains minimum |V ∗1 |. If V ∗2 is a DS of G = (V,E), then G[V ∗1 ∪ V ∗2 ] does not
contain an edge with Roman value (1, 1), i.e., V ∗11 = ∅ (refer to Figure 2(b)).

Proof. On the contrary, assume V ∗11 6= ∅, i.e., there exists an edge pq ∈ E(G[V ∗11])

(as f∗ satisfies the total property). Since V ∗2 is a dominating set of G, each vertex

v ∈ V (G) is either in V ∗2 or there exists an edge uv ∈ E(G) such that u ∈ V ∗2 . Since

the sets V ∗2 and V ∗11 are mutually exclusive, for each vertex u ∈ V ∗11, there exists a

vertex v ∈ V ∗2 such that uv ∈ E[G]. Let s and t dominate p and q, respectively, where

s, t ∈ V ∗2 . If s = t (single vertex which dominates p and q), then we define another

TRDF f∗′ = (V ∗′0 , V ∗′1 , V ∗′2 ), where V ∗′0 = V ∗0 ∪{q}, V ∗′1 = V ∗1 \{q} and V ∗′2 = V ∗2 such

that W (f∗′) < W (f∗). This leads to a contradiction that f∗ is optimal; otherwise

(i.e., s 6= t), p and q would have been in V ∗12 not in V ∗11.

Observation 3. Let f∗ = (V ∗0 , V
∗
1 , V

∗
2 ) is an optimal TRDF on a graph G = (V,E) such

that f∗ attains minimum |V ∗1 |. If V ∗2 is not a DS of G, then G[V ∗1 ∪V ∗2 ] contains edges with
Roman values (2, 2), (2, 1) and (1, 1).

Proof. It follows from Observation 1 and Observation 2.
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From Observation 2 and Observation 3, the induced graph G[V ∗1 ∪ V ∗2 ] exhibits the

following five structures only: (i) 2−2: An edge with Roman value 2 for each vertex in

the edge, (ii) Bouquet of 2−2: A connected component with Roman value 2 for each

vertex in the component, (iii) 2− 1: An edge with Roman value 2 for one vertex and

Roman value 1 for another vertex, (iv) Flower of 2− 1: A connected component with

a star structure, where the center vertex carries Roman value 1 and the remaining

carries Roman value 2, (v) 1− 1: An edge with Roman value 1 for each vertex in the

edge. For reference, see Figure 3 for the complete illustration of each possible type of

structure in the induced graph G[V ∗1 ∪ V ∗2 ].

V ∗0

V ∗11

V ∗12 ∪ V ∗21

V ∗22

1

11

1

1 1

1

1

2

2

2

2 2

2

2 2

2

2
2

2

2

2

2

Figure 3. Illustration of G[V ∗
22], G[V ∗

12 ∪ V
∗
21] and G[V ∗

11].

3. A 10.5 factor Approximation Algorithm

In this section, we propose a 10.5 - factor approximation algorithm called TRDF-UDG

for the TRDS problem in geometric UDGs. The algorithm runs on a graph with no

isolated vertex. If the graph is disconnected, each component can run it to obtain the

TRDF.

3.1. TRDF-UDG: The Proposed Algorithm

Given a unit disk graph G = (V,E), where V = {p1, p2, . . . , pn} ⊆ R2 is the set of disk

centers, the algorithm finds a TRDF f = (V0, V1, V2) of G. First, it finds a maximal

independent set V2 ⊆ V of G to satisfy the Roman property. Next, to satisfy the

total property, it chooses a set of neighboring vertices V1 ⊆ V \ V2 such that for each

u ∈ V2, there exists a vertex u′ ∈ V1 and u′ ∈ ∆(u). See Algorithm 1 (TRDF-UDG)

for the pseudocode, Lemma 4 for the correctness and Lemma 6 for time complexity
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analysis/implementation details of the algorithm.

Algorithm 1 TRDF-UDG
Require: A unit disk graph, G = (V,E) with known disk centers

Ensure: A TRDF f = (V0, V1, V2) and the corresponding weight W (f)

1: V0 = ∅, V1 = ∅, V2 = ∅, V ′ = V
2: while V ′ 6= ∅ do . Roman property of TRDF

3: choose a vertex v ∈ V ′
4: V2 = V2 ∪ {v} and f(v) = 2
5: V ′ = V ′ \NG[v]

6: end while

7: for each u ∈ V2 do . total property of TRDF
8: choose a vertex u′ ∈ NG(u)

9: V1 = V1 ∪ {u′} and f(u′) = 1

10: end for
11: V0 = V \ (V1 ∪ V2)

12: for each u ∈ V0 do

13: f(u) = 0
14: end for

15: return f = (V0, V1, V2) and W (f) = 2× |V2|+ |V1|

Lemma 4. The function f = (V0, V1, V2) in TRDF-UDG is a TRDF of G.

Proof. TRDF-UDG runs in two phases. In the first phase, it finds a maximal

independent set V2 of G (since every maximal independent set is a dominating set) and

then assigns Roman value 2 to each vertex in V2 (see lines 2-6 of Algorithm 1), which

ensures the Roman property of TRDF. To ensure the total property of TRDF, it finds

another set V1 by adding a neighbor vertex for each vertex in V2 and assigns Roman

value 1 (see lines 7-10 of Algorithm 1). The remaining vertices carry Roman value 0

(see lines 12-14 of Algorithm 1). Therefore, combinedly the nominated points in V2
and V1 satisfies the Roman and total properties. Hence, the function f = (V0, V1, V2)

is a TRDF of G.

Lemma 5. A cell of size 1× 1 contains the centers of at most 3 independent unit disks.

Proof. Since the perimeter of a cell is 4 unit, the number of independent unit disks

that a cell can contain is at most 3; otherwise, the disks are no longer independent.

Lemma 6. TRDF-UDG runs in O(|V | log k) time, where k = |V2|.

Proof. Let V = {p1, p2, . . . , pn} be the set of disks’ centers corresponding to graph

G = (V,E). Let R be a rectangular plane containing the set of points V , where the

extreme left and extreme bottom arms of the rectangle represent the x- and y-axis,

respectively. Split the plane R into horizontal strips and then vertical strips of width

one unit each, resulting in a grid of cell size 1× 1. Let index each cell as [x, y], where
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x, y ∈ N∪{0}. If any point p ∈ V is located at co-ordinate (px, py) in the given plane,

then it belongs to a cell with index [bpxc, bpyc].
In phase one, TRDF-UDG constructs a maximal independent dominating set V2 of

the input graph G. To do so efficiently, each non-empty cell maintains a list that

keeps the points of V that are chosen for inclusion in V2, and they are located within

that cell. While considering a point p ∈ V as a candidate for the set V2, it only probes

into 9 cells. That means if p is located at co-ordinate (px, py), then it searches in each

[i, j] cell, where bpxc − 1 6 i 6 bpxc+ 1 and bpyc − 1 6 j 6 bpyc+ 1.2 If there does

not exist any point q ∈ V2 in those 9 cells such that p ∈ ∆(q), then p is included

in V2. A height balance binary tree containing non-empty cells is used to store the

points that are in V2. Since each cell of size 1× 1 can contain at most 3 independent

unit disks (see Lemma 5), the processing time to decide whether a point is in V2 or

not requires O(log k) time. Thus the time taken to process |V | points is O(|V | log k),

where k = |V2| (see lines 2-6 of Algorithm 1). In phase two, it finds a neighboring

vertex u′ for each u ∈ V2 and assigns Roman value 1. Let the set of neighboring

vertices be V1. Since, |V1| = |V2| = k, the time taken in phase two is O(k). (see

lines 7-10 of Algorithm 1). Then it assigns Roman value 0 to the remaining vertices

of V (excluding V1 and V2) in O(|V |) time (see lines 12-14 of Algorithm 1). So in

total, TRDF-UDG (Algorithm 1) runs in O(|V | log k) time.

Lemma 7. Consider two points p, q ∈ R2 such that d(p, q) ≤ 1. If there exists a point
r ∈ R2 such that either d(r, p) ≤ 1 and/or d(r, q) ≤ 1 and S′ is the set of independent unit
disks that contains at least one element from {p, q, r}, then |S′| ≤ |S|+ 4, where S is the set
of independent unit disks containing p and/or q.

Proof. Without loss of generality, assume that d(q, r) ≤ 1. Suppose there exists 5

independent unit disks that contains r but neither p nor q, i.e., |S′| = |S| + 5 . Let

c1, c2, c3, c4 and c5 are the centers of those 5 unit disks. Let ri denotes the ray −→rci as

depicted in Figure 4(a), where 1 ≤ i ≤ 5. Without loss of generality, let q lie between

the centers c1 and c5. Since, ∠c1rq + ∠c5rq > 2π
3 , so at least one of ∠c1rc2, ∠c2rc3,

∠c3rc4 and ∠c4rc5 is less than π
3 . This leads to a contradiction that the disks at

centers c1, c2, c3, c4, and c5 are independent. Thus |S′| ≤ |S|+ 4.

Lemma 8. Consider two points p, q ∈ R2 such that d(p, q) ≤ 1. Let S be the set of
independent disks of radius 1 such that S contains the points p and/or q. If |S| > 7, then S
contains at least one disk having center in ∆(p) ∩∆(q).

Proof. It is sufficient to prove that if |S| = 8, then S contains a disk having its center

in ∆(p)∩∆(q). Let c1, c2, . . . , c8 are the disk centers in S. On the contrary assume that

2 Any point outside these 9 cells is independent from p
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p q r

c1
c2

c3

c4c5

≤ π
3

(a) Illustration of independent disks

orientation of a pendant vertex

c1 c2

π
3

A

B

2π
3

4π
3

4π
3

(b) Illustration of boundary length of (∆(p) \∆(q))∪
(∆(q) \∆(p)), when d(c1, c2) = 1

Figure 4. Illustration of Lemma 7 and Lemma 8

ci /∈ ∆(p) ∩ ∆(q) for i = 1, 2, . . . , 8. Since ∆(c1),∆(c2), . . . ,∆(c8) are independent,

so without loss of generality, we assume that c1, c2, . . . , c8 lie on the boundary of

(∆(p)\∆(q))∪(∆(q)\∆(p)). The length of the boundary in (∆(p)\∆(q))∪(∆(q)\∆(p))

is at most 8π/3 as d(p, q) ≤ 1 (refer to Figure 4(b)). Since ∆(c1),∆(c2), . . . ,∆(c8)

are independent, then mutual distance among c1, c2, . . . , c8 must be more than π/3,

which leads to a contradiction.

Let f∗ = (V ∗0 , V
∗
1 , V

∗
2 ) be an optimal TRDF with minimum |V ∗1 | and f = (V0, V1, V2)

be the solution returned by TRDF-UDG (Algorithm 1). By Observation 2 and Ob-

servation 3, each edge pq ∈ E(G[V ∗1 ∪ V ∗2 ]) has Roman value either (2, 2) or (2, 1)

or (1, 1). Let (V ∗11, V
∗
12 ∪ V ∗21, V ∗22) be a partition of the set V ∗1 ∪ V ∗2 such that V ∗11,

V ∗12, V ∗21 and V ∗22 are the sets as defined earlier in Section 2. The inner 3 rectangles

in Figure 3 represent the sets V ∗11, V ∗12 ∪ V ∗21 and V ∗22, and the red solid lines in each

rectangle illustrate the corresponding induced graph.3

Lemma 9. If f∗ ∈ F ∗ is an optimal TRDF, which attains minimum |V ∗1 |, then TRDF-
UDG charges at most weight 24 against an edge pq ∈ E(G[V ∗22]).

Proof. Let f = (V0, V1, V2) be the TRDF returned by TRDF-UDG with weight

W (f). Consider an arbitrary edge pq ∈ E(G[V ∗22]). From Lemma 1, there are at

most 8 independent unit disks in V2 which contain the points p and/or q. To satisfy

the Roman property of TRDF, TRDF-UDG assigns Roman value 2 (see line 4 in

Algorithm 1) to each of the 8 vertices, which are the elements of V2. So, our algorithm

may invest 2×8 = 16 from W (f) to dominate (Roman) both p and q. Next, to satisfy

the total property, TRDF-UDG chooses a neighbor for each selected vertex in phase

one from V1 and assigns Roman value 1 (see line 9 in Algorithm 1), which requires

an additional 8 investment from W (f). So in total, TRDF-UDG invests at most

3 In Figure 3, the grey colored (light shaded) disks represent the vertices in V ∗0 and the dotted lines

represent the edges between the set V ∗0 and V ∗1 ∪ V ∗2
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24 from W (f) weight. So for any edge pq ∈ E(G[V ∗22]) having Roman value (2, 2),

f = (V0, V1, V2) dominates (total Roman) p and q by investing at most 24 weight from

W (f).

Lemma 10. If f∗ ∈ F ∗ is an optimal TRDF which attains minimum |V ∗1 |, then TRDF-
UDG charges at most weight 24 against an edge (p, q) ∈ E(G[V ∗12 ∪ V ∗21]).

Proof. Proof of the lemma is similar to Lemma 9.

Lemma 11. Let f∗ = (V ∗0 , V
∗
1 , V

∗
2 ) is an optimal TRDF, which attains minimum |V ∗1 |.

If S is the set of independent unit disks of radius 1 such that S contains p and/or q, where
pq ∈ E(G[V ∗11]), then |S| ≤ 7.

p q

s

1 1

0

0 0 0

0

00

0

2 2 2

2

22

2

2

s′

Figure 5. Illustration of Lemma 11.

Proof. Let |S| ≥ 8. So, by Lemma 8, there exists at least one disk in S having its

center in ∆(p)∩∆(q). Let the disk’s center be s (see Figure 5). From Observation 1,

f∗(s) = 0. This implies there exist a vertex s′ ∈ NG(s) such that f∗(s′) = 2. Now,

we define another optimal TRDF f∗′ = (V ∗′0 , V ∗′1 , V ∗′2 ), where V ∗′0 = V ∗0 \ {s}∪{p, q},
V ∗′1 = V ∗1 \ {p, q} and V ∗′2 = V ∗2 ∪ {s} such that W (f∗′) = W (f∗) and |V ∗′1 | < |V ∗1 |.
This leads to a contradiction that |V ∗1 | is the minimum.

Lemma 12. If f∗ ∈ F ∗ is an optimal TRDF which attains minimum |V ∗1 |, then TRDF-
UDG charges at most 21 against an edge pq ∈ E(G[V ∗11]).

Proof. Let f = (V0, V1, V2) be the TRDF returned by TRDF-UDG with weight

W (f). Consider an arbitrary edge pq ∈ E(G[V ∗11]). From Lemma 11, there are at

most 7 independent disks which contain p and/or q. So in the worst case, at most

7 independent disks in V2 contain the point p and/or q. The Roman value assigned

to each vertex in V2 is 2 (see line 4 in Algorithm 1). So, TRDF-UDG may invest

2× 7 = 14 from W (f) to dominate (Roman) both p and q. Now, to satisfy the total
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property, TRDF-UDG further selects a neighbor for each v ∈ V2 from V1 and assigns

Roman value 1 (see line 9 in Algorithm 1), which requires additional 7 investment

from W (f). So in total, TRDF-UDG invests at most 21 from W (f) weight. So for

any edge pq ∈ E(G[V ∗11]) having Roman value (1, 1), f = (V0, V1, V2) dominates (total

Roman) p and q by investing at most 21 weight from W (f).

Lemma 13. If A (|A| = `) is the set of vertices in the bouquet/flower (mentioned in
Section 2) and S is the set of independent unit disks that contains A, then |S| ≤ 4`.

Proof. Consider an edge pq in the bouquet/flower. Then there exists at most 8

independent unit disks that can contain p and/or q (by Lemma 1). Now consider

another vertex r attached either to p or q, then at most, 4 independent unit disks can

contain only r (by Lemma 7). So, at most, 8 + 4 = 12 independent disks can contain

p and/or q and/or r. Let A′ ⊆ A be a set of vertices in the bouquet/flower apart from

p and q, i.e., A′ = A \ {p, q}. Note that |A′| = ` − 2. So, by Lemma 7, there exists

at most 4 independent disks for each vertex in A′, thus at most 8 + 4(` − 2) = 4`

independent disks can contain all the vertices in A.

Let C∗ be a connected component in G[V ∗1 ∪ V ∗2 ]. For any component C∗, we denote

W (C∗) and W ∗(C∗) as the weights incurred by TRDF-UDG and f∗, respectively.

Lemma 14. If f∗ = (V ∗0 , V
∗
1 , V

∗
2 ) is an optimal TRDF such that |V ∗1 | attains minimum

value and f = (V0, V1, V2) is the TRDF returned by TRDF-UDG , then for each component
C∗ ∈ G[V ∗1 ∪ V ∗2 ], W (C∗) ≤ 10.5×W ∗(C∗).

Proof. Let f∗ = (V ∗0 , V
∗
1 , V

∗
2 ) be an optimal TRDF which attains minimum |V ∗1 |.

Consider the ordered partition (V ∗11, V
∗
12 ∪ V ∗21, V ∗22) of the set V ∗1 ∪ V ∗2 as defined

in Section 2. From Section 2, the induced graph G[V ∗1 ∪ V ∗2 ] exhibits five different

structures only (refer to Figure 3). To make the analysis easier, we consider each of

the induced graphs G[V ∗22], G[V ∗12 ∪ V ∗21] and G[V ∗11] separately.

Case 1. G[V ∗22].

By Lemma 13, there are 4` independent disks that can contain vertices of a bouquet.

So, in the first phase, TRDF-UDG can pick at most 4` independent disks. TRDF-

UDG invests 3×4` weight from W (f). But in the optimal, 2` weight out of W (f∗) is

required for the bouquet (since each vertex carries Roman value 2). So, TRDF-UDG

invests 12`
2` = 6 times more if compared to the optimal solution f∗.

Case 2. G[V ∗12 ∪ V ∗21].

By Lemma 13, There are 4` independent disks that can contain vertices of a flower.

So, in the first phase, TRDF-UDG can pick at most 4` independent disks. TRDF-

UDG invests 3 × 4` weight from W (f). But in the optimal, 3 + 2(` − 2) = 2` − 1

weight out of W (f∗) is required for the flower. Note that 12`
2`−1 is maximum when the

flower consists of only ` = 2 vertices, and in f∗, the Roman value assigned to the two

vertices are 2 and 1. The more is the number of vertices in a flower, the less is the
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value of 12`
2`−1 (since the function 12`

2`−1 is a monotonically decreasing function). So,

at maximum, TRDF-UDG invests 8 times more if compared to the optimal solution

f∗.

Case 3. G[V ∗11].

From Lemma 3, each component C∗ ∈ G[V ∗11] is a K2. TRDF-UDG invests at most

21 against C∗ by Lemma 12. Hence, TRDF-UDG invests 21
2 = 10.5 times more for

C∗ ∈ G[V ∗11] in f compared to f∗.

Lemma 15. W (f) ≤ 10.5× γtR(G), where W (f) and γtR(G) are the weights associated
with f (in Algorithm 1) and f∗ (optimal TRDF) of G, respectively.

Proof. Since V ∗11 ∪ (V ∗12 ∪ V ∗21)∪ V ∗22 = V ∗1 ∪ V ∗2 , therefore, the theorem follows from

Lemma 14.

Theorem 4. The proposed algorithm (TRDF-UDG) gives a 10.5 -factor approximation
algorithm for the TRDS problem in UDGs, which runs in O(|V | log k) time, where k is the
number of vertices with Roman value 2.

Proof. The approximation factor follows from Lemma 15, and the time complexity

result follows from Lemma 6.

4. Total Dominating Set (TDS) in UDGs Revisited

In this section, we propose an algorithm called TDS-UDG (see Algorithm 2 for the

pseudocode) for the TDS problem in geometric UDGs with an approximation fac-

tor 7.79. The algorithm runs on a graph with no isolated vertex. If the graph is

disconnected, each component can run it to obtain the TDS.

4.1. TDS-UDG: The Proposed Algorithm

We briefly describe the algorithm for finding a total dominating set (TDS) Dt of

the given geometric UDG G. TDS-UDG consists of three phases. The first phase

segregates the set of vertices V into k+ 1 subsets, i.e., S = {Si : 0 ≤ i ≤ k} such that

V =
k⋃
i=0

Si. The second phase selects a set of vertices I from Si (where 0 ≤ i ≤ k)

such that I satisfies the domination property of graph G. At the end, the third phase

identifies another set of vertices T ⊆ V (G) that meets the total property. Finally,

TDS-UDG reports the total dominating set Dt as the collection of the two sets I and

T , i.e., Dt = I ∪ T . Now, we discuss each of the phase of the algorithm elaborately.
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Algorithm 2 TDS-UDG
Require: A unit disk graph G = (V,E) with known disk centers

Ensure: A TDS Dt

1: Choose a vertex x ∈ V (G)

2: x.explored = true, x.parent = NIL

3: for each vertex u ∈ V \ {x} do
4: u.explored = false, u.parent = NIL

5: end for
6: I = ∅, T = ∅, Dt = ∅, k = 0, count = 0, Sk = {x}, Ik = {x}
7: while count 6= |V (G)| do

8: Sk+1 = ∅
9: for each node u ∈ Sk do

10: for each node v ∈ NG(u) do

11: if v.explored = false then
12: v.explored = true, Sk+1 = Sk+1 ∪ {v}
13: v.parent = u

14: end if
15: end for

16: count = count+ 1
17: end for

18: k = k + 1

19: end while
20: k = k − 1

21: if k = 1 then

22: choose any vertex y ∈ N(x)
23: T = T ∪ {y}
24: else

25: for i = 2 to k do
26: Ii = ∅, Ti = ∅
27: while Si 6= ∅ do

28: Choose a vertex p ∈ Si

29: Ii = Ii ∪ {p}
30: Ti = Ti ∪ {p.parent}
31: Si = Si \NG[p], Si+1 = Si+1 \NG[p]

32: end while

33: I = I ∪ Ii
34: T = T ∪ Ti
35: end for

36: end if
37: Dt = I ∪ T
38: return Dt

4.1.1. Phase I

In phase I, TDS-UDG segregates the vertex set V into k + 1 subsets namely S0,

S1,. . . , Sk. The subsets are formed by constructing a breadth first search (BFS) tree

rooted at any vertex x. Let Tx be the tree constructed at x for G (see Figure 6(a)

and the corresponding rooted tree Tx of G in Figure 6(b)). If i is the level of the

vertex y in Tx, then y ∈ Si, where x is at level 0, and the level of a vertex in Tx is

the number of edges in the path (in Tx) that connects to the root. Hence, Si can be

interpreted as the collection of all the vertices that are at ith level in Tx (see lines 1-19

of Algorithm 2).
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x

(a) G = (V,E)

S3

S2

S1

x

(b) Rooted BFS tree Tx at x of G

Figure 6. Illustration of Si in G.

Observation 5. Every vertex v ∈ Si has a neighbor in Si−1 for i = 1, 2, . . . k.

Proof. In Tx, i represents the level of a node and Si is the collection of nodes with

level i. Since Tx is connected, every vertex v ∈ Si has a neighbor in Si−1.

Observation 6. If Tx is the rooted BFS tree constructed at vertex x of G, then for any
vertex u ∈ Si, there does not exist any vertex v ∈ Si such that uv ∈ E(Tx), where 0 ≤ i ≤ k.

Proof. On the contrary assume that there exists two vertices u, v ∈ Si such that

uv ∈ E(Tx). Since the vertices u and v are in Si (i.e., at level i in Tx), there exists

paths u
Tx
; x and v

Tx
; x in Tx. Now, if uv ∈ E(Tx), then the edge uv forms a cycle

x
Tx
; u

Tx
; v

Tx
; x in Tx. This leads to a contradiction that Tx is a tree.

4.1.2. Phase II

In phase II, TDS-UDG finds a set of independent vertices Ii for each Si such that

I =
k⋃
i=0

Ii is a maximal independent set (MIS) of G. Initially, I0 contains x as S0

contains the only vertex x (see line 6 in Algorithm 2). Since each vertex in S1 is a

neighbor of x, I1 = ∅. For the remaining Si for 2 ≤ i ≤ k, the set Ii is constructed

on an incremental basis, i.e., Ii is constructed only after constructing Ii−1. For each

Si, the algorithm selects any random vertex p ∈ Si as a candidate for Ii. Then,

it deletes the closed neighborhood of p in G (i.e., NG[p]) from Si and Si+1 (see

line 31 in Algorithm 2). The neighborhood deletion from Si and Si+1 ensures that

the next candidate for Ii remains independent from the vertices already in Ii and the

set Ii ∪ Ii+1 remains an independent set. This process continues for the remaining

vertices in Si till Si exhausts. Once the i value reaches k + 1, the set I becomes an

MIS of G (see line 33 in Algorithm 2). Since every MIS of a graph is a dominating

set of the graph, the MIS I is a dominating set of G. Thus I satisfies the domination

property.
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4.1.3. Phase III

In phase III, TDS-UDG finds a set T that satisfies the total property when taken

with the independent set I. T is the collection of all Ti. Each Ti is a collection of the

parent node for each node selected in Ii (see line 30 in Algorithm 2). Since line 13

keeps track of the parent vertex for each node present in Si, the algorithm updates

the set T by adding the parent node for each node selected in I (see lines 29-30 in

Algorithm 2). The set I along with T ensures that none of the vertices in G[I ∪ T ] is

isolated.

Lemma 16. Algorithm 2 returns (Dt) a TDS of the geometric UDG G.

Proof. Since Dt = I ∪ T and from Phase I, II, and III, it is clear that the set Dt

satisfies both domination and total properties. Hence the lemma follows.

Lemma 17. Algorithm 2 runs in O(|V |+ |E|) time.

Proof. The complexity of TDS-UDG is primarily dominated by the nested loop

used for segregating the set V into k subsets (see lines 7-19 in Algorithm 2). In the

worst case, the algorithm checks each vertex and the corresponding adjacency list for

segregation. Hence, the time complexity of TDS-UDG is O(|V |+ |E|).

Lemma 18. In Algorithm 2, if |I| ≥ 2, then for each vertex u ∈ I, there exists at least
one vertex v ∈ I, such that d(u, v) ≤ 2.

Proof. Since Algorithm 2 constructs an MIS of G on an incremental basis, i.e., it

constructs the MIS Ii of Si only after constructing the MIS Ii−1 of Si−1, where I =
k⋃
i=0

Ii. So the lemma can be proved using induction on k with respect to the rooted tree

Tx at x, i.e., the algorithm finds the MIS of the induced subgraph G[S0∪S1∪· · ·∪Si]
from G[S0 ∪ S1 ∪ · · · ∪ Si−1] to find an MIS of G since G = G[S0 ∪ S1 ∪ · · · ∪ Sk].

Let P (k) be the proposition that for each vertex u ∈
k⋃
i=0

Ii, there exists at least one

vertex v ∈
k⋃
i=0

Ii such that d(u, v) ≤ 2 for k ≥ 2.

Basis step: We have to show that P (2) is true, i.e., when k = 2, for each u ∈
2⋃
i=0

Ii,

there exists at least one vertex v ∈
2⋃
i=0

Ii such that d(u, v) ≤ 2. Since, I0 = {x} and

I1 = ∅ (S1 = ∅, since TDS-UDG removes NG(x) from S1). Let I2 be the MIS of

S2. Since the graph is connected, each vertex v ∈ I2 has at least one vertex w in S1

(see Observation 5). This implies d(v, w) ≤ 1. Since every vertex present in S1 is a

neighbor of x, w ∈ NG(x). So d(x,w) ≤ 1. From the triangle inequality, we have

d(v, x) ≤ d(v, w) + d(w, x) ≤ 2. Hence P (2) is true.
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Inductive Hypothesis: When k = m, P (m) is true, i.e., for each u ∈
m⋃
i=0

Ii, there

exists at least one vertex v ∈
m⋃
i=0

Ii such that d(u, v) ≤ 2.

Inductive Step: We have to show that when k = m+ 1, P (m+ 1) is true, i.e., for

each u ∈
m+1⋃
i=0

Ii, there exists at least one vertex v ∈
m+1⋃
i=0

Ii such that d(u, v) ≤ 2.

Since P (m) is true, the following is sufficient to prove the lemma: for each vertex

u ∈ Im+1; there exists at least one vertex v ∈ Im−1 such that d(u, v) ≤ 2.

Without loss of generality, let us consider a vertex u ∈ Im+1. Then the vertex u has

one neighbor w ∈ Sm (see Observation 5). Since uw ∈ E, d(u,w) ≤ 1. u ∈ Im+1

implies u ∈ Sm+1. u is still in Sm+1 because none of the neighbors of u is in Im;

otherwise, u would have been removed from Sm+1 and hence u should not have

appeared as a candidate in Im+1. Since P (m) is true and w /∈ Im, there exists a

vertex v ∈ Im−1 due to which w was removed from Sm. This implies d(w, v) ≤ 1.

Due to triangle inequality d(u, v) ≤ d(u,w) + d(w, v) ≤ 2. Hence the proposition

holds.

Lemma 19. In the worst case, 19 vertices in I share 18 nodes of T as intermediate
nodes.

Proof. Since I is an independent set and for each node u ∈ I, another node v ∈ I
exists, such as d(u, v) ≤ 2. From Lemma 2, we know that a disk of radius 2 contains

at most 19 independent unit disks. So in the worst case, those 19 vertices can share

18 nodes of T as intermediate nodes.

Observation 7. If |k| = 1, then |Dt| = |D∗t |, where Dt is the TDS returned by algorithm
TDS-UDG and D∗t is the optimal TDS of G.

Proof. If k = 1, the rooted tree Tx is a star graph with center vertex x. Hence

|Dt| = |D∗t | = 2.

Lemma 20. |Dt| ≤ 7.79|D∗t |, where |Dt| is the size of the TDS returned by algorithm
TDS-UDG and |D∗t | is the size of the optimal TDS of the graph G.

Proof. The set Dt in TDS-UDG is a TDS of G, where Dt = I ∪ T (see Lemma 16).

Since D∗t is a TDS of G, there does not exist any isolated vertex in G[D∗t ]. For each

pq ∈ E(G[D∗t ]), there exists at most 8 independent vertices in I which contains the

vertices p and/or q (see Lemma 1). In worst case, there are at most d|D∗t |/2e number

of edges in G[D∗t ]. Therefore, size of I is at most 8× d|D∗t |/2e = 4|D∗t |, i.e.,

|I| ≤ 4|D∗t |.
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The set T in TDS-UDG satisfies the total property when added to the independent

set I. In the worst case, we know that 19 vertices in I share 18 vertices from T as

intermediate nodes (see Lemma 19). So there are at most 18
19 × 4|D∗t | vertices in T for

4|D∗t | number of vertices in I, i.e.,

|T | ≤ 72

19
|D∗t |.

Therefore, from Lemma 16,

|Dt| = |I|+ |T | ≤ 4|D∗t |+
72

19
|D∗t | =

148

19
|D∗t | ' 7.79|D∗t |.

Theorem 8. The proposed algorithm (TDS-UDG) gives a 7.79 -factor approximation
algorithm for the TDS problem in UDGs, which runs in O(|V |+ |E|) time.

Proof. The approximation factor follows from Lemma 20, and the time complexity

result follows from Lemma 17.

5. Conclusion

In this paper, we studied the total Roman dominating set problem. We also revisited

the total dominating set problem in unit disk graphs. We proposed a 10.5 -factor

approximation algorithm for the TRDS problem in UDGs with time complexity

O(|V | log k), where k is the number of vertices with Roman value 2. For the TDS

problem in UDGs, we proposed a 7.79 -factor approximation algorithm, which runs

in O(|V |+ |E|) time.
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