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Abstract: The objective of this paper is to examine a model of a thermo-electro-

elastic body situated on a semi-insulator foundation. Friction is characterized by
Tresca’s friction law, and the contact is bilateral. The primary contribution is to derive

the weak variational formulation of the model, constituting a system that couples three

inclusions where the unknowns are the strain field, the electric field, and the temper-
ature field. Subsequently, we demonstrate the unique solvability of the system, along

with the continuous dependence of its solution under consideration. The secondary

contribution involves the investigation of an associated optimal control problem, for
which we establish the existence and convergence results. The proofs rely on arguments

related to monotonicity, compactness, convex analysis, and lower semicontinuity.
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1. Introduction

The analysis of frictional contact problems has emerged as a prominent research fo-

cus, attracting growing interest due to its proven benefits in various domains, includ-

ing technological and industrial applications. Consequently, the exploration of such

problems has garnered significant attention in research circles. From a mathematical

perspective, models describing thermo-electro-elastic phenomena are relatively recent

and have been the subject of recent discussions in specific studies, as documented in

references [4, 6, 7], and in other references [12, 16, 24, 25].
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The optimal control of the contact process is a topic of significant theoretical and

practical importance. In many application scenarios, the primary focus is on investi-

gating the observability properties of contact models and identifying their parameters.

Furthermore, there is a necessity to examine the continuous dependence of solutions to

contact problems concerning both data and parameters. This is crucial in addressing

control and optimal design challenges associated with diverse mechanical structures.

Nevertheless, optimal control problems related to stationary or differential inclusions

and variational inequalities have been examined in diverse sources, encompassing ref-

erences such as [3, 5, 8, 9, 11, 15, 20].

Nonlinear inclusions play a pivotal role in the exploration of various boundary value

problems and find extensive applications across multiple disciplines, including Me-

chanics, Physics, Engineering, and Economics. Their solvability, when expressed

through multivalued operators, requires insights derived from set-valued, convex, and

nonsmooth analysis. Recent research has particularly focused on the variational for-

mulation of contact models, often presented as inclusions or sweeping processes. For

instance, recent work by the authors of [21] delves into a mathematical model de-

scribing frictionless contact between an elastic body and an obstacle. This study

establishes that the model leads to a stationary inclusion for the strain field. These

results are then applied in the investigation of an associated optimal control problem,

where existence and convergence results are demonstrated. Similarly, the authors

of [10] explore a mathematical model involving an electro-elastic body with a semi-

insulator foundation. They derive a variational formulation in the form of a system

that couples two inclusions, with unknowns encompassing the strain field and the

electric field. These findings are employed in the consideration of an associated opti-

mal control problem, for which the existence of optimal pairs is proven. Furthermore,

the authors of [17] contribute to the field by examining the existence and uniqueness

of a new class of time-dependent inclusions and sweeping processes in a real Hilbert

space. Their study extends to the examination of mathematical models featuring a

viscoelastic constitutive law. Numerous studies, detailed in [1, 2, 13, 14, 18, 19, 22],

underscore the diversity of approaches and perspectives applied to tackle these chal-

lenging problems in this research area.

The objective of this article is to describe a new and nonstandard model for a com-

plicated thermo-electro-elastic materials. We present a novel variational formulation

using systems of three inclusions in which the unknowns are the strain field, the elec-

tric field, and the temperature field. The contact is bilateral and associated with

Tresca’s friction law. Additionally, we will address thermo-piezoelectric materials, for

which the constitutive laws are given as follows.

σ = Aε(u) + PT∇ϕ−Mθ, (1.1)

D = Pε(u)− β∇ϕ− Cθ, (1.2)

q = K∇θ, (1.3)

in which σ denotes the stress tensor, u is the displacement field, ϕ is the electric
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potential field and θ is the temperature. The physics point of view of this constitutive

laws can be found in [6, 25].

The purpose of our paper is to apply recent abstract results regarding the existence

and uniqueness of stationary inclusions in Hilbert spaces, as demonstrated in [21].

The novelty of our work lies in introducing a new model for contact in thermo-

electro-elastic materials. Our primary objective is twofold: firstly, to present a new

and nonstandard model corresponding to the problem (1.1)-(1.3) and demonstrate its

unique weak solvability; secondly, to establish the continuous dependence of the solu-

tion on the data and prove the solvability of an associated optimal control problem.

The paper is organized as follows. In Section 2, we present the mathematical model

of a thermo-electro-elastic problem. Additionally, we etablish the variational formu-

lation of this problem in the form of a system where the unknowns include the strain,

electric field, and temperature field. Moving on to Section 3, we establish both the

unique solvability of the model and the continuous dependence of the solution on the

data. Section 4 is dedicated to examining an associated optimal control problem, for

which we demonstrate the existence of optimal pairs.

2. Problem statement and variational formulation

In this section, we introduce a static contact problem for a thermo-electro-elastic

body that occupies the domain Ω ⊂ Rd (d = 2, 3) with Lipschitz boundary Γ. Also,

we suppose that Γ = ∂Ω is divided in three disjoint parts Γ1, Γ2 and Γ3 such that

Γ1 ∪Γ2 ∪Γ3 = Γ and meas(Γ1) > 0, on the one hand, and a partition of Γ1 ∪Γ2 into

two open measurable parts Γa and Γb such that meas(Γa) > 0.

Let Sd denote the space of second order symmetric tensors on Rd while “ ·” and “‖·‖”
represent both the inner product and the associated norm on Rd and Sd, defined by

u · v = ui vi , ‖v‖ = (v · v)1/2, ∀u, v ∈ Rd,

σ · τ = σij τij , ‖τ‖ = (τ · τ)1/2, ∀σ, τ ∈ Sd.

The normal and tangential components of the displacement vector v ∈ Rd and the

stress tensor σ ∈ Sd on the boundary Γ are given by

vν = v · ν , vτ = v − vνν,
σν = (σν) · ν , στ = σν − σνν.

From the orthogonality relations vτ · ν = 0 and στ · ν = 0, we derive the following

useful equality

σν · v = σνvν + στ · vτ .

Then, the classical formulation of the frictional thermo-electro-elastic contact

problem is as follows.
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Problem (P). Find a displacement u : Ω→ Rd, a stress field σ : Ω→ Sd, an electric
potential ϕ : Ω → R , an electric displacement D : Ω → Rd and a temperature
θ : Ω→ R :

σ = Aε(u) + PT∇ϕ−Mθ in Ω, (2.1)

D = Pε(u)− β∇ϕ− Cθ in Ω, (2.2)

q = K∇θ in Ω, (2.3)

Divσ + f0 = 0 in Ω, (2.4)

divD − q0 = 0 in Ω, (2.5)

div q − h0 = 0 in Ω, (2.6)

u = 0 on Γ1, (2.7)

ϕ = 0 on Γa, (2.8)

θ = 0 on Γ1, (2.9)

σν = f2 on Γ2, (2.10)

D · ν = qb on Γb, (2.11)

q · ν = hn on Γ2, (2.12)

uν = 0 on Γ3, (2.13)
‖στ‖ ≤ Sb,

στ = −Sb
uτ

‖uτ‖
if ‖uτ‖ 6= 0,

on Γ3, (2.14)

0 ≤ D · ν ≤ G , D · ν =

{
0 if ϕ < 0,

G if ϕ > 0,
on Γ3, (2.15)

0 ≤ q · ν ≤ H , q · ν =

{
0 if θ < 0,

H if θ > 0,
on Γ3. (2.16)

Here, conditions (2.1)-(2.3) represent the constitutive laws of thermo-electro-elastic,

see [1–3] for more details, where P = (eijk) ∈ L∞(Ω) is the piezoelectric tensor,

β = (βij) is the symmetric and coercive electric permittivity tensors , C = (cij)

is the thermal expansion tensor and K = (kij) is the thermal conductivity tensor.

In addition, (P)T = (ekij) is the transpose tensor of P. Equations (2.4)-(2.6) rep-

resent the equilibrium equations for displacement field, electric potential field and

temperature field, respectively. Moreover, (2.7)-(2.13) are the mechanical, electrical

and thermal boundary conditions. The condition (2.14) stands for Tresca law of dry

friction, where Sb is the friction bound, see e.g., [23]. Equation (2.15) represents the

electrical contact condition, where G represents a specified bound. This condition is

applied under the assumption that the foundation is a semi-insulator. Refer to [10]

for additional details regarding this equation. Finally, equation (2.16) delineates the

thermal contact condition imposed at the boundary Γ3, where H serves as an upper
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limit. This condition is established under the assumption that the foundation is a

semi-insulator. Suggests a scenariao where heat flux is present when the temperature

is positive, but it be comes zero when the temerature is negative. Physically, this

condition illustrates that, due to the semi-insulating nature of the foundation, heat is

allowed to flow solely during temperature increases, while it is constrained or halted

during temperature decreases.

The described scenario illustrates a condition in which the foundation serves as a per-

fect electric and thermal semi-insulator. This entails significant limitations on both

electrical and thermal conductivity within the foundation material. Specifically, per-

fect electric semi-insulation hinders the flow of electric current, characterized by high

electrical resistivity preventing easy electron passage. This limitation is crucial in

applications like electronic devices or structural components where electrical insula-

tion is essential. Similarly, perfect thermal semi-insulation imposes strong constraints

on heat transfer, with low thermal conductivity resisting the flow of heat energy.

This characteristic proves advantageous in scenarios requiring minimized heat trans-

fer, such as in building materials to enhance insulation or specific manufacturing

processes.

Next, to derive the variational formulation of Problem (P), according to the boundary

conditions, we introduce the following variational subspaces

V = {v ∈ H1(Ω) ; v = 0 on Γ1 , vν = 0 on Γ3},

W = {ψ ∈ H1(Ω) ; ψ = 0 on Γa},

Q = {θ ∈ H1(Ω) ; θ = 0 on Γ1},

H =
{
τ = (τij) ; τij = τji ∈ L2(Ω), ∀ 1 ≤ i, j ≤ d

}
.

The spaces V , W and Q are Hilbert spaces for the following Euclidean norms

‖u‖V = (u, u)
1/2
V , (u, v)V = (ε(u), ε(v))H, (2.17)

‖ϕ‖W = (ϕ,ϕ)
1/2
W , (ϕ,ψ)W = (∇ϕ,∇ψ)L2(Ω), (2.18)

‖θ‖Q = (θ, θ)
1/2
Q , (θ, η)Q = (∇θ,∇η)H. (2.19)

It is known from Sobolev trace theorem, there exists c0 > 0 depending only on Ω, Γ3

and Γ1 such that

‖v‖L2(Γ)d ≤ c0 ‖v‖V , ∀ v ∈ V. (2.20)

Furthermore, if σ belongs to the set H, the subsequent Green-type formula is valid:

∫
Ω

σ · ε(v) dx+

∫
Ω

Divσ · v dx =

∫
Γ

σν · v da, ∀ v ∈ V. (2.21)
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In addition, the Sobolev trace theorem implies that there exists c1 > 0 depending on

Ω, Γa and Γ3 such that

‖ψ‖L2(Γ3) ≤ c1 ‖ψ‖W , ∀ψ ∈W. (2.22)

Moreover, let ψ+ represent the positive component of ψ in W . It’s worth noting that,

for a sufficiently smooth function D ∈ L2(Ω), the Green-type formula is applicable:

(D,∇ψ)L2(Ω)d + (divD,ψ)L2(Ω) =

∫
Γ

D · νψ da, ∀ψ ∈W. (2.23)

Also, the Sobolev trace theorem implies that there exists c2 > 0 depending on Ω, Γ1

and Γ3 such that

‖η‖L2(Γ3) ≤ c2 ‖η‖Q, ∀ η ∈ Q. (2.24)

Moreover, let η+ denote the positive component of η within the space Q. It’s im-

portant to highlight that, for a sufficiently smooth function q ∈ L2(Ω), the following

Green-type formula holds.

(q,∇η)L2(Ω)d + (div q, η)L2(Ω) =

∫
Γ

q · νη da, ∀ η ∈ Q. (2.25)

Next, in the study of the solvability of Problem (P), we need the following hypotheses.

(H1) The tensor A : Ω× Sd −→ Sd is such that

(a) A(., ε) is measurable on Ω for all ε ∈ Sd,

(b) there exist LA > 0 such that for all ε1, ε2 ∈ Sd and x ∈ Ω, we have

‖A(x, ε1)−A(x, ε2)‖ ≤ LA‖ε1 − ε2‖, (2.26)

(c) there exist αA > 0 such that for all ε1, ε2 ∈ Sd and x ∈ Ω, we have

(A(x, ε1)−A(x, ε2)) · (ε1 − ε2) ≥ αA‖ε1 − ε2‖2, (2.27)

(d) A(x, 0) = 0 for all x ∈ Ω.

(H2) The tensor of piezoelectric P = (eijk) : Ω× Sd −→ Rd is such that

(a) eijk = eikj ∈ L∞(Ω),

(b) there exist LP > 0 such that for all ε1, ε2 ∈ Sd and x ∈ Ω, we have

‖P(x, ε1)− P(x, ε2)‖ ≤ LP‖ε1 − ε2‖, (2.28)
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(c) P(x, 0) = 0 for all x ∈ Ω.

(H3) The permittivity tensor β = (βij) : Ω× Rd −→ Rd is such that

(a) βij = βji ∈ L∞(Ω),

(b) there exist Lβ > 0 such that for all ξ1, ξ2 ∈ Rd and x ∈ Ω, we have

‖β(x, ξ1)− β(x, ξ2)‖ ≤ Lβ‖ξ1 − ξ2‖, (2.29)

(c) there exist αβ > 0 such that for all ξ1, ξ2 ∈ Rd and x ∈ Ω, we have

(β(x, ξ1)− β(x, ξ2)) · (ξ1 − ξ2) ≥ αβ‖ξ1 − ξ2‖2, (2.30)

(d) β(x, 0) = 0 for all x ∈ Ω.

(H4) The thermal operator C : Ω× R −→ Sd is such that

(a) C(., r) is measurable on Ω for all r ∈ R,

(b) there exist LC > 0 such that for all r1, r2 ∈ R and x ∈ Ω, we have

‖C(x, r1)− C(x, r2)‖ ≤ LC |r1 − r2|, (2.31)

(c) C(x, 0) = 0 for all x ∈ Ω.

(H5) The function M : Ω× Rd −→ R is such that

(a) M(., ξ) ∈ L∞(Ω),

(b) there exist LM > 0 such that for all ξ1, ξ2 ∈ Rd and x ∈ Ω, we have

‖M(x, ξ1)−M(x, ξ2)‖ ≤ LM‖ξ1 − ξ2‖. (2.32)

(H6) The thermal conductivity operator K : Ω× Rd −→ Rd is such that

(a) K(., ξ) is measurable on Ω for all ξ ∈ Rd,

(b) there exist LK > 0 such that for all ξ1, ξ2 ∈ Rd and x ∈ Ω, we have

‖K(x, ξ1)−K(x, ξ2)‖ ≤ LK‖ξ1 − ξ2‖, (2.33)

(c) there exist αK > 0 such that for all ξ1, ξ2 ∈ Rd and x ∈ Ω, we have

(K(x, ξ1)−K(x, ξ2)) · (ξ1 − ξ2) ≥ αK‖ξ1 − ξ2‖2, (2.34)
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(d) K(x, 0) = 0 for all x ∈ Ω.

(H7) The forces, tractions, volume and the bounds Sb, G, and H satisfy

( i) f0 ∈ L2(Ω)d , f2 ∈ L2(Γ2)d , q0 ∈ L2(Ω) , qb ∈ L2(Γb) , h0 ∈ L2(Ω),

(ii) Sb, G, H ∈ L2(Γ3) and Sb(x), G(x), H(x) ≥ 0 a.e. x ∈ Γ3.

(H0) min(αA, αβ , αK)− (LM + LC) > 0.

Using Riesz’s representation theorem, we consider f ∈ V , lq ∈ W and h ∈ Q defined

by

〈f, v〉V = 〈f0, v〉L2(Ω)d + 〈f2, v〉L2(Γ2)d , ∀ v ∈ V, (2.35)

〈lq, ψ〉W = 〈q0, ψ〉L2(Ω) − 〈qb, ψ〉L2(Γb), ∀ψ ∈W, (2.36)

〈h, ξ〉Q = 〈h0, ξ〉L2(Ω) − 〈hn, ξ〉L2(Γ2), ∀ ξ ∈ Q. (2.37)

By employing Green’s formula, we can formulate the following variational formula-

tion of Problem (P) with respect to the displacement field, electric potential, and

temperature.

Problem (PV). Find a displacement u ∈ V , an electric potential ϕ ∈ W and a

temperature θ ∈ Q such that

〈Aε(u), ε(v − u)〉H + 〈PT∇ϕ−Mθ, ε(v − u)〉H

+ φ(v)− φ(u) ≥ 〈f, v − u〉V , ∀ v ∈ V,
(2.38)

〈β∇ϕ− Pε(u)− Cθ,∇(ψ − ϕ)〉L2(Ω)d

+ λ(ψ)− λ(ϕ) ≥ 〈lq, ψ − ϕ〉W , ∀ψ ∈W,
(2.39)

〈K∇θ,∇(η − θ)〉L2(Ω)d + γ(η)− γ(θ)

≥ 〈h, η − θ〉Q, ∀ η ∈ Q,
(2.40)

where the functions φ, λ and γ are defined by

φ(v) =

∫
Γ3

Sb‖vτ‖ da, ∀ v ∈ V, (2.41)

λ(ψ) =

∫
Γ3

Gψ+ da, ∀ψ ∈W, (2.42)
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γ(η) =

∫
Γ3

Hη+ da, ∀ η ∈ Q. (2.43)

Note that Problem (PV) is called the primal variational formulation of the frictional

contact Problem (P). Our focus in this section is on the investigation of a variational

formulation of Problem (P) in the form of a system that couples three inclusions,

where the unknowns are the strain field, the electric field, and the temperature field.

We consider the product space X = H × L2(Ω)d × L2(Ω)d and Y = V ×W × Q,

endowed with their respective canonical inner products, defined as

(x1, x2)X = (σ1, σ2)H + (D1, D2)L2(Ω)d

+ (q1, q2)L2(Ω)d , ∀xi = (σi, Di, qi) ∈ X for i = 1, 2,
(2.44)

(y1, y2)Y = (u1, u2)V + (ϕ1, ϕ2)W

+ (θ1, θ2)Q, ∀ yi = (ui, ϕi, θi) ∈ Y for i = 1, 2.
(2.45)

Next, we introduce the mapping Π : Y → 2X defined by

Π(g) = Π1(f)×Π2(lq)×Π3(h), ∀ g = (f, lq, h) ∈ Y, (2.46)

where Π1(f) ⊂ H, Π2(lq) ⊂ L2(Ω)d and Π3(h) ⊂ L2(Ω)d are defined by

Π1(f) =
{
τ ∈ H ; (τ, ε(v))H + φ(v) ≥ (f, v)V , ∀ v ∈ V

}
, (2.47)

Π2(lq) =
{
E ∈ L2(Ω)d ; (E,∇ψ)L2(Ω)d + λ(ψ) ≥ (lq, ψ)W , ∀ψ ∈W

}
, (2.48)

Π3(h) =
{
p ∈ L2(Ω)d ; (p,∇η)L2(Ω)d + γ(η) ≥ (h, η)W , ∀ η ∈ Q

}
. (2.49)

Suppose that (u, σ, φ,D, θ, q) are suitably smooth functions satisfying Problem (P).

Using the same arguments as in [10], we get

σ ∈ Π1(f) , − ω1 = −ε(u) ∈ NΠ1(f)(σ), (2.50)

−D ∈ Π2(lq) , − ω2 = −∇ϕ ∈ NΠ2(lq)(−D). (2.51)

Note that NK represents the outward normal cone of K in the sense of convex analysis.

We recall that for all u, χ ∈ X, the following equivalence hold.

χ ∈ NK(u) ⇐⇒ u ∈ K, (χ, v − u)X ≤ 0, ∀ v ∈ K. (2.52)

Subsequently, we apply the Green’s formula (2.25) along with equations (2.37) and

(2.43) to observe that

(−q,∇η −∇θ)L2(Ω)d + γ(η)− γ(θ) ≥ (h, η − θ)Q, ∀ η ∈ Q. (2.53)
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We choose η = 2θ and η = 0Q in (2.52) to drive

(−q,∇θ)L2(Ω)d + γ(θ) = (h, θ)Q. (2.54)

Thus, by utilizing equations (2.52) and (2.53), we deduce that

(−q,∇η)L2(Ω)d + γ(η) ≥ (h, η)Q, ∀ η ∈ Q, (2.55)

and using the definition of the set Π3(h) we find that

− q ∈ Π3(h). (2.56)

Subsequently, by employing (2.49) and (2.54), we obtain

(
p− (−q),∇θ

)
L2(Ω)

≥ 0, ∀ p ∈ Π3(h), (2.57)

and, using the notation w3 = θ, we find

(p− (−q),∇w3)L2(Ω) ≥ 0, ∀ p ∈ Π3(h). (2.58)

Now, we combine equations (2.56) and (2.58), and then utilize equivalence (2.52) to

observe that

−∇w3 ∈ NΠ3(h)(−q). (2.59)

We utilize the inclusions (equations (2.50), (2.51) and (2.59)), along with the consti-

tutive laws (2.1)-(2.3), to derive the following variational formulation of Problem (P).

Problem (PVI). Find (w1, w2,∇w3) ∈ X such that

− w1 ∈ NΠ1(f)

(
Aw1 + PTw2 −Mw3

)
, (2.60)

− w2 ∈ NΠ2(lq) (βw2 − Pw1 − Cw3) , (2.61)

−∇w3 ∈ NΠ3(h) (K∇w3) . (2.62)

Note that the Problem (PVI) represents a variational formulation of the contact

problem (P) in terms of stress field σ , electric displacement fields D and the heat flux

q and, therefore, this formulation is in the form of a system coupling three inclusions

for the unknowns w1, w2 and ∇w3.
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3. Existence and continuous dependence results

We present here an existence and continuous dependence result corresponding to

Problem (PVI).

Theorem 1. Assume the hypotheses (H0)-(H7) hold. Then, Problem (PVI) has a
unique solution w = (w1, w2,∇w3) ∈ X. Additionally, the following operators are Lipschitz
continuous

g = (f, lq, h) 7→ w1 = w1(g) : Y → H,

g = (f, lq, h) 7→ w2 = w2(g) : Y → L2(Ω)d,

g = (f, lq, h) 7→ ∇w3 = ∇w3(g) : Y → L2(Ω)d,

Proof. The proof is based on the abstract result on stationary inclusion which has

been discussed in [21].

Lemma 1. For each g = (f, lq, h) ∈ Y , the set Π(g) ⊂ X defined by (2.46) is

nonempty, closed and convex. Moreover, for each g = (f, lq, h), g
′

= (f
′
, l
′
q, h
′
) ∈ Y and

w = (w1, w2,∇w3) ∈ X, one has

‖PΠ(g)w − PΠ(g
′
)w‖X ≤ ‖g − g

′
‖Y , (3.1)

where PK : X → K the projection operator on K, and PΠ(g) defined by

PΠ(g)w = (PΠ1(f)w1, PΠ2(lq)w2, PΠ3(h)∇w3). (3.2)

We recall that for all u, ξ ∈ X, the following equivalence hold.

u = PΠ(g)ξ ⇐⇒ u ∈ Π(g), (ξ − u, v − u)X ≤ 0 ∀v ∈ Π(g). (3.3)

Proof. Using similar techniques as in [10, Lemma 3-4], we establish that the sets

Π1(f) and Π2(lq) are nonempty, closed and convex. Moreover, we prove that Π3(h)

is nonempty, closed and convex set. Let h ∈ Q be fixed. As the function η 7→ γ(η) :

Q → R is subdifferentiable and attains zero at 0Q, we can conclude the existence of

an element λ ∈ Q such that γ(η) ≥ (λ, η)Q for all η ∈ Q. Additionally, recalling that

(λ, η)Q = (∇λ,∇η)L2(Ω)d . Hence, employing the notation δ = ∇h−∇λ, we find that

(δ,∇η)L2(Ω)d + γ(η) ≥ (h, η)Q, ∀η ∈ Q. (3.4)

Combining equations (2.49) and (3.4), we observe that δ ∈ Π3(h), establishing that

Π3(h) is not empty. Conversely, it is evident that Π3(h) is a closed convex subset of

L2(Ω)d. Then, by the definition of Π(g) it is clear that Π(g) is a nonempty, closed

and convex subset of X. This completes the demonstration of the first part of Lemma
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1. Next, the rest of the proof will be divided in several claims.

Claim 1: Let ∇w3, q ∈ L2(Ω)d and h ∈ Q satisfying the condition:

−∇w3 ∈ NΠ3(h)(−q). (3.5)

There exists a unique θ ∈ Q such that ∇w3 = ∇θ, and furthermore, the following

inequality hold.

(−q,∇η −∇θ)L2(Ω)d + γ(η)− γ(θ) ≥ (h, η − θ)Q, ∀ η ∈ Q. (3.6)

Indeed, we note that the inclusion (3.5) implies that

− q ∈ Π3(h) ; (p− (−q),∇w3)L2(Ω)d ≥ 0, ∀ p ∈ Π3(h). (3.7)

Let r ∈ ∇(Q)⊥, where, in the context here and subsequently, M⊥ designates the

orthogonal of of the subset M ⊂ L2(Ω)d. Consequently, for all η ∈ Q, we have

(r,∇(η))L2(Ω)d = 0. Then, utilizing equation (2.49), we establish that −q ± r ∈
Π3(h). Subsequently, by testing with p = −q ± r in equation (3.7), we infer that

(r,∇ω3)L2(Ω)d = 0, indicating that ∇ω3 ∈ ∇(Q)⊥⊥ = ∇(Q). It’s noteworthy that

the last equation follows from the fact that ∇(Q) is a closed subspace of L2(Ω)d.

Moving forward, the inclusion ω3 ∈ ∇(Q) implies the existence of an element θ ∈ Q
such that

∇w3 = ∇θ. (3.8)

Furthermore, the uniqueness of θ is assured by equation (2.19). Subsequently, lever-

aging the subdifferentiability of the function γ at η, we ascertain the existence of an

element λ such that

γ(η)− γ(θ) ≥ (λ, η − θ)Q = (∇λ,∇η −∇θ)L2(Ω)d

and, setting ρ := ∇h−∇λ , we infer that

(ρ,∇η −∇θ)L2(Ω)d + γ(η)− γ(θ) ≥ (h, η − θ)Q, ∀ η ∈ Q. (3.9)

We choose η = 2θ and η = 0Q in this equation to drive that

(ρ,∇θ)L2(Ω)d + γ(θ) = (h, θ)Q. (3.10)

Hence, by combining equations (3.9) and (3.10), we deduce that

(ρ,∇η)L2(Ω)d + γ(η) ≥ (h, η)Q, ∀ η ∈ Q, (3.11)
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which implies that ρ ∈ Π3(h). This regularity, (3.7), (3.8) and (3.10) imply that

(−q,∇θ)L2(Ω)d + γ(θ) ≤ (h, θ)Q. (3.12)

Conversely, considering that −q ∈ Π3(h) and θ ∈ Q the inverse inequality holds, i.e.,

(−q,∇θ)L2(Ω)d + γ(θ) ≥ (h, θ)Q. (3.13)

Thus, we conclud that

(−q,∇θ)L2(Ω)d + γ(θ) = (h, θ)Q. (3.14)

Finally, using (3.14) and inclusion −q ∈ Π3(h), we conclude that the estimation (3.6)

is verified.

Claim 2: By employing the same techniques as presented in [10, Lemma 1-2] and

Claim 1, we establish that for (w1, w2), (σ,D) ∈ H × L2(Ω)d, and (f, lq) ∈ V ×W ,

satisfying the conditions

− w1 ∈ NΠ1(f)(σ), (3.15)

− w2 ∈ NΠ2(lq)(−D), (3.16)

there exists a unique element (u, ϕ) ∈ V ×W such that (w1, w2) = (ε(u),∇ϕ), and

furthermore, the following inequalities hold.

(σ, ε(v)− ε(u))H + φ(v)− φ(u) ≥ (f, v − u)V , ∀ v ∈ V, (3.17)

(−D,∇ψ −∇ϕ)L2(Ω)d + λ(ψ)− λ(ϕ) ≥ (lq, ψ − ϕ)W , ∀ψ ∈W. (3.18)

Claim 3: Suppose g = (f, lq, h), g′ = (f ′, l′q, h
′) ∈ Y , and w = (w1, w2,∇w3). Let’s

denote {
σ = PΠ1(f)w1 ; −D = PΠ2(lq)w2 ; − q = PΠ3(h)∇w3,

σ′ = PΠ1(f ′)w1 ; −D′ = PΠ2(l′q)w2 ; − q′ = PΠ3(h′)∇w3.
(3.19)

Through the equivalence (3.3), we obtain that
σ ∈ Π1(f) , (w1 − σ, τ − σ)H ≤ 0, ∀ τ ∈ Π1(f),

−D ∈ Π2(lq) , (w2 − (−D), E − (−D))L2(Ω)d ≤ 0, ∀E ∈ Π2(lq),

−q ∈ Π3(h) , (∇w3 − (−q), p− (−q))L2(Ω)d ≤ 0, ∀ p ∈ Π3(h).

Consequently, from equation (2.52), it follows that

w1 − σ ∈ NΠ1(f)(σ) ; w2 − (−D) ∈ NΠ2(lq)(−D) ; ∇w3 − (−q) ∈ NΠ3(h)(−q).



776 Nonlinear inclusion for thermo-electro-elastic

According to Claim 1-2, i.e., (3.6), (3.17) and (3.18), there exists a singular element

(u, ϕ, θ) ∈ Y such that

σ − w1 = ε(u) , −D − w2 = ∇ϕ , − q −∇w3 = ∇θ, (3.20)

(σ, ε(v)− ε(u))H + φ(v)− φ(u) ≥ (f, v − u)V , ∀ v ∈ V, (3.21)

(−D,∇ψ −∇ϕ)L2(Ω)d + λ(ψ)− λ(ϕ) ≥ (lq, ψ − ϕ)W , ∀ψ ∈W, (3.22)

(−q,∇η −∇θ)L2(Ω)d + γ(η)− γ(θ) ≥ (h, η − θ)Q, ∀ η ∈ Q. (3.23)

Analogous reasoning demonstrates the existence of a singular element (u′, ϕ′, θ′) ∈ Y
such that

σ′ − w1 = ε(u′) , −D′ − w2 = ∇ϕ′ , − q′ −∇w3 = ∇θ′, (3.24)

(σ′, ε(v)− ε(u′))H + φ(v)− φ(u′) ≥ (f ′, v − u′)V , ∀ v ∈ V, (3.25)

(−D′,∇ψ −∇ϕ′)L2(Ω)d + λ(ψ)− λ(ϕ′) ≥ (l′q, ψ − ϕ′)W , ∀ψ ∈W, (3.26)

(−q′,∇η −∇θ′)L2(Ω)d + γ(η)− γ(θ′) ≥ (h′, η − θ′)Q, ∀η ∈ Q. (3.27)

We take (v, ψ, η) = (u′, ϕ′, θ′) in (3.21)-(3.23), (v, ψ, η) = (u, ϕ, θ) in (3.25)-(3.27) and

add the obtained inequalities to deduce

(σ − σ′, ε(u)− ε(u′))H ≤ (f − f ′, u− u′)V , (3.28)

(−D − (−D′),∇ϕ−∇ϕ′)L2(Ω)d ≤ (lq − l′q, ϕ− ϕ′)W , (3.29)

(−q − (−q′),∇θ −∇θ′)L2(Ω)d ≤ (h− h′, θ − θ′)Q. (3.30)

Then, using the relations (3.20) and (3.24) , we conclude that


ε(u)− ε(u′) = σ − σ′,

∇ϕ−∇ϕ′ = −D − (−D′),

∇θ −∇θ′ = −q − (−q′).

(3.31)

Hence, we combine the inequalities (3.28)-(3.30) and the relations (3.31) to find


‖σ − σ′‖2H ≤ ‖f − f ′‖V ‖u− u′‖V ,

‖ −D − (−D′)‖2L2(Ω)d ≤ ‖lq − l
′
q‖W ‖ϕ− ϕ′‖W ,

‖ − q − (−q′)‖2L2(Ω)d ≤ ‖h− h
′‖Q‖θ − θ′‖Q.

(3.32)
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Afterward, as


‖u− u′‖V = ‖ε(u)− ε(u′)‖H = ‖σ − σ′‖H,

‖ϕ− ϕ′‖W = ‖∇ϕ−∇ϕ′‖L2(Ω)d = ‖ −D − (−D′)‖L2(Ω)d ,

‖θ − θ′‖Q = ‖∇θ −∇θ′‖L2(Ω)d = ‖ − q − (−q′)‖L2(Ω)d ,

we can conclude that 
‖σ − σ′‖H ≤ ‖f − f ′‖V ,

‖ −D − (−D′)‖L2(Ω)d ≤ ‖lq − l′q‖W ,

‖ − q − (−q′)‖L2(Ω)d ≤ ‖h− h′‖Q.

(3.33)

Then, by utilizing (2.44), (2.45), (3.19) and (3.33), we obtain that

‖PΠ(g)w − PΠ(g′ )w‖X = ‖σ − σ′‖H + ‖ −D − (−D′)‖L2(Ω)d + ‖ − q − (−q′)‖L2(Ω)d

≤ ‖f − f ′‖V + ‖lq − l′q‖W + ‖h− h′‖Q

≤ ‖g − g′‖Y .
(3.34)

This concludes the proof of Lemma 1.

Lemma 2. Under the assumptions H0-H6. The operator A : X → X defined by

A(w,w′)X = (Aw1 + PTw2 −Mw3, w
′
1)H + (βw2 − Pw1 − Cw2, w

′
2)L2(Ω)d

+ (K∇w3,∇w′3)L2(Ω)d , ∀w = (w1, w2,∇w3), w′ = (w′1, w
′
2,∇w′3) ∈ X,

(3.35)

satisfies the following properties

(i) there exists αA > 0 such that for all u, v ∈ X, it yields

(Au− Av, u− v)X ≥ αA‖u− v‖2X , (3.36)

(ii) there exists LA > 0 such that for all u, v ∈ X, it yields

‖Au− Av‖X ≤ LA‖u− v‖X . (3.37)
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Proof. First, for all w = (w1, w2,∇w3), w′ = (w′1, w
′
2,∇w′3) ∈ X, we have

(Aw − Aw′, w − w′)X = (Aw1 −Aw′1, w1 − w′1)H + (βw2 − βw′2, w2 − w′2)L2(Ω)d

+ (K∇w3 −K∇w′3,∇w3 −∇w′3)L2(Ω)d + (PTw2 − PTw′2, w1 − w′1)H

− (Pw1 − Pw′1, w2 − w′2)L2(Ω)d − (Mw3 −Mw′3, w1 − w′1)H

− (Cw3 − Cw′3, w2 − w′2)L2(Ω)d .

Given that (PT y2, y1)H = (Py1, y2)L2(Ω)d for all y = (y1, y2) ∈ X, we can infer that

(Aw − Aw′, w − w′)X = (Aw1 −Aw′1, w1 − w′1)H + (βw2 − βw′2, w2 − w′2)L2(Ω)d

+ (K∇w3 −K∇w′3,∇w3 −∇w′3)L2(Ω)d − (Mw3 −Mw′3, w1 − w′1)H

− (Cw3 − Cw′3, w2 − w′2)L2(Ω)d .

Thus by assumptions H1(c),H3(c) and H6(c), we find that all y = (y1, y2) ∈ X, we

can infer that

(Aw − Aw′, w − w′)X

≥ min(αA, αβ , αK)
{
‖w1 − w′1‖2H + ‖w2 − w′2‖2L2(Ω)d + ‖∇w3 −∇w′3‖2L2(Ω)d

}
− (Mw3 −Mw′3, w1 − w′1)H − (Cw3 − Cw′3, w2 − w′2)L2(Ω)d .

We now use the assumptions H4(b) and H5(b) to see that

(Aw − Aw′, w − w′)X ≥ min(αA, αβ , αK)‖w − w′‖2X − (LM + LC)‖w − w′‖2X ,

which implies the inequality (3.36) holds for the constant αA = min(αA, αβ , αK) −
(LM + LC) > 0. In a similar manner, the assumptions H1(b)-H6(b) imply that

(Aw − Aw′, w′′)X ≤LA ‖w1 − w′1‖H‖w′′1 ‖H + Lβ ‖w2 − w′2‖L2(Ω)d‖w
′′
2 ‖L2(Ω)d

+ LK ‖∇w3 −∇w′3‖L2(Ω)d‖∇w
′′
3 ‖L2(Ω)d + LP ‖w2 − w′2‖L2(Ω)d‖w

′′
1 ‖H

+ LP ‖w1 − w′1‖H‖w′′2 ‖L2(Ω)d + LM ‖∇w3 −∇w′3‖L2(Ω)d‖∇w
′′
1 ‖H

+ LC ‖∇w3 −∇w′3‖L2(Ω)d‖∇w
′′
2 ‖L2(Ω)d .

Then, assumption (3.7) holds with LA = max(LA+Lβ +LK+ 2LP +LM+LC).

Now, utilizing Lemma 1, Lemma 2, and the stationary inclusion result [21, Theorem

4.1], it follows that Problem (PVI) has a unique solution w = (w1, w2,∇w3) ∈ X.
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Remark 1. Consider a 6-tuple of functions (u, σ, φ,D, θ, q) ∈ V ×H×W ×L2(Rd)×Q×
L2(Rd) that satisfies equations (1.1)-(1.3) and the inclusions

− ε(u) ∈ NΠ1(f)(σ), (3.38)

−∇ϕ ∈ NΠ2(lq)(−D), (3.39)

−∇θ ∈ NΠL(h)(−q). (3.40)

This 6-tuple is referred to as a weak solution to the thermo-electro-elastic contact problem
(2.1)-(2.16).

Based on this remark, we derive the following implication from Theorem 1.

Corollary 1. Assume hypotheses (H0)-(H7). Then, Problem (P) has a unique weak
solution (u, σ, ϕ,D, θ, q). Additionally, the operators

L2(Ω)d × L2(Γ2)d × L2(Ω)× L2(Γb)× L2(Ω)× L2(Γ)→ V ×H×W × L2(Ω)d ×Q× L2(Ω)d

(f0, f2, q0, qb, h0, hn) 7→ (u, σ, ϕ,D, θ, q)

is Lipschitz continuous.

Proof. Consider the solution w = (w1, w2,∇w3) to Problem (PVI), as established in

Theorem 1. Drawing upon Claim 1 and Claim 2, we confirm the existence of a unique

triple of functions (u, ϕ, θ) such that (w1, w2,∇w3) = (ε(u),∇ϕ,∇θ). Next, we define

the functions σ, D and q, using equations (1.1), (1.2), and (1.3), respectively. This

leads to the observation that (u, σ, ϕ,D, θ, q) constitutes the unique weak solution to

Problem (P). Additionally, it is important to recalling that

‖u‖V = ‖ε(u)‖H = ‖w1‖H,

‖ϕ‖W = ‖∇ϕ‖L2(Ω)d = ‖w2‖L2(Ω)d ,

‖θ‖Q = ‖∇θ‖L2(Ω)d = ‖∇w3‖L2(Ω)d .

Furthermore, Theorem 1 ensures that the operators

g = (f, lq, h) 7→ w1 = w1(fg) : V ×W ×Q→ H,

g = (f, lq, h) 7→ w2 = w2(g) : V ×W ×Q→ L2(Ω)d,

g = (f, lq, h) 7→ ∇w3 = ∇w3(g) : V ×W ×Q→ L2(Ω)d
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are Lipschitz continuous. Therefore, we can infer that the operators

g 7→ u = u(g) : V ×W ×Q→ V,

g 7→ ϕ = ϕ(g) : V ×W ×Q→W,

g 7→ ∇θ = ∇θ(g) : V ×W ×Q→ Q

are also Lipschitz continuous. Subsequently, employing equations (1.1), (1.2), and

(1.3), and taking into account the properties of A, P, C, M, β, and K, we can

establish that the operators

g 7→ σ = σ(g) : V ×W ×Q→ H,

g 7→ D = D(g) : V ×W ×Q→ L2(Ω)d,

g 7→ q = q(g) : V ×W ×Q→ L2(Ω)d

are Lipschitz continuous. Finally, equations (2.35)-(2.37) imply that the operators

(f0, f2) 7→ f : L2(Ω)d × L2(Γ2)d → V,

(q0, qb) 7→ lq : L2(Ω)× L2(Γb)→W,

(h0, hn) 7→ h : L2(Ω)× L2(Γ2)→ Q,

are Lipschitz continuous. Then, we can see that the operator (f0, f2, q0, qb, h0, hn) 7→
(u, σ, ϕ,D, θ, q), which associates the input data (f0, f2, q0, qb, h0, hn) with the weak

solution of Problem (P), is formed as a composition of Lipschitz continuous operators.

This completes the proof.

The results elucidated in Theorem 1 can be mechanically understood as follows: if

the triplet (σ,D, q) associated with (u, ϕ, θ) through the thermo-electro-elastic consti-

tutive law (1.1)-(1.3) a solution to the variational formulation presented as a system

coupling three inclusions of the thermo-piezoelectric contact Problem (PVI) given

by (2.1)-(2.16). Then, the triplet (u, ϕ, θ) constitutes a solution to the variational

formulation of the thermo-piezoelectric contact problem (2.1)-(2.16) (referred to as

Problem (PV)).

4. Optimal control problem

In this section, we study an optimal control problem associated with Problem (PVI).

From Theorem 1, we observe that the solution to Problem (PVI) depends on the data

f0, f2, q0, qb, h0, and hn. Each of these quantities could play a role in controlling

the variational problem (PVI). We now assume that f0 ∈ L2(Ω)d, q0 ∈ L2(Ω), and
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h0 ∈ L2(Ω) are given functions. Next, we consider the operator Λ : L2(Γ2)d×L2(Γb)×
L2(Γ2)→ Y defined by

Λ(f2, qb, hn) = (f, lq, h) such that (2.35)-(2.37) hold. (4.1)

We note that for each (f2, qb, hn) ∈ L2(Γ2)d×L2(Γb)×L2(Γ2), it follows from Theorem

1 that the Problem (PVI) has a unique solution w = w(Λ(f2, qb, hn)). We now

establish that the admissible set for Problem (PVI) is given by

Uad =
{

(w, f2, qb, hn) : w = w(Λ(f2, qb, hn)) is a solution of Problem (PVI)
}
.

(4.2)

Next, we consider the cost functional F : X × L2(Γ2)d × L2(Γb) × L2(Γ2) → R and

the following optimal control problem.

Problem (Q). Find (w∗, f∗2 , q
∗
b , h
∗
n) ∈ Uad such that

F (w∗, f∗2 , q
∗
b , h
∗
n) = min

(w,f2,qb,hn)∈Uad
F (w, f2, qb, hn), (4.3)

where w denotes the unique solution of Problem (PVI) with (f, lq, h) = Λ(f2, qb, hn).

In order to state the main existence result of Problem (Q), we consider the hypotheses

below

(A1) For all sequences {wn} ⊂ X and {gn} ⊂ L2(Γ2)d × L2(Γb) × L2(Γ2) such that

wn → w in X and gn ⇀ g in L2(Γ2)d × L2(Γb)× L2(Γ2), we have

lim inf
n→∞

F (wn, gn) ≥ F (w, g). (4.4)

(A2) There exists L : L2(Γ2)d × L2(Γb)× L2(Γ2)→ R such that

(i) F (w, f2, qb, hn) ≥ L(f2, qb, hn), ∀w ∈ X, ∀ (f2, qb, hn) ∈ L2(Γ2)d × L2(Γb)× L2(Γ2),

(ii) ‖yn‖ → +∞ =⇒ L(yn)→∞, ∀ yn ∈ L2(Γ2)d × L2(Γb)× L2(Γ2).

Then we have the following theorem.

Theorem 2. Assume the hypotheses of Theorem 1 and (A1)-(A2) hold. Then, Problem
(Q) has at least one solution (w∗, f∗2 , q

∗
b , h
∗
n) ∈ Uad.

The proof relies on the utilization of a specific version of the Weierstrass theorem.

Before commencing the proof of this theorem, we require the following two crucial

lemmas.
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Lemma 3. Consider a sequence gn = (f2n, qbn, hnn) ∈ L2(Γ2)d × L2(Γb) × L2(Γ2) such
that

gn ⇀ g in L2(Γ2)d × L2(Γb)× L2(Γ2) (4.5)

Then, we have the following convergence results

Λgn → Λg in Y where g = (f2, qb, hn). (4.6)

Proof. Lemma 3 can be proved using similar techniques as in [10, Lemma 5].

Lemma 4. Consider the function J : L2(Γ2)d × L2(Γb)× L2(Γ2)→ R defined by

J (g) = F (w(Λg), g), ∀ g = (f2, qb, hn) ∈ L2(Γ2)d × L2(Γb)× L2(Γ2). (4.7)

Next, we examine the following auxiliary problem

Find g∗ ∈ L such that J (g∗) = min
g∈L
J (g), (4.8)

where g = (f2, qb, hn), g∗ = (f∗2 , q
∗
b , h
∗
n), and L = L2(Γ2)d×L2(Γb)×L2(Γ2). Then, Problem

4.8 has at least one solution g∗.

Proof. In the proof, we will verify that the function J satisfies all the conditions

of the Weierstrass Theorem [21, Theorem 5.1]. Firstly, we show that J is a weakly

lower semicontinuous function. Consider a sequence {gn} ⊂ L such that gn ⇀ g in L,

then, according to Lemma 3, it is demonstrated that Λgn → λg in Y . Consequently,

by Theorem 1, we infer that w(Λgn)→ w(Λg) in X. We employ equations (4.4) and

(4.7) to observe that

lim inf
n→∞

J (gn) ≥ J (g). (4.9)

Furthermore, utilizing assumption A(i), for any sequence {gn} ⊂ L, it follows that

J (gn) = F (w(Λgn), gn) ≥ L(gn), ∀n ∈ N.

Hence, if ‖gn‖L → ∞, as indicated by assumption A(ii), we conclude that J (gn) →
∞, demonstrating the coerciveness of the function J . Also, taking into account the

reflexivity of the space L. Hence the Weierstrass theorem implies the existence of a

solution to Problem 4.8.

We now have all the ingredients to provide the proof of Theorem 2.

Proof. We proceed to establish the proof of Theorem 2, utilizing equations (4.2),

(4.3), and (4.7). This allows us to observe that (w∗, f∗2 , q
∗
b , h
∗
n) is a solution to Prob-

lem (Q) if and only if (f∗2 , q
∗
b , h
∗
n) is a solution to (4.8), and w∗ = w(Λ(f∗2 , q

∗
b , h
∗
n)).

Finally, by utilizing this equivalence and Lemma 4, we establish that (4.3) holds, thus

concluding the proof.



Z. Faiz, et al. 783

We conclude this section by presenting a typical example of the cost function F and

an illustration of optimal control problems where the results established in Theorem

2 apply.

Example 1. Let F : X × L2(Γ2)d × L2(Γb)× L2(Γ2)→ R be defined by

F (w, f2, qb, hn) = Z(w) + L(f2, qb, hn).

Assume the following hypotheses hold.

(i) Z : X → R is a continuous positive function,

(ii) L : L2(Γ2)d × L2(Γb)× L2(Γ2)→ R is a weakly semicontinuous coercive function.

Then, the function F satisfies assumptions A1 and A2.

Let’s now consider control problem example, for which the existence result is given

by Theorem 2.

Example 2. Consider L = L2(Γ2)d × L2(Γb)× L2(Γ2), g = (f2, qb, hn), g∗ = (f∗2 , q
∗
b , h
∗
n)

and let consider (ug, σg, ϕg, Dg, θg, qn) the weak solution of Problem (P). Then, an example
of Problem (Q) is as follows

Find g∗ ∈ L such that

α3

∫
Γ2

(θg∗ − θR)2 da+ α2

∫
Γ2

(f∗2 )2 da+ α1

∫
Γb

(q∗b )2 da+ α0

∫
Γ2

(h∗n)2 da

≤ α3

∫
Γ2

(θg − θR)2 da+ α2

∫
Γ2

(f2)2 da+ α1

∫
Γb

(qb)
2 da+ α0

∫
Γ2

(hn)2 da,

(4.10)

where θR ∈ L2(Γ2) and α0, α1, α2 and α3 are given positive constants. Next, we consider
the operator

Λ : X →W, Λ(w1, w2,∇w3) = ∇w3 such that θ = w3.

The mechanical interpretation is as follows: Given a contact process in the form of (2.1)-
(2.16), we are seeking tractions f2, a density of electric charges qb, and the strength of the
heat source hn such that the temperature on the contact surface Γ3 is as close as possible to
the temperature θf . Furthermore, the associated cost functional F : X ×L→ R, defined by

F (w, g) = α3

∫
Γ2

(Λw − θR)2 da+ α2

∫
Γ2

f2
2 da+ α1

∫
Γb

q2
b da+ α0

∫
Γ2

h2
n da.

We observe that the operator Λ : X → W exhibits continuity. Leveraging this property,
it becomes evident that the cost functional meets the criteria of assumptions A1 and A2.
Consequently, Theorem 2 ensures the existence of solutions for the optimal control problem
4.10.
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[11] Z. Denkowski, S. Migórski, and A. Ochal, Optimal control for a class of mechan-

ical thermoviscoelastic frictional contact problems, Control Cybernet. 36 (2007),

no. 3, 611–632.

[12] Z. Faiz, O. Baiz, H. Benaissa, and D. El Moutawakil, Analysis and approximation



Z. Faiz, et al. 785

of hemivariational inequality for a frictional thermo-electro-visco-elastic contact

problem with damage, Taiwanese J. Math. 27 (2023), no. 1, 81–111.

https://doi.org/10.11650/tjm/220704.

[13] A. Matei and S. Micu, Boundary optimal control for nonlinear antiplane problems,

Nonlinear Anal. Theory Methods Appl. 74 (2011), no. 5, 1641–1652.

https://doi.org/10.1016/j.na.2010.10.034.

[14] , Boundary optimal control for a frictional contact problem with normal

compliance, Appl. Math. Optim. 78 (2018), no. 2, 379–401.

https://doi.org/10.1007/s00245-017-9410-8.
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