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Abstract: The quadratic embedding constant (QEC) of a graph G is a new numeric

invariant, which is defined in terms of the distance matrix and is denoted by QEC(G).

By observing graph structure of the maximal cliques (clique graph), we show that a
graph G with QEC(G) < −1/2 admits a “cactus-like” structure. We derive a formula

for the quadratic embedding constant of a graph consisting of two maximal cliques.
As an application we discuss characterization of graphs along the increasing sequence

of QEC(Pd), where Pd is the path on d vertices. In particular, we study graphs G

satisfying QEC(G) < QEC(P5).
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1. Introduction

In the recent paper [22] the quadratic embedding constant (QE constant for short) of

a finite connected graph G = (V,E) with |V | ≥ 2 is defined by

QEC(G) = max{〈f,Df〉 ; f ∈ C(V ), 〈f, f〉 = 1, 〈1, f〉 = 0}, (1.1)

∗ Corresponding Author



2 Quadratic embedding constants and clique graph insights

where C(V ) is the space of all R-valued functions on V , ∈ C(V ) the constant function

taking value 1, and 〈·, ·〉 the canonical inner product. The QE constant is profoundly

related to the quadratic embedding of a graph in a Euclidean space [10, 12, 25, 26]

or more generally to Euclidean distance geometry [1, 3, 6, 14]. In fact, it is essential

to note that a graph G admits a quadratic embedding in Euclidean space if and only

if QEC(G) ≤ 0. In recent years, the QE constant has garnered growing interest

as a new numeric invariant of graphs. The QE constants of graphs of particular

classes are known explicitly, see [5, 11, 17, 19–23], and the formulas in relation to

graph operations are established in [16, 18]. Moreover, a table of the QE constants

of graphs on n ≤ 5 vertices is available [22], where the value of the graph No. 12 on

n = 5 vertices is wrong and the correction is found in [4].

With the above mentioned background, we are naturally led to the forward-thinking

project of classifying graphs by means of the QE constants. In [4] we initiated an

attempt to classify graphs along with QEC(Pd), the QE constant of the path Pd on

d ≥ 2 vertices, which forms an increasing sequence as

− 1 = QEC(P2) < QEC(P3) < · · · < QEC(Pd) < · · · → −1

2
. (1.2)

In fact, it is known [17] that

QEC(Pd) = −
(

1 + cos
π

d

)−1
, d ≥ 2. (1.3)

In this paper, we study graphs G = (V,E) with QEC(G) < −1/2 by means of the

clique graph Γ(G). Here the clique graph is a graph Γ(G) = (V, E), where V is the set

of maximal cliques of G and {H1, H2} ∈ E if and only if H1 6= H2 and H1∩H2 6= ∅. A

key result is that the clique graph of a graph G with QEC(G) < −1/2 is a tree. Then,

combining the result on forbidden subgraphs [4], we conclude that a graph G with

QEC(G) < −1/2 consists of maximal cliques which form a “cactus-like” structure,

for the precise statement see Theorem 1. As an application we discuss graphs G

satisfying QEC(G) < QEC(P5).

It is noteworthy that the QE constant provides additional information to the distance

spectra and raises interesting questions, for the distance spectra see e.g., [2, 3, 9, 15].

In fact, it is known [16] that δ2(G) ≤ QEC(G) < δ1(G), where δ1(G) and δ2(G) are the

largest and the second largest eigenvalues of the distance matrix of G, respectively. It

is straightforward to see that δ2(G) = QEC(G) holds if the distance matrix of G has

a constant row sum (in some literatures, such a graph is called transmission regular).

But the converse is not true as the paths Pn with even n are counter-examples [17].

In this aspect characterization of graphs satisfying δ2(G) = QEC(G) is an interesting

question. On the other hand, the second largest eigenvalue δ2(G) has been adopted

for classifying graphs, in particular, the distance-regular graphs G with δ2(G) ≤ 0 are

classified [13]. In the recent paper [7] the bicyclic graphs and the split graphs G with
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δ2(G) < −1/2 are characterized. A detailed comparison is naturally expected to be

very interesting and will appear elsewhere.

The paper is organized as follows. In Section 2 we assemble some basic notations

for the QE constants. In Section 3 we examine some properties of the clique graph

Γ(G) and show a relation between the diameters of G and Γ(G) (Propositions 5 and

6). In Section 4 we prove the main result (Theorem 1). In Section 5 we determine a

graph with exactly two maximal cliques. In Section 6 we discuss graphs G satisfying

QEC(G) < QEC(P5). In Appendix we derive a formula for the QE constant of a

graph with exactly two maximal cliques.

2. Quadratic Embedding Constants

Throughout the paper a graph G = (V,E) is a pair, where V is a non-empty finite set

and E is a set of two-element subsets {x, y} ⊂ V . As usual, elements of V and E are

respectively called a vertex and an edge. Two vertices x, y ∈ V are called adjacent if

{x, y} ∈ E, and we also write x ∼ y. In that case we have x 6= y necessarily.

For s ≥ 0 a sequence of vertices x = x0, x1, . . . , xs = y ∈ V is called a walk connecting

x and y of length s if they are successively adjacent:

x = x0 ∼ x1 ∼ · · · ∼ xs = y. (2.1)

A graph G is called connected if any pair of vertices are connected by a walk. In

this paper a graph is always assumed to be connected unless otherwise stated. The

length of a shortest walk connecting two vertices x, y ∈ V is called the graph distance

between x and y in G and is denoted by dG(x, y). A walk in (2.1) is called a shortest

path connecting x and y if s = dG(x, y) holds. In that case x0, x1, . . . , xs are mutually

distinct.

As is defined in (1.1), the QE constant of a graph G = (V,E), denoted by QEC(G), is

the conditional maximum of the quadratic function 〈f,Df〉 associated to the distance

matrix D = [dG(x, y)] subject to two constraints 〈f, f〉 = 1 and 〈1, f〉 = 0.

In this section we assemble some basic results, for more details see e.g., [4, 18, 22].

We first recall a computational formula based on the standard method of Lagrange’s

multipliers.

Proposition 1 ([22]). Let D be the distance matrix of a graph G = (V,E) on n = |V |
vertices with n ≥ 3. Let S be the set of all stationary points (f, λ, µ) of

ϕ(f, λ, µ) = 〈f,Df〉 − λ(〈f, f〉 − 1)− µ〈1, f〉, (2.2)

where f ∈ C(V ) ∼= Rn, λ ∈ R and µ ∈ R. Then we have

QEC(G) = max{λ ; (f, λ, µ) ∈ S}.
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In general, a graph H = (V ′, E′) is called a subgraph of G = (V,E) if V ′ ⊂ V and

E′ ⊂ E. If both G and H are connected, they have their own graph distances. If

they coincide in such a way that

dH(x, y) = dG(x, y), x, y ∈ V ′,

we say that H is isometrically embedded in G. The next assertions are immediate

from definition but useful.

Proposition 2 ([20, 21]). Let G = (V,E) be a graph and H = (V ′, E′) a subgraph.

(1) If H is isometrically embedded in G, then H is an induced subgraph of G.

(2) If H is an induced subgraph of G and

diam (H) = max{dH(x, y) ; x, y ∈ V ′} ≤ 2,

then H is isometrically embedded in G.

Proposition 3 ([22]). Let G = (V,E) and H = (V ′, E′) be two graphs with |V | ≥ 2
and |V ′| ≥ 2. If H is isometrically embedded in G, we have

QEC(H) ≤ QEC(G). (2.3)

In particular, (2.3) holds if H is an induced subgraph of G and diam (H) ≤ 2.

Since any graph G = (V,E) with |V | ≥ 2 contains at least one edge, it has a subgraph

K2 isometrically embedded in G. It then follows from Proposition 3 that

QEC(G) ≥ QEC(K2) = −1.

Moreover, we have the following assertion, see also Proposition 11.

Proposition 4 ([4]). For a graph G we have QEC(G) = −1 if and only if G is a
complete graph.

Thus, in order to determine QEC(G) of a graph G which is not a complete graph, it

is sufficient to seek out the stationary points of ϕ(f, λ, µ) with λ > −1 and then to

specify the maximum of λ appearing therein.
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3. Clique Graphs

Most of this section follows a standard argument; however, to avoid ambiguity, we

present some basic properties of clique graphs.

Let G = (V,E) be a graph (always assumed to be finite and connected). For a non-

empty subset H ⊂ V , the subgraph induced by H is denoted by 〈H〉. By definition

the vertex set of 〈H〉 is H itself and two-element subset {x, y} ⊂ H belongs to the

edge set of 〈H〉 if and only if {x, y} ∈ E. A non-empty subset H ⊂ V is called a

clique of G if 〈H〉 is a complete graph. A clique is called maximal if it is maximal

in the family of cliques with respect to the inclusion relation. Except for notation,

‘clique’ may also refer to the subgraph it induces.

Obviously, for a clique H0 there exists a maximal clique H such that H0 ⊂ H. In

particular, for two vertices a ∼ b there exists a maximal clique containing {a, b}.

Lemma 1. Let H1 and H2 be maximal cliques of a graph G such that H1 6= H2. Then
H1\H2 6= ∅ and H2\H1 6= ∅. Moreover, there exist a ∈ H1\H2 and b ∈ H2\H1 such that
a 6∼ b.

Proof. Suppose that H1\H2 = ∅ or H2\H1 = ∅. If the former occurs, we have

H1 ⊂ H2. Since both H1 and H2 are maximal and H1 6= H2 by assumption, we come

to a contradiction.

For the second half of the assertion, suppose that any pair of x ∈ H1\H2 and y ∈
H2\H1 are adjacent. We will show that H1 ∪H2 is a clique. In fact, take a pair of

distinct vertices x, y ∈ H1 ∪ H2. If x, y ∈ H1 or x, y ∈ H2, they are adjacent since

H1 and H2 are cliques. If otherwise, we have x ∈ H1\H2 and y ∈ H2\H1 or vice

versa, and hence x ∼ y by assumption. Consequently, for any pair of distinct vertices

x, y ∈ H1 ∪ H2 we have x ∼ y, namely, H1 ∪ H2 becomes a clique. Since H1 ∪ H2

contains H1 and H2 properly, we come to a contradiction.

For a graph G = (V,E) let V be the set of all maximal cliques and E the set of two-

element subsets {H1, H2} ⊂ V such that H1 ∩H2 6= ∅. Then Γ(G) = (V, E) becomes

a (in fact, connected) graph, which is called the clique graph of G. Accordingly, for

two maximal cliques H1 and H2 of G we write H1 ∼ H2 if H1 6= H2 and H1∩H2 6= ∅.
For more information on the clique graph, see e.g., [24, 27].

Lemma 2. The clique graph Γ(G) of a graph G (always assumed to be connected) is
connected.

Proof. Let H1, H2 be two maximal cliques such that H1 6= H2. By Lemma 1 we

may choose a ∈ H1\H2 and b ∈ H2\H1. Since G is connected, there exists a walk

connecting a and b, say,

a = x0 ∼ x1 ∼ · · · ∼ xs = b,
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where s ≥ 1. For 1 ≤ i ≤ s take a maximal clique Ji containing {xi−1, xi}. Then

xi ∈ Ji ∩ Ji+1 implies that Ji = Ji+1 or Ji ∼ Ji+1. Moreover, it follows from

a = x0 ∈ H1 ∩ J1 that H1 = J1 or H1 ∼ J1. Similarly, H2 = Js or H2 ∼ Js. In any

case, H1 and H2 are connected by a walk consisting of J1, J2, . . . , Js.

Example 1. For a complete graph Kn with n ≥ 1, a path Pn with n ≥ 2, and a cycle Cn

with n ≥ 3 we have

Γ(Kn) = K1, Γ(Pn) = Pn−1, Γ(Cn) = Cn .

If every maximal clique of a graph G is K2, the clique graph Γ(G) is nothing else but the
line graph of G. Examples of this type are G = Pn and G = Cn.

Lemma 3. For d ≥ 1 let

x0 ∼ x1 ∼ · · · ∼ xd , (3.1)

be a shortest path connecting x0 and xd, that is, d(x0, xd) = d. For 1 ≤ i ≤ d let Hi be a
maximal clique containing {xi−1, xi}. Then,

H1 ∼ H2 ∼ · · · ∼ Hd (3.2)

and d(H1, Hd) = d − 1. Hence (3.2) is a shortest path connecting H1 and Hd, and
H1, H2, . . . , Hd are mutually distinct.

Proof. For 1 ≤ i ≤ d−1 we have xi ∈ Hi∩Hi+1 by definition, and hence Hi = Hi+1

or Hi ∼ Hi+1. Suppose that Hi = Hi+1 occurs. Then xi−1, xi, xi+1 ∈ Hi and these

three vertices are mutually distinct because (3.1) is a shortest path. Since Hi is a

clique, we have xi−1 ∼ xi+1, which contradicts to that (3.1) is a shortest path. Thus

we obtain a walk as in (3.2).

We next prove that (3.2) gives rise to a shortest path. Let s = d(H1, Hd) and take a

shortest path

H1 = J0 ∼ J1 ∼ · · · ∼ Js = Hd .

In that case we have

s ≤ d− 1. (3.3)

For 1 ≤ i ≤ s we take yi ∈ Ji−1 ∩ Ji. Then y1 ∼ y2 ∼ · · · ∼ ys. Moreover, since

x0, y1 ∈ H1 = J0 we have x0 = y1 or x0 ∼ y1. Similarly, xd = ys or xd ∼ ys.

Thus we obtain a walk connecting x0 and xd whose length is s− 1, s or s+ 1. Hence

d = d(x0, xd) ≤ s+1. Combining (3.3) we obtain s = d−1 and hence d(H1, Hd) = d−1

as desired.

Proposition 5. Let G be a graph and Γ(G) its clique graph. Then

diam (G)− 1 ≤ diam (Γ(G)). (3.4)
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Proof. It is sufficient to show the assertion for a graph G with d = diam (G) ≥ 1.

We take a shortest path x0 ∼ x1 ∼ · · · ∼ xd such that d(x0, xd) = d. Define a

sequence of maximal cliques H1, . . . ,Hd as in Lemma 3. Then we have

d− 1 = d(H1, Hd) ≤ diam (Γ(G)),

which completes the proof of (3.4).

Lemma 4. For d ≥ 1 let

H0 ∼ H1 ∼ · · · ∼ Hd (3.5)

be a shortest path connecting H0 and Hd, that is d(H0, Hd) = d. For 1 ≤ i ≤ d take a vertex
xi ∈ Hi−1 ∩Hi. Then

x1 ∼ x2 ∼ · · · ∼ xd (3.6)

and d(x1, xd) = d−1. Hence (3.6) is a shortest path connecting x1 and xd, and x1, x2, . . . , xd
are mutually distinct.

Proof. For 1 ≤ i ≤ d − 1 we have xi, xi+1 ∈ Hi and hence xi = xi+1 or xi ∼ xi+1.

Suppose that xi = xi+1 occurs. Then xi = xi+1 ∈ Hi−1 ∩ Hi ∩ Hi+1 and hence

Hi−1 ∩Hi+1 6= ∅, from which we obtain Hi−1 = Hi+1 or Hi−1 ∼ Hi+1. In any case

we come to a contradiction because (3.5) is a shortest path. We have thus obtained

a walk as in (3.6).

We next prove that (3.6) gives rise to a shortest path. We set s = d(x1, xd) and take

a shortest path connecting x1 and xd, say,

x1 = y0 ∼ y1 ∼ · · · ∼ ys = xd.

In that case we have

s ≤ d− 1. (3.7)

For 1 ≤ i ≤ s let Ji be a maximal clique containing {yi−1, yi}. It then follows from

Lemma 3 that d(J1, Js) = s − 1. Since x1 = y0 ∈ H0 ∩ J1, we have H0 = J1 or

H0 ∼ J1. Similarly, we have Hd = Js or Hd ∼ Js. Thus, we obtain a walk connecting

H0 and Hd of which length is s − 1, s or s + 1. Hence d = d(H0, Hd) ≤ s + 1.

Combining (3.7), we obtain s = d− 1 and hence d(x1, xd) = d− 1 as desired.

Proposition 6. Let G be a graph and Γ(G) its clique graph. If Γ(G) is a tree, we have

diam (G)− 1 = diam (Γ(G)). (3.8)

Proof. Set d = diam (Γ(G)) and take a shortest path

H0 ∼ H1 ∼ · · · ∼ Hd, (3.9)
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where d(H0, Hd) = d. For 1 ≤ i ≤ d take xi ∈ Hi−1 ∩ Hi. By Lemma 4 we

have a shortest path x1 ∼ x2 ∼ · · · ∼ xd. Moreover, we take x0 ∈ H0\H1 and

xd+1 ∈ Hd\Hd−1. Thus we obtain a walk

x0 ∼ x1 ∼ x2 ∼ · · · ∼ xd ∼ xd+1 (3.10)

whose length is d+ 1.

We shall prove that (3.10) is a shortest path. Set s = d(x0, xd+1) and take a shortest

path, say,

x0 = y0 ∼ y1 ∼ y2 ∼ · · · ∼ ys = xd+1 (3.11)

For 1 ≤ i ≤ s let Ji be a maximal clique containing {yi−1, yi}. By Lemma 3.2 we

obtain a shortest path J1 ∼ · · · ∼ Js, namely,

d(J1, Js) = s− 1. (3.12)

Now note that x0 = y0 ∈ H0 ∩ J1. Then we have H0 = J1 or H0 ∼ J1. Since Γ(G) is

a tree, the ends of a diameter (3.9) are pending vertices. Hence H0 ∼ J1 implies that

J1 = H1. In that case we have x0 = y0 ∈ H0 ∩ J1 = H0 ∩ H1. On the other hand,

we chose x0 ∈ H0\H1, which is a contradiction. Therefore, H0 ∼ J1 does not occur

and we have H0 = J1. In a similar manner, we see that Hd = Js. Consequently,

combining (3.12) we come to

d = d(H0, Hd) = d(J1, Js) = s− 1.

Thus,

diam (Γ(G)) = d = s− 1 = d(x0, xd+1)− 1 ≤ diam (G)− 1.

Finally, combining Proposition 5, we obtain the equality (3.8).

4. Graphs with QEC(G) < −1/2

The complete bipartite graph K1,3 is called a claw. The complete tripartite graph

K1,1,2, which is also obtained by deleting an edge from the complete graph K4, is

called a diamond, see Figure 1. It is essential to note that

Figure 1. Claw K1,3 (left) and diamond K1,1,2 (right)
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QEC(K1,3) = QEC(K1,1,2) = −1

2
.

Since diam (K1,3) = diam (K1,1,2) = 2, we see from Propositions 2 and 3 that if a

graph G contains K1,3 or K1,1,2 as an induced subgraph, we have QEC(G) ≥ −1/2.

Thus, we come to the following criterion.

Proposition 7 ([4, Corollary 4.1]). Any graph G with QEC(G) < −1/2 does not
contain a claw K1,3 nor a diamond K1,1,2 as an induced subgraph. In short, the claw and
diamond are forbidden subgraphs for a graph with QEC(G) < −1/2.

Lemma 5. Let G be a graph with QEC(G) < −1/2. If H1 and H2 are maximal cliques
of G with H1 6= H2, then H1 ∩H2 = ∅ or |H1 ∩H2| = 1.

Proof. In order to prove the assertion by contradiction, we suppose |H1 ∩H2| ≥ 2

and take x, y ∈ H1 ∩ H2 with x 6= y. By Lemma 1 there exist a ∈ H1\H2 and

b ∈ H2\H1 such that a 6∼ b. Then 〈x, y, a, b〉 forms a diamond, which is a forbidden

subgraph as stated in Proposition 7.

Lemma 6. Let G be a graph with QEC(G) < −1/2. If H1, H2 and H3 are mutually
distinct maximal cliques of G, then H1 ∩H2 ∩H3 = ∅.

Proof. In order to prove the assertion by contradiction we suppose that H1 ∩H2 ∩
H3 6= ∅. Then H1 ∩ H2 6= ∅ and by Lemma 5 we have H1 ∩ H2 = {x} for some

x ∈ V . Hence H2 ∩H3 = H3 ∩H1 = H1 ∩H2 ∩H3 = {x}. On the other hand, by

Lemma 1 there exist a ∈ H1\H2 and b ∈ H2\H1 such that a 6∼ b. Note that there

exists c ∈ H3\H1 such that c 6∼ a. In fact, if any c ∈ H3\H1 is adjacent to a, then

H3 ∪ {a} becomes a clique and we come to a contradiction. Thus, we have chosen

four vertices x, a, b, c. There are two cases. In case of b 6∼ c, the induced subgraph

〈x, a, b, c〉 becomes a claw. In case of b ∼ c note that there exist c′ ∈ H3\H2 such

that c′ 6∼ b. In fact, if any c′ ∈ H3\H2 is adjacent to b, H3 ∪ {b} becomes a clique

and we come to a contradiction. Thus, taking c′ ∈ H3\H2 such that c′ 6∼ b, we see

that 〈x, b, c, c′〉 becomes a diamond. In any case we obtain a forbidden subgraph as

stated in Proposition 7 and arrive to a contradiction.

Proposition 8. For a graph G = (V,E) with QEC(G) < −1/2 the clique graph Γ(G) is
a tree.

Proof. Suppose that the clique graph Γ(G) is not a tree and take a smallest cycle,

say,

H1 ∼ H2 ∼ · · · ∼ Hk ∼ H1, k ≥ 3, (4.1)
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where Hi is a maximal clique of G and Hi ∩Hi+1 6= ∅ for 1 ≤ i ≤ k (understanding

Hk+1 = H1). It follows from Lemma 5 that there exists a unique vertex xi such that

Hi ∩Hi+1 = {xi} for 1 ≤ i ≤ k. Then, obviously

x1 ∼ x2 ∼ · · · ∼ xk ∼ x1.

(Case 1) k = 3. In that case x1, x2, x3 are mutually distinct. We note that x1, x3 ∈
H1 and x2 6∈ H1. If H1 = {x1, x3}, namely H1\{x1, x3} = ∅, then H1 ∪ {x2}
becomes a clique containing H1 properly and we come to a contradiction. Hence

H1\{x1, x3} 6= ∅. If any y ∈ H1\{x1, x3} is adjacent to x2, then H1 ∪{x2} becomes a

clique containing H1 properly and we come to a contradiction again. Therefore, there

exists y ∈ H1\{x1, x3} such that y 6∼ x2. Thus, 〈x1, x2, x3, y〉 becomes a diamond,

which is a forbidden subgraph by Proposition 7. Consequently, Γ(G) does not contain

a cycle (4.1) with k = 3.

(Case 2) k ≥ 4. Using the assumption that (4.1) is a smallest cycle, one can show

easily that x1, . . . , xk are mutually distinct.

We first prove that the induced subgraph C = 〈x1, x2, . . . , xk〉 becomes a cycle Ck.

In fact, if not, there exist 1 ≤ i, j ≤ k such that i + 1 < j and xi ∼ xj . Let J be a

maximal clique containing {xi, xj}. Then xi ∈ Hi∩Hi+1∩J and xj ∈ Hj ∩Hj+1∩J .

In view of Lemma 6 we obtain J = Hi or J = Hi+1 from the former condition, and

similarly J = Hj or J = Hj+1 from the latter. In any case we come to a contradiction

against that (4.1) is a smallest cycle.

We next show that the cycle C = 〈x1, x2, . . . , xk〉 ∼= Ck is isometrically embedded in

G. Suppose otherwise. Then there exist 1 ≤ i, j ≤ k such that

dG(xi, xj) < dCk
(xi, xj), (4.2)

where the right-hand side is the distance in the cycle Ck. Without loss of generality,

we may assume that 1 ≤ i < j ≤ k. Then, (4.2) becomes

dG(xi, xj) < min{j − i, k − (j − i)}. (4.3)

For j = i+ 1 we have xi ∼ xj and (4.3) does not hold. For j = i+ 2 it follows from

(4.3) that dG(xi, xj) = 1 and come to a contradiction against the argument in the

previous paragraph. Thus, it is sufficient to derive a contradiction from (4.3) for some

j ≥ i+ 3. Now take a shortest path

xi ∼ y0 ∼ y1 ∼ · · · ∼ ys = xj , s = dG(xi, xj).

For 1 ≤ i ≤ s take a maximal clique Ji such that {yi−1, yi} ⊂ Ji. Since xi =

y0 ∈ Hi ∩ Hi+1 ∩ J1, by Lemma 6 we have J1 = Hi or J1 = Hi+1. Similarly, we

see from xj = ys ∈ Hj ∩ Hj+1 ∩ Js that Js = Hj or Js = Hj+1. Thus, the path

J1 ∼ J2 ∼ · · · ∼ Js, which is a shortest path by Lemma 3, gives rise to an alternative



E.T. Baskoro, N. Obata 11

path connecting two vertices of C, and hence two cyclic walks. We will consider these

two cyclic walks in details.

Consider the case where

J1 = Hi, and Js = Hj . (4.4)

We obtain two cyclic walks:

H1 ∼ · · · ∼ Hi = J1 ∼ J2 ∼ · · · ∼ Js = Hj ∼ Hj+1 ∼ · · · ∼ Hk ∼ H1. (4.5)

and

Hi = J1 ∼ J2 ∼ · · · ∼ Js = Hj ∼ Hj−1 ∼ · · · ∼ Hi+1 ∼ Hi . (4.6)

The length of these walks are (i − 1) + (s − 1) + (k − j) + 1 = k + s + i − j and

(s− 1) + (j − i) = s+ j − i− 1, respectively. In view of (4.3) we consider two cases.

First, in case of s < min{j − i, k − (j − i)} = j − i we have k + s+ i− j < k, that is,

the length of (4.5) is less than k. This contradicts to the choice of k. Second, in case

of s < min{j − i, k − (j − i)} = k − (j − i) we have s+ j − i− 1 < k − 1, that is, the

length of (4.5) is less than k− 1. This contradicts to the choice of k. Thus (4.4) does

not occur.

Other than (4.4) there are three more cases. In each of these cases, in a similar

manner as in the previous case, we may find a cycle in Γ(G) which is smaller than

(4.1), and come to a contradiction. As a result, the cycle C = 〈x1, x2, . . . , xk〉 ∼= Ck

is isometrically embedded in G.

We now recall that QEC(Ck) > −1/2 for any k ≥ 4. In fact, the exact value

of QEC(Ck) is known [22]. As a consequence of (Case 2), we obtain QEC(G) ≥
QEC(Ck) > −1/2 and come to a contradiction. Hence, Γ(G) does not contain a

smallest cycle (4.1) with k ≥ 4. This completes the proof.

Summing up the above results, we state the following

Theorem 1. Let G = (V,E) be a graph with QEC(G) < −1/2. Then the clique graph
Γ(G) is a tree. Any pair of adjacent maximal cliques H1 and H2 intersect with a single
vertex, i.e., |H1 ∩ H2| = 1. Moreover, mutually distinct three maximal cliques H1, H2 and
H3 do not intersect, i.e., H1 ∩H2 ∩H3 = ∅.

Thus, we say naturally that a graph G = (V,E) with QEC(G) < −1/2 is a block graph

which admits “cactus-like” structure, see Figure 2. On the other hand, a cactus is

defined to be a connected graph in which no edge lies on more than one cycle. This

definition traces back to [8], though there is ambiguity in the usage in literature. Note

that such a cactus is different from our “cactus-like” graph.
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complete graphs

Figure 2. “Cactus-like” graph

5. Graphs Consisting of Two Maximal Cliques

For natural numbers l ≥ 1, m > l and n > l, let V = {1, 2, . . . ,m+n− l} and consider

its two subsets:

H1 = {1, 2, . . . ,m}, H2 = {m− l + 1,m− l + 2, . . . ,m− l + n}. (5.1)

Note that V = H1 ∪ H2. Let E be the set of two-element subsets {x, y} ⊂ V

satisfying x, y ∈ H1 or x, y ∈ H2. Then G = (V,E) becomes a graph which is denoted

by G = Km ∪l Kn, see Figure 3. Obviously, G = Km ∪l Kn has exactly two maximal

cliques H1 and H2. We will prove that any graph (recall that we always assume that

a graph is connected) with exactly two maximal cliques is of this form.

Km

Kn
lK

Figure 3. A connected graph consisting of two maximal cliques

Proposition 9. Let G = (V,E) be a (connected) graph with exactly two maximal cliques.
Then there exist three natural numbers l ≥ 1, m > l and n > l such that G ∼= Km ∪l Kn.

Although Proposition 9 pertains to an elementary understanding of graph theory, for

later convenience we show an outline of the argument.
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Lemma 7. Let G = (V,E) be a graph with exactly two maximal cliques H1 and H2.

(1) For any a ∈ H1\H2 and b ∈ H2\H1 we have a 6∼ b.

(2) V = H1 ∪H2.

(3) H1 ∩H2 6= ∅.

(4) For any a ∈ H1\H2 and b ∈ H2\H1 we have dG(a, b) = 2.

Proof. (1) Suppose that a ∈ H1\H2 and b ∈ H2\H1 are adjacent. There exists a

maximal clique containing {a, b}, which is different from H1 and H2. This implies

that a 6∼ b for any pair of a ∈ H1\H2 and b ∈ H2\H1 .

(2) In order to prove by contradiction we suppose V 6= H1∪H2. Take a ∈ V \(H1∪H2).

Since G is connected, there exists b ∈ V such that a ∼ b. Then a maximal clique

containing {a, b} exists and is different from H1 and from H2. We thus come to a

contradiction.

(3) Suppose that H1 ∩ H2 = ∅. Take a ∈ H1 and b ∈ H2 arbitrarily. Since G is

connected, there exists a walk connecting a and b. Since this walk is kept in H1 ∪H2

by (2), we may find a′ ∈ H1 and b′ ∈ H2 such that a′ ∼ b′. This contradicts to the

result of (1).

(4) By (1) we know that dG(a, b) ≥ 2. On the other hand, taking x ∈ H1 ∩ H2 we

obtain a walk a ∼ x ∼ b, which implies that dG(a, b) ≤ 2.

Proof of Proposition 9. Let H1 and H2 be the two maximal cliques of G. We set

m = |H1|, n = |H2| and l = |H1 ∩H2|. By Lemma 7 we see that H1
∼= Km, H2

∼= Kn

and H1 ∩H2
∼= Kl with l ≥ 1 and m,n > l. Moreover, there is no edge connecting

vertices a ∈ H1\H2 and b ∈ H2\H1. We conclude that G ∼= Km ∪l Kn.

The distance matrix of G = Km ∪l Kn is easily written down according to (5.1).

In fact, taking Lemma 7 (4) into account, we obtain the distance matrix D in a

block-matrix form as follows:

D =

J − I J J

J J − I 2J

J 2J J − I

 , (5.2)

where I is the identity matrix and J the matrix whose entries are all one (the sizes of

these matrices are understood in the context). Then QEC(G) is obtained by means of

the basic formula in Proposition 1. The computation is just a routine and is deferred

to the Appendix.

Theorem 2. For l ≥ 1, m > l and n > l we have

QEC(Km ∪l Kn) = −1 +
−(m− l)(n− l) +

√
mn(m− l)(n− l)

m+ n− l . (5.3)
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Corollary 1 ([4, Proposition 4.4]). Let m ≥ 2 and n ≥ 2. Then Km ∪1 Kn is a
graph obtained from Km and Kn by concatenating a vertex, in other words, it is the star
product Km ∪1 Kn = Km ∗Kn, and we have

QEC(Km ∪1 Kn) = QEC(Km ∗Kn)

=
−mn+

√
mn(m− 1)(n− 1)

m+ n− 1

= −

(
1 +

√(
1− 1

m

)(
1− 1

n

))−1

. (5.4)

Corollary 2. Let m ≥ 3 and n ≥ 3. Then Km ∪2 Kn is a graph obtained from Km and
Kn by concatenating an edge and we have

QEC(Km ∪2 Kn) =
−mn+m+ n− 2 +

√
mn(m− 2)(n− 2)

m+ n− 2
. (5.5)

Remark 1. By changing parameters we obtain an alternative form of (5.3) in Theorem
2. For l,m, n ≥ 1 we have

QEC(Km+l ∪l Kn+l) = −1 +
l

1 +

√(
1 +

l

m

)(
1 +

l

n

) .

This is useful to discuss estimates of QEC(Km+l ∪l Kn+l).

6. Characterization of Graphs Along QEC(Pd)

Proposition 10. Let d ≥ 3. If QEC(G) < QEC(Pd), we have diam (G) ≤ d − 2 and
diam (Γ(G)) ≤ d− 3.

Proof. Suppose that diam (G) > d−2. Then diam (G) ≥ d−1 and Pd is isometrically

embedded in G. By Proposition 3 we obtain QEC(Pd) ≤ QEC(G), which contradicts

to the assumption. Therefore, if QEC(G) < QEC(Pd), we have diam (G) ≤ d− 2. In

that case, since QEC(G) < QEC(Pd) < −1/2, it follows from Theorem 1 that Γ(G) is

a tree. We then see from Proposition 6 that diam (Γ(G)) = diam (G)− 1 ≤ d− 3.

6.1. QEC(G) < QEC(P3)

For a graph with QEC(G) < QEC(P3) we have diam (Γ(G)) = 0, which means that

G has just one maximal clique. Hence G = Kn with n ≥ 2. Since QEC(Kn) = −1,

we have the following assertions immediately.

Proposition 11 ([4]). For a graph G we have QEC(G) = QEC(P2) = −1 if and only
if G = Kn with n ≥ 2.

Proposition 12 ([4]). There exists no graph G such that QEC(P2) < QEC(G) <
QEC(P3) = −2/3.
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6.2. QEC(G) < QEC(P4)

Let G be a graph satisfying QEC(G) < QEC(P4). It follows from Proposition 10

that diam (Γ(G)) ≤ 1, that is, diam (Γ(G)) = 0 or diam (Γ(G)) = 1. The case of

diam (Γ(G)) = 0 is discussed already in Subsection 6.1.

In the case of diam (Γ(G)) = 1, the clique graph Γ(G) consists of two vertices, which

means that G has exactly two maximal cliques. By Proposition 9 we obtain G =

Km ∪l Kn with l ≥ 1, m > l and n > l. On the other hand, since QEC(G) < −1/2,

we see from Lemma 5 that l = 1. Thus, G is necessarily of the form G = Km∪1Kn =

Km ∗Kn with m ≥ n ≥ 2.

With the help of the formula in Corollary 1 we may easily determine m ≥ n ≥ 2 such

that QEC(Km ∗Kn) < QEC(P4) = −(2 −
√

2). As a result we obtain the following

assertions.

Proposition 13 ([4]). For a graph G we have QEC(G) = QEC(P3) = −2/3 if and only
if G = P3 = K2 ∗K2.

Proposition 14 ([4]). For a graph G we have QEC(P3) < QEC(G) < QEC(P4) =
−(2−

√
2) if and only if G = Km ∗K2 with m ≥ 3 or G = K3 ∗K3.

6.3. QEC(G) < QEC(P5)

If a graph G satisfies QEC(G) < QEC(P5) = −(5−
√

5)/5, then diam (Γ(G)) ≤ 2. The

case of diam (Γ(G)) = 0 is already discussed in Subsection 6.1. If diam (Γ(G)) = 1,

we have G = Km ∗Kn with m ≥ n ≥ 2. Then, as is discussed in Subsection 6.2, we

may employ the explicit formula for QEC(Km ∗Kn) in Corollary 1. The result will

be stated in Propositions 15 and 16.

Consider the case of diam (Γ(G)) = 2. Since Γ(G) is a tree, it is necessarily a star

Γ(G) = K1,s with s ≥ 2. Then G is a graph obtained as follows: Let n ≥ s and

m1 ≥ m2 ≥ · · · ≥ ms ≥ 2. We choose s vertices from Kn and to each of the s vertices

we make a star product with Km1 , . . . ,Kms , see Figure 4. Such a graph is denoted

by G = Kn ∗ (Km1
, . . . ,Kms

).

Km

Kn

Km

Km1

2

s

Figure 4. Kn ∗ (Km1 , . . . , Kms )
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Lemma 8. Consider two graphs G = Kn ∗ (Km1 , . . . ,Kms) with n ≥ s, m1 ≥ m2 ≥
· · · ≥ ms ≥ 2, and G′ = Kn′ ∗ (Km′

1
, . . . ,Km′

r
) with n′ ≥ r and m′1 ≥ m′2 ≥ · · · ≥ m′r ≥ 2.

If n′ ≤ n, r ≤ s, m′1 ≤ m1, . . . ,m
′
r ≤ mr, then G′ is isometrically embedded in G. Hence

QEC(G′) ≤ QEC(G).

Proof. Obvious.

Lemma 9. Let n ≥ s ≥ 2 and m1 ≥ m2 ≥ · · · ≥ ms ≥ 2. If m1 ≥ 3, we have

QEC(P4) < QEC(Kn ∗ (Km1 , . . . ,Kms)).

Proof. It is known that

QEC(K2 ∗ (K3,K2)) = −2(6−
√

21)

5
≈ −0.5669,

see [22], where K2 ∗ (K3,K2) is referred to as No.5-7. Then we have

QEC(P4) < QEC(K2 ∗ (K3,K2)) < QEC(P5).

On the other hand, for n ≥ s ≥ 2 and m1 ≥ 3, Kn ∗ (Km1 , . . . ,Kms) contains

K2 ∗ (K3,K2) as an isometrically embedded subgraph. Hence

QEC(P4) < QEC(K2 ∗ (K3,K2)) ≤ QEC(Kn ∗ (Km1
, . . . ,Kms

)),

as desired.

Lemma 10 ([4, Theorem 4.3]). For n ≥ s ≥ 2 we have

QEC(Kn ∗ (

s times︷ ︸︸ ︷
K2, . . . ,K2)) = −(2−

√
2) = QEC(P4).

Proposition 15. For a graph G we have QEC(G) = QEC(P4) = −(2−
√

2) if and only
if G = K4 ∗K3 or G = Kn ∗ (K2, . . . ,K2) (K2 appears s times) with n ≥ s ≥ 2.

Proof. As is discussed in Subsection 6.2, a graph G with diam (Γ(G)) = 1 is of the

form Km ∗Kn with m ≥ n ≥ 2. Then, using the explicit formula for QEC(Km ∗Kn)

in Corollary 1, we see easily that QEC(Km ∗Kn) = QEC(P4) if and only if m = 4

and n = 3.

A graph G with diam (Γ(G)) = 2 is of the form G = Kn ∗ (Km1
, . . . ,Kms

) with

n ≥ s ≥ 2 and m1 ≥ m2 ≥ · · · ≥ ms ≥ 2. By Lemma 9, QEC(G) ≤ QEC(P4) may

occur only when m1 = m2 = · · · = ms = 2. On the other hand, in that case, the

equality QEC(G) = QEC(P4) holds by Lemma 10.
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Proposition 16. For m ≥ n ≥ 2 we have QEC(P4) < QEC(Km ∗Kn) < QEC(P5) if
and only if

(i) n = 3 and 5 ≤ m ≤ 54;

(ii) n = 4 and 4 ≤ m ≤ 7;

(iii) n = m = 5.

Proof. Straightforward by the explicit formula for QEC(Km ∗Kn).

By Proposition 16 all graphs G such that QEC(P4) < QEC(G) < QEC(P5) with

diam (Γ(G)) = 1 are determined. The case of diam (Γ(G)) = 2, i.e., G = Kn ∗
(Km1

, . . . ,Kms
) remains to be checked. The work in this line is in progress.

Appendix: Calculating QEC(Km ∪l Kn)

Let D be the distance matrix of G = Km ∪lKn, where l ≥ 1 and m,n > l. Using the

block-matrix form of D as in (5.2), we will calculate QEC(G) explicitly.

For f ∈ Rl, g ∈ Rm−l and h ∈ Rn−l we set

ψ(f, g, h) =

〈fg
h

 , D
fg
h

〉

= 〈1, f〉2 + 〈1, g〉2 + 〈1, h〉2 − 〈f, f〉2 − 〈g, g〉2 − 〈h, h〉2

+ 2〈1, f〉〈1, g〉+ 2〈1, f〉〈1, h〉+ 4〈1, g〉〈1, h〉

and

ϕ(f, g, h, λ, µ) = ψ(f, g, h)− λ(〈f, f〉+ 〈g, g〉+ 〈h, h〉 − 1)

− µ(〈1, f〉+ 〈1, g〉+ 〈1, h〉). (A.1)

It then follows from Proposition 1 that QEC(G) coincides with the maximum of λ ∈ R
appearing in the stationary points of ψ(f, g, h, λ, µ). Since G is not complete, it is

sufficient to explore stationary points of ψ(f, g, h, λ, µ) with λ > −1.

By direct computation together with condition

〈1, f〉+ 〈1, g〉+ 〈1, h〉 = 0

we have
∂ϕ

∂fi
= −2(λ+ 1)fi − µ = 0. (A.2)
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Then we see that fi is constant independent of 1 ≤ i ≤ l, say fi = ξ. Thus, (A.2)

becomes

ξ = − 1

λ+ 1
· µ

2
. (A.3)

(From the beginning we may assume that λ > −1 as noted before.) Similarly, it

follows from ∂ϕ/∂gi = ∂ϕ/∂hi = 0 that gi and hi are respectively constant. Setting

gi = η and hi = ζ, we obtain

(λ+ 1)η − (n− l)ζ = −µ
2
, (A.4)

−(m− l)η + (λ+ 1)ζ = −µ
2
, (A.5)

and the constraints become

lξ + (m− l)η + (n− l)ζ = 0, (A.6)

lξ2 + (m− l)η2 + (n− l)ζ2 = 1. (A.7)

Our task is to solve the system of equations (A.3)–(A.7).

In view of (A.4) and (A.5) we set

∆ = det

[
λ+ 1 −(n− l)
−(m− l) λ+ 1

]
= (λ+ 1)2 − (m− l)(n− l). (A.8)

(Case I) ∆ 6= 0. The equations (A.4) and (A.5) have a unique solution:

η = −λ+ n+ 1− l
∆

· µ
2
, ζ = −λ+m+ 1− l

∆
· µ

2
. (A.9)

Inserting (A.3) and (A.9) into (A.6), we obtain

l∆ + (λ+ 1){(m− l)(λ+ n+ 1− l) + (n− l)(λ+m+ 1− l)} = 0 (A.10)

after simple calculation. The solutions are easily written down as

λ± = −1 +
−(m− l)(n− l)±

√
mn(m− l)(n− l)

m+ n− l
.

Checking that λ+ 6= −1 and ∆ 6= 0 for λ = λ+, we see that λ+ is a candidate of

QEC(G).

(Case II) ∆ = 0. From (A.4) and (A.5) we obtain

(λ+ n− l + 1)
µ

2
= 0, (λ+m− l + 1)

µ

2
= 0.
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If m 6= n, we obtain µ = 0 and ξ = η = ζ = 0, which do not fulfill (A.7). Hence there

is no stationary points. Assume that m = n. Then λ = −1− (m− l) appears in the

stationary points. However, since we are only interested in λ > −1, there exists no

candidate for our QEC(G) in the case of ∆ = 0.

Finally, we conclude from (Case I) and (Case II) that λ+ = QEC(G).
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