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Abstract: This work discusses a category of optimization problems in which the

lower-level problems include multiobjective generalized Nash equilibrium problems. De-
spite the fact that it has various possible applications, there has been little research

into it in the literature. We provide a single-level reformulation for these types of

problems and highlight their equivalence in terms of global and local minimizers. Our
method consists of transforming our problem into a one-level optimization problem,

utilizing the kth-objective weighted-constraint and optimal value reformulation. The
Mordukhovich generalized differentiation calculus is then used to derive completely

detailed first-order necessary optimality conditions in the smooth setting.
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1. Introduction

Optimization problems with mathematical programs in the constraints are structured

analogously to hierarchical programming problems; see [2–4, 7–10, 16] for an intro-

duction to hierarchical optimization and some results, with the exception that the

objective mapping of the lower-level (or follower’s) problem is a vector function. This

problem is known as bilevel. Given that the usual definition of a minimizer does

not apply to multiobjective programs, the lower-level decision maker must, for in-

stance, compute the set of efficient or weakly efficient points for each fixed value of

the upper-level (or leader’s) variable in general. For more information, see [11, 14] for

an introduction to multicriteria optimization.

∗ Corresponding Author



2 Nonconvex multiobjective generalized Nash equilibrium problem constraints

Recently, multi-objective optimization programs have received attention in the litera-

ture, motivated by the fact that decision makers often have several conflicting objec-

tives that should be optimized simultaneously when faced with a real-world problem.

Mathematical programming is applicable to real-world problems related to electricity

markets, as seen in [1] and the references therein, as well as the modeling of inverse

multicriteria optimization problems. [3, 5, 15, 17, 26] explored the essential optimal-

ity conditions for finite-dimensional mathematical optimization problems, while [12]

addressed this type of problem in the convex case. The goal of this paper is twofold:

first, we generalized the existing [12] for the generalized Nash equilibrium problem

to a nonconvex case, and second, we employed a new scalarization technique called

weighted sum to extend the existing result for bilevel to two players; see [9, 15, 26].

In fact, at the lower level of a bilevel optimization problem, there may be several

followers who play in a noncooperative generalized Nash game (see Section 3). In

this paper, we name such kinds of problems ”the nonconvex mathematical program

with multiobjective generalized Nash equilibrium problems”. The Nash equilibrium

is a fundamental concept in many fields. Its importance lies not only in its theoret-

ical foundations within game theory but also in its practical applications spanning

economics, political science, biology, computer science, and many other fields; see

[23, 24].

Considering that the lower-level decision maker must solve a multiobjective general-

ized Nash equilibrium problem for each fixed value of the upper-level variable, the

overall weak Pareto front can be computed using the kth-objective weighted-constraint

approach, and the original mathematical programming problem is transformed into

several standard programming problems. This topic was first examined in [15], where

the author emphasized the relationship of the surrogate problems to the original

mathematical programming problem.

In what follows, we develop two approaches, with the first being to study the math-

ematical programming problem with a multiobjective generalized Nash equilibrium

problem at the lower level. Our method consists of several steps: First, we apply the

kth-objective weighted constraint approach for tranforming the scalarization param-

eters into new upper-level variables. After that, the original version of the mathe-

matical programming form for the generalized Nash equilibrium problem is turned

into several typical programming problems, with the Nash equilibrium problem at

the lower level. The fundamental advantage of this scalarization is that the scalariza-

tion parameters are unique and strictly positive, and this scalarization is applicable

to nonconvex problems. We reformulate the optimization problem into a single-level

optimization problem that is globally (locally) equivalent to the initial problem using

the optimal value function of the obtained lower-level generalized Nash equilibrium

problems.

The second objective of the paper is to present optimality conditions in terms of

the limiting subdifferentials and the limiting normal cones using the weak basic CQ

condition suitable for mathematical programming for generalized Nash equilibrium

optimization problems. The generalized differentiation calculus of Mordukhovich is
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then used to derive completely detailed first-order necessary optimality conditions in

a smooth setting.

The remainder of the paper is organized as follows: In Section 2, we review the funda-

mental concepts and the results of variational analysis and generalized differentiation.

In Section 3, we present a concept of equilibrium for generalized Nash equilibrium

problems with many goals and provide its scalarization formulation. In Section 4,

we first introduce the mathematical programming problem of interest as well as its

associated surrogate standard optimization program. We study the equivalence in

the sense of global minimizers and local minimizers. We give optimality conditions

in terms of the limiting subdifferentials and the limiting normal cones using the weak

basic constraint qualification appropriate for mathematical optimization problems.

The smooth situation is then used to derive completely detailed first-order necessary

optimality conditions using Mordukhovich’s generalized differentiation calculus.

2. Preliminaries

In this section, we present various definitions, notations, and results which will be

used in the sequel. Let A be a subset of Rn, co A and clA signify the convex hull and

the closure of A, respectively, and ‖.‖ signifies an arbitrary norm in Rn.

Following that, we give some variational analysis material that will be useful in our

research. Allow Ω to be a locally closed subset of Rn centered on x̄ ∈ Ω.

Definition 1. [19] Let Ω ⊂ Rn be locally closed around x̄ ∈ Ω. Then the Fréchet normal
cone N̂(x̄; Ω) and the Mordukhovich normal cone (limiting normal cone) N(x̄; Ω) to Ω at x̄
are defined, respectively, by

N̂(x̄; Ω) :=

{
x∗ ∈ Rn : lim sup

x→x̄

〈x∗, x− x̄〉
‖x− x̄‖ ≤ 0

}

N(x̄; Ω) := lim sup
Ω

x→x̄

N̂(x; Ω),

where x
Ω→ x̄ stands for x→ x̄ with x ∈ Ω.

Definition 2. [18] Let φ : Rn → R ∪ {+∞} be lower semicontinuous around x̄.

(D1) : The Fréchet subdifferential of φ at x̄ is

∂̂φ(x̄) :=

{
x∗ ∈ Rn : lim inf

x→x̄

φ(x)− φ(x̄)− 〈x∗, x− x̄〉
‖x− x̄‖ ≥ 0

}
.

(D2) : The following formula represents the Mordukhovich (limited) subdifferential of φ at
x̄.

∂φ (x̄) := lim sup
x→x̄

∂̂φ (x) ,

where x
φ→ x̄ means that x→ x̄ with φ (x)→ φ (x̄).
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∂φ (x̄) is nonempty and compact for a local Lipschitz continuous function. Further-

more, its convex hull is the Clarke subdifferential, implying that the Clarke subdif-

ferential of φ at x can be defined by

∂Cφ (x) := co ∂φ (x) . (2.1)

We have the subsequent convex hull property:

co ∂(−φ) (x) := − co ∂φ (x) . (2.2)

The concept of semismoothness can be applied to sets by means of the Euclidean

distance function d. A set Ω ⊆ Rn is called semismooth at x ∈ cl Ω if for any sequence

xk −→ x with xk ∈ Ω and ‖xk −x‖−1(xk −x) −→ d it holds that 〈x∗k, d〉 −→ d for all

selections x∗k ∈ ∂CdΩ (xk).

For a set-valued mapping Φ : Rn ⇒ Rm, the sets dom Φ := {x ∈ Rn | Φ(x) 6= ∅},
and gph Φ := {(x, y) ∈ Rn × Rm | y ∈ Φ(x)}, denote the domain and graph of Φ,

respectively. The expression

lim sup
x→x̄

Φ (x) := {x∗ ∈ Rm : ∃xk → x̄, x∗k → x∗ with x∗k ∈ Φ (xk) as k →∞} .

signifies the sequential Painlevé–Kuratowski upper/outer limit of Φ. Finally, the

coderivative for the set-valued mapping Φ : Rn ⇒ Rm at (x̄, ȳ) ∈ gph Φ is the set-

valued mapping D∗Φ (x̄, ȳ) : Rm ⇒ Rn, given by

D∗Φ (x̄, ȳ) (v) := {u ∈ Rn | (u,−v) ∈ Ngph Φ (x̄, ȳ)} for v ∈ Rm.

Furthermore, we have the representation of the function h : Rn → Rm that is strictly

differentiable at x̄.

D∗h (x̄) (y∗) =
{
∇h (x̄)

>
y∗
}

for all y∗ ∈ Rm.

• The set-valued mapping Φ : Rn ⇒ Rm is said to be inner semicompact at x̄,

Φ(x̄) 6= ∅, if and only if, for every sequence xk −→ x̄ with Φ(xk) 6= ∅ there is a

sequence of yk ∈ Φ(xk) that contains a convergent subsequence as k −→ +∞.

• The set-valued mapping Φ : Rn ⇒ Rm is said to be inner semicontinuous at

(x̄, ȳ) if for any sequence xk → x̄ there exists a sequence yk ∈ Φ (xk) which

converges to ȳ as k →∞.

Remark 1. [10] The inner semicompactness of the set-valued mapping Φ : Rn ⇒ Rm
holds whenever Φ is uniformly bounded and has nonempty values around x̄, i.e., there exists
a neighborhood U of x̄ and a bounded set V ⊂ Rm such that Φ(x) ⊂ V , for all x ∈ U .
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3. The weighted-constraint scalarization to weakly general-
ized Nash equilibrium

Consider a multiobjective generalized Nash equilibrium problem (MGNEP ) com-

posed by N players such that for any υ = 1, . . . , N , and y−υ, the υth player chooses

yυ that solves{
min
yυ

fυ
(
yυ, y−υ

)
=
(
fυ1 (yυ, y−υ) , . . . , fυsυ (yυ, y−υ)

)
s.t yυ ∈ Y υ (y−υ) ,

(P υ[y−υ])

by controling his or her own strategy yυ ∈ Rmυ while taking into account the choices

made by opponents, which are represented by the vector y−υ ∈ Rm−mυ , where m =

m1 + . . .+mN represents the total number of players’ decision variables. Sometimes

we use the notation (yυ, y−υ) instead of just y to emphasize the variables of player

within the vector y. The block components are not implied to be rearranged in any

manner by this notation, and y = (yυ, y−υ) is always the case. Furthermore, each

player has an objective fυ : Rmυ → Rsυ , called utility function or payoff function,

which depends on his own vaiables yυ as well as the variables y−υ of the other players.

Moreover, each player’s strategies belong to a set Y υ (y−υ) that depends on the rival

player’s strategie. This continuous function’s components are fυ1 , . . . , f
υ
sυ : Rmυ → R.

Here after, for each υ we denote by Ψυ
weff (y−υ) the weakly efficient solution set of

problem (P υ[y−υ]).

Assuming that the functions fυk (., y−υ) have a lower bound on the constraint set

Y υ (y−υ) and that this lower bound is known, it is reasonable to assert that there is

no loss of generality in imposing the condition below.

min
k=1,··· ,sυ

{
min

yυ∈Y υ(y−υ)
fυk
(
yυ, y−υ

)}
> 0, ∀υ = 1, . . . , N.

Definition 3. [12, 25] A point ȳ =
(
ȳ1, . . . , ȳN

)
is said to be a weakly efficient generalized

Nash equilibrium of the multiobjective generalized Nash equilibrium problem (MGNEP ) if

ȳυ ∈ Ψυ
weff

(
ȳ−υ

)
∀ υ = 1, · · · , N.

The set of weakly efficient generalized Nash equilibriums will be denoted by Hweff .

That is

Hweff =
{
ȳ =

(
ȳ1, . . . , ȳN

)
ȳυ ∈ Ψυ

weff

(
ȳ−υ

)
∀ υ = 1, · · · , N

}
.

For υ = 1, · · · , N set Sυ = {1, . . . , sυ}, and let

Wυ =

{
w ∈ Rsυ : wk > 0,

sυ∑
k=1

wk = 1

}
, (3.1)



6 Nonconvex multiobjective generalized Nash equilibrium problem constraints

and

Wυ
+ =

{
w ∈ Rsυ+ : wk > 0,

sυ∑
k=1

wk = 1

}
. (3.2)

Our goal now is to transform the multiobjective generalized Nash equilibrium problem

(MGNEP ) into a single-objective generalized Nash equilibrium problem (GNEP ).

To do this, for each υ ∈ {1, . . . , N}, fix k ∈ Sυ and wυ ∈Wυ
+, and then consider the

following scalarized problem:

{
min
yυ

fυk
(
yυ, y−υ

)
s.t yυ ∈ Y υk (y−υ, wυ) ,

(P υk [y−υ, wυ])

where for any y−υ and wυ the feasible set and the solution set of the problem

(P υk [y−υ, wυ]) is given by

Y υk
(
y−υ , wυ

)
=
{
yυ ∈ Y

(
y−υ

)
: wυr f

υ
r

(
yυ , y−υ

)
≤ wυk f

υ
k

(
yυ , y−υ

)
, ∀ r ∈ Sυ\{k}

}
, (3.3)

and Ψυ
k (y−υ, wυ).

For each fixed wυ ∈Wυ
+, one can easily check that

Y υ
(
y−υ

)
=

sυ⋃
k=1

Y υk
(
y−υ, wυ

)
.

In the sequel, for w ∈ W+ = W1
+ × . . . ×WN

+ with w =
(
w1, . . . , wN

)
, we need the

following construction:

Wυ
+

(
y−υ

)
=
{
wυ ∈Wυ

+ : yυ ∈ Ψυ
k

(
y−υ, wυ

)
, for all k = 1, . . . , sυ

}
, and (3.4)

H(w) =

{
y ∈ Rm : yυ ∈

sυ⋂
k=1

Ψυ
k

(
y−υ, wυ

)
, holds for each υ = 1, · · · , N

}
.

(3.5)

where, for each υ = 1, . . . , N :

sυ⋂
k=1

Ψυ
k (y−υ, wυ0 ) denote the commun solution.

The next result gives a relationship between the set of weakly efficient generalized

Nash equilibrium Hweff and H (w). Before that, some comments are in order. For

fixed υ = 1, · · · , N , and for all wυ0 ∈Wυ
+ we can see from [6] that

sυ⋂
k=1

Ψυ
k

(
y−υ, wυ0

)
⊆ Ψυ

weff

(
y−υ

)
⊂

⋃
w∈Wυ

+

[
sυ⋂
k=1

Ψυ
k

(
y−υ, wυ

)]
. (3.6)
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We deduce from the last inclusion that if for some wυ0 ∈ Wυ
+ we have that

sυ⋂
k=1

Ψυ
k (y−υ, wυ0 ) 6= ∅, then the left side of the above inclusion furnishes a method

for computing weak efficient points. However, if

sυ⋂
k=1

Ψυ
k (y−υ, wυ0 ) = ∅, we need the

following assumptions to ensure the nonemptiness of Wυ
+ (y−υ) and consequently the

existence of a common solution of (P υk [y−υ, wυ]).

(A1): There exists an element wυ ∈ Wυ
+ such that the sets Ψυ

r (y−υ, wυ) 6= ∅, for all

r ∈ Sυ, and there exists k ∈ Sυ and yυk ∈ Ψυ
k (y−υ, wυ) such that ∀r 6= k, there

exists an element yυr ∈ Ψυ
r (y−υ, wυ) satisfying the inequality

fυr
(
yυk , y

−υ
k

)
≤ fυr

(
yυr , y

−υ
r

)
.

(A2): There exists wυ an element of Wυ
+ such that for any k ∈ Sυ, we can find(

yυ1 , . . . , y
υ
sυ

)
an element of the cartesian product of Ψυ

1 (y−υ, wυ) × . . . ×
Ψυ
sυ (y−υ, wυ) satisfying the following inequality

∀r, k ∈ Sυ, fυr
(
ȳυk , ȳ

−υ
k

)
≤ fυr

(
yυr , y

−υ
r

)
.

Consequently, using [6, Proposition 3.3], under the hypothesis (A1), we get that

yυk ∈ Ψυ
weff (y−υk ). Under the hypothesis (A2), using [6, Corollary 3.1] instead of [6,

Proposition 3.3], we also find that yυk ∈ Ψυ
weff (y−υk ). Consequently, by [6, Proposition

3.2],

∅ 6= Wυ
+ (yυk ) = {wυ0} and yυk ∈

sυ⋂
r=1

Ψυ
r (w̄, y−υk ).

Remark 2. As a result, if we suppose that for all υ = 1, . . . , N , (A1) and (A2) hold true,
then the set H (w) is nonempty.

Now, we are really going to state the link between Hweff and H (w).

Theorem 1. Let w ∈W+. Suppose that Wυ
+

(
y−υ

)
6= ∅ for any υ = 1, . . . , N . Then, we

have

Hweff =
⋃

w∈W+

H (w).

Proof. Let ȳ ∈ Hweff , then ȳ is a weakly efficient generalized Nash equilibrium.

Then, from the definition 3, we have ȳυ ∈ Ψυ
weff (ȳ−υ) for all υ = 1, . . . , N . Moreover,

from the right inclusion of (3.6), for each υ = 1, . . . , N it follows that there exists

wυ ∈Wυ
+ such that ȳυ ∈

sυ⋂
k=1

Ψυ
k (ȳ−υ, wυ), which implies that ȳυ ∈ H (w).
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Conversely, fix an arbitrary w ∈ W+ satisfying wυ ∈ Wυ
+ for all υ = 1, . . . , N .

Let ȳ ∈ H (w). Then, from the definition, we get ȳυ ∈
sυ⋂
k=1

Ψυ
k (ȳ−υ, wυ) for all

υ = 1, . . . , N . Using the left inclusion of (3.6), it follows that ȳυ ∈ Ψυ
weff (ȳ−υ) for

all υ = 1, . . . , N . This implies that ȳ ∈ Hweff .

4. Necessary optimality conditions applying weighted-
constraint scalarization

This study deals with the mathematical program with a multiobjective generalized

Nash equilibrium problem in the constraint:

min
x,y

F (x, y) : x ∈ X, y ∈ Hweff (x) . (P)

The leader’s decision variables are represented by x ∈ X = {x ∈ Rn : Gi (x) ≤ 0, i ∈
1, . . . , p = I}, the follower’s decision variables are represented by y, and the function

F : Rn×Rm → R denotes the leader’s objective function, while Hweff (x) is the set of

weakly efficient generalized Nash equilibrium of the multiobjective generalized Nash

equilibrium problem parameterized of x composed of N players, where each player

υ = 1, . . . , N is assumed to minimize{
min
yυ

fυ
(
x, yυ, y−υ

)
=
(
fυ1 (x, yυ, y−υ) , . . . , fυsυ (x, yυ, y−υ)

)
s.t yυ ∈ Y υ (x, y−υ) ,

(P υ[x, y−υ])

where m = m1 + . . . + mN . We use the notation (yυ, y−υ) instead of simply y. We

assume that each follower player has a vector-valued objective function fυ : Rn ×
Rm → Rsυ , and for any υ = 1, . . . , N and y−υ we denote by Ψυ

weff (x, y−υ) the

weakly efficient solution of problem (P υ[x, y−υ]), with

Y υ
(
x, y−υ

)
=
{
yυ ∈ Rmυ : gυj

(
x, yυ, y−υ

)
≤ 0, j ∈ Jυ = {1, . . . , qυ}

}
.

where, the mapping gυ (x, ., y−υ) : Rn → Rqυ , and q = q1 + . . .+ qN .

Assuming that the functions fυk have a lower bound on the constraint set Y υ (x, y−υ)

and that those lower bounds are known, it is reasonable to assert that there is no loss

of generality in imposing the condition below.

min
k=1,··· ,sυ

{
min

yυ∈Y υ(x,y−υ)
fυk
(
x, yυ, y−υ

)}
> 0, ∀υ = 1, . . . , N, ∀x ∈ X.

The feasible region of problem (P) is represented by

Ω = {(x, y) ∈ Rn × Rm : x ∈ X, y ∈ Hwef (x)} .
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4.1. Single-level reformulation

One option is to deal with hierarchical problems by transforming the optimization

problem (P) into a single-level optimization problem. To accomplish this, we apply

the weighted-sum technique introduced in section 3 for reformulating each lower-level

problem (P υ[x, y−υ]) of player υ as sυ standard one-level optimization problem. We

begin by applying the following scalarization technique to the problem (P υ[x, y−υ])

for each υ ∈ 1, . . . , N and wυ ∈Wυ, Wυ is the sets stated in (3.1)

{
min
yυ

fυk
(
x, yυ, y−υ

)
s.t yυ ∈ Y υk (x, y−υ, wυ) ,

(P υk [x, y−υ, wυ])

where for any y−υ and wυ ∈ Wυ, the feasible set and solution set of problem

(P υk [x, y−υ, wυ]) are given by

Y υk
(
x, y−υ , wυ

)
=
{
yυ ∈ Y υ

(
x, y−υ

)
: wυr f

υ
r

(
x, yυ , y−υ

)
≤ wυk f

υ
k

(
x, yυ , y−υ

)
, ∀ r ∈ Sυ\{k}

}
,

(4.1)

Ψυk
(
x, y−υ , wυ

)
:=
{
yυ ∈ Y υk

(
x, y−υ , wυ

)
: fυk

(
x, yυ , y−υ

)
− ϕυk

(
x, y−υ , wυ

)
≤ 0, k ∈ Sυ

}
,

with

ϕυk
(
x, y−υ , wυ

)
= min

yυ

{
fυk
(
x, yυ , y−υ

)
: yυ ∈ Y υk

(
x, y−υ , wυ

)
, k ∈ Sυ

}
, and Sυ = {1, . . . , N}.

In the sets stated above (3.4) and (3.5), we give the following sets parametrized by x. For υ =

1, · · · , N , let w =
(
w1, . . . , wN

)
∈W+ = W1

+ × . . .×WN
+ , and set

H (x,w) =

{
y : yυ ∈

sυ⋂
k=1

Ψυk
(
x, y−υ , wυ

)
, for each υ = 1, . . . , N

}
,

Wυ
+ (x, yυ) =

{
wυ ∈Wυ

+ : yυ ∈ Ψυk
(
x, y−υ , wυ

)
), for all k = 1, . . . , sυ

}
and

W+ (x, y) =

N∏
υ=1

Wυ
+ (x, yυ) .

Remark 3. Let k ∈ Sυ and w ∈Wυ. In case wυk = 0, we get Y υk (x, y−υ, wυ) = ∅.

Let x ∈ X, yυ ∈ Y
(
x, y−υ

)
and wυ0 ∈Wυ

+. Similarly to section 3, we have

sυ⋂
k=1

Ψυk
(
x, y−υ , wυ0

)
⊆ Ψυweff

(
x, y−υ

)
⊂

⋃
w∈Wυ+

[
sυ⋂
k=1

Ψυk
(
x, y−υ , wυ

)]
. (4.2)

Under the assumptions
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(B1) : There exists wυ ∈ Wυ
+ such that the sets Ψυr

(
x, y−υ , wυ

)
6= ∅, for all r ∈ Sυ and there

exists k ∈ Sυ and yυk ∈ Ψυk
(
x, y−υ , wυ

)
such that ∀r 6= k, there exists yυr ∈ Ψυr

(
x, y−υ , wυ

)
satisfying the inequality

fυr

(
x̄, ȳυk , ȳ

−υ
k

)
≤ fυr

(
x̄, ȳυr , ȳ

−υ
r

)
.

(B2): There exists wυ ∈ Wυ
+ such that

(
yυ1 , . . . , y

υ
sυ

)
∈ Ψυ1

(
x, y−υ , wυ

)
× . . . × Ψυsυ

(
x, y−υ , wυ

)
satisfying the following inequality

∀r, k ∈ Sυ , fυr

(
x̄, ȳυk , ȳ

−υ
k

)
≤ fυr

(
x̄, ȳυr , ȳ

−υ
r

)
,

we have Wυ
+(x, y) 6= ∅ and consequently the existence of a common solution for (Pυk [x, y−υ , wυ ]) is

guaranteed.

Remark 4. Considering that, (B1) and (B2) are true for all υ = 1, . . . , N , the set H (x,w)
is nonempty.

Remark 5. By [6, Proposition 3.3], under the hypothesis (B1), we get that yυk ∈
Ψυ

weff (x, y−υk ). Under the hypothesis (B2), using [6, Corollary 3.1] instead of [6, Propo-
sition 3.3], we find also that yυk ∈ Ψυ

weff (x, y−υk ). Consequently, by [6, Proposition 3.2],

∅ 6= Wυ
+ (x, yυk ) = {wυ0 } and yυk ∈

sυ⋂
r=1

Ψr(x, y
−υ
k , wυ0 ).

Now, we are really going to state the link between Hweff (x) and H (x,w).

Theorem 2. Let x ∈ X and w ∈W+. Suppose that Wυ
+ (x, yυ) 6= ∅ for any υ = 1, . . . , N .

Then, we have

Hweff (x) =
⋃

w∈W+

H (x,w).

Proof. It follows the path of that of Theorem 1.

Hence, the optimization problem (P) with a multiobjective Nash equilibruim problem at the lower
level can be replaced by the following optimization problem where each follower has a single objective


min
x,y,w

F (x, y)

s.t x ∈ X, w ∈W,

y ∈ H (x,w) .

(4.3)

The following result shows the equivalence between problem (P) and problem (4.3).

Proposition 1. Consider problems (P) and (4.3).

(1) Let (x̄, ȳ) be a local (resp. global) optimal solution of problem (P). Then, for any
w̄ ∈ W+ (x̄, ȳ), the point (x̄, ȳ, w̄) is a local (resp. global) optimal solution of problem
(4.3).
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(2) Let w̄ ∈W+ (x̄, ȳ). Assume that (x̄, ȳ, w̄) is a global optimal solution of problem (4.3).
Then, the point (x̄, ȳ) is a global optimal solution of problem (P).

(3) Assume that (x̄, ȳ, w̄) is a local optimal solution of (4.3) for all w̄ ∈ W+ (x̄, ȳ) and
suppose that the set-valued mappings H, is closed at all points from {x̄}×W+. Then,
(x̄, ȳ) is a local optimal solution of problem (P).

Proof. (1) Suppose that there exists ŵ ∈ W+ (x̄, ȳ) such that (x̄, ȳ, ŵ) is not a local solution
to problem (4.3). Then, there exists a sequence (xε, yε, wε) with xε −→ x̄, yε −→ ȳ, and

ŵε −→ ŵ such that

F (xε, yε) < F (x̄, ȳ) , xε ∈ X, ŵε ∈W = W1 × . . .×WN , yε ∈ H (xε, ŵε) , for all ε ∈ N.
(4.4)

We claim that ŵε ∈ W+. Indeed, by the contrary, suppose that there exists υ = 1, . . . , N

such that ŵυε /∈Wυ
+. ie there exists kυ ∈ Sυ such that ŵkυε = 0. Letting ε→ +∞, we obtain

ŵkυ = 0 a contradiction with ŵυ ∈Wυ
+(x̄, ȳ).

Now, by (4.4), we get ŵε ∈ W+, yε ∈ H (xε, ŵε) ,∀ε ∈ N. Then, ŵε ∈ W+(xε, yε), ∀ε ∈ N,
which ensure that W+ (xε, yε) 6= ∅. From Theorem 2 we get yε ∈ Hweff (xε) for all ε ∈ N . As

a conclusion, there exists a sequence (xε, yε) converging to (x̄, ȳ) with xε ∈ X, yε ∈ Hweff (xε)

such that

F (xε, yε) < F (x̄, ȳ) , for all ε ∈ N,

which is contrary to the fact that (x̄, ȳ) is a local optimal solution of problem (P).

(2) Let w̄ ∈ W+, and let (x̄, ȳ, w̄) be a global optimal solution of problem (4.3). Assume that

(x̄, ȳ) is not a global optimal solution of problem (P). Then, we can find (x, y) with x ∈ X,
and y ∈ Hweff (x) such that

F (x, y) < F (x̄, ȳ) .

From Theorem 2, there exists w ∈ W+ such that y ∈ H (x,w). Consequently (x, y, w) is a

feasible point of problem (4.3) such that

F (x, y) < F (x̄, ȳ) ,

which contrary to the fact that (x̄, ȳ, w̄) is a global optimal solution of problem (4.3).

(3) Let w̄ ∈W+ (x̄, ȳ) such that (x̄, ȳ, w̄) is a local optimal solution of (4.3). Suppose that (x̄, ȳ)
is not a local optimal solution of problem (P). Then, there exists a sequence (xε, yε) with
xε −→ x̄, and yε −→ ȳ, with xε ∈ X, and yε ∈ Hweff (xε) such that

F (xε, yε) < F (x̄, ȳ) , for all ε ∈ N.

For any (x, y), we have W+ (x, y) ⊂ B (0, 1). Hence, W+ is uniformly bounded, then W+ inner
semicompact at (x̄, ȳ) (see Remark 1).

Since yε ∈ Hweff (xε), using Theorem 2, there exists wε ∈ W+ such that yε ∈ H (xε, wε).

Consequently, wε ∈W+ (xε, yε) , and W+ (xε, yε) 6= ∅. By the inner semicompactness of W+

at (x̄, ȳ), we can find a sequence wε ∈W+ (xε, yε) which has an accumulation point w0 ∈W.
Then, wε ∈W+, yε ∈ H (xε, wε), for all ε ∈ N.

Since the mappings H is closed at (x̄, w0), we have ȳ ∈ H (x̄, w0).

We claim that w0 ∈W+. Indeed, suppose that there exists υ = 1, . . . , N such that wυ0 /∈Wυ
+.

By the opposite, if there are kυ ∈ Sυ such that wkυ0 = 0, we getH (x̄, w0) = Y υk
(
x̄, ȳ−υ , w0

)
=

∅. A contradiction to ȳ ∈ H (x̄, w0).
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Then, (x̄, ȳ, w0) is a feasible point of problem (4.3). Therefore, there exists (xε, yε, wε) con-

verging to (x̄, ȳ, w0) such that

F (xε, yε) < F (x̄, ȳ) , xε ∈ X, wε ∈W+, yε ∈ H (xε, wε) ,

which contradicts the fact that (x̄, ȳ, w̄) is a local optimal solution of problem (4.3).

For υ = 1, . . . , N , k ∈ Sυ , setting

ψυk (x, y, wυ) = fυk
(
x, yυ , y−υ

)
− ϕυk

(
x, y−υ , wυ

)
, and

hυk,r (x, y, wυ) = wυr f
υ
r (x, y)− wυkf

υ
k (x, y) , r ∈ Sυ \ {k}.

and using the optimal value reformulation, (4.3) is equivalent to the one-level optimization problem.



min
x,y,w

F (x, y)

x ∈ X, wυ ∈Wυ , υ = 1, . . . , N,
gυ (x, y) ≤ 0, ∀υ = 1, . . . , N,

hυk,r (x, y, wυ) ≤ 0, ∀υ = 1, . . . , N, ∀r ∈ Sυ \ {k}, ∀k ∈ Sυ ,
fυk
(
x, yυ , y−υ

)
− ϕυk

(
x, y−υ , wυ

)
≤ 0, ∀υ = 1, . . . , N, ∀k ∈ Sυ .

(4.5)

4.2. Necessary optimality conditions

In the second part of this section, we employ the results obtained above to derive new forms of

necessary optimality conditions for the original mathematical program problem (P ). In order to
make the following as short as possible, we introduce the following notations: for any υ ∈ {1, · · · , N},
k ∈ T = {1, . . . , t} with t =

N
max
υ=1

sυ and y−υ , we define

Θk =
{

(x, y, w) : x ∈ X, w ∈W, y =
(
y1, . . . , yN

)
∈ Y 1

k

(
x, y−1, w1

)
×

. . .× Y Nk
(
x, y−N , wN

)}
.

Ωk =
{

(x, y, w) ∈ Θk : ψk (x, y, w) =
(
ψ1
k (x, y, w) ,

. . . , ψNk (x, y, w)
)
≤ 0
}
.

Ξ =
{

(x, y, w) ∈ Rn × Rm × Rs1+...+sN : x ∈ X, w ∈W, y ∈ Y 1
(
x, y−1

)
× . . .× Y N

(
x, y−N

)}
,

Πk =
{

(x, y, w) ∈ Rn × Rm × Rs1+...+sN : Υk (x, y, w) ∈ Rs1+...+sN
−

}
,

where

Υυk (x, y, wυ) =
(
hυk,1 (x, y, wυ) , · · · , hυk,(k−1) (x, y, wυ) , ψυk (x, y, wυ) ,

hυk,(k+1) (x, y, wυ) , · · · , hυk,sυ (x, y, wυ)
)
,

Υk (x, y, w) =
(

Υ1
k

(
x, y, w1

)
, . . . ,ΥNk

(
x, y, wN

))
.
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Remark 6. 1) Under the above notations, we have

Ω =

t⋂
k=1

Ωk and Ωk = Ξ ∩Πk.

2) Note that for υ = 1, . . . , N , when k /∈ Sυ we have Y υk
(
x, y−υ, wυ

)
= Rmυ and fυ = 0.

In this case, the sets Ωk, Θk are well defined.

To provide necessary optimalty condition for (P), we will make some hypotheses throughout the
paper, as follows:

(R1): The set Ξ is regular and semismooth at (x̄, ȳ, w̄) such that

D∗Υk (x̄, ȳ, w̄) (σ) ∩ (−bd NΞ (x̄, ȳ, w̄) = ∅, for all σ ∈ N
(
Υk (x̄, ȳ, w̄) ,Rs−

)
\ {0}.

(R2): Suppose that

[
x∗1 + · · ·+ x∗t = 0, x∗k ∈ NΩk (x̄, ȳ, w̄)

]
=⇒ x∗k = 0, k ∈ T .

(R3): The upper-level regularity of (P) at x̄ ∈ X is given by

p∑
i=1

αi∇Gi(x̄) = 0

αi ≥ 0, αiGi(x̄) = 0, i ∈ I,

 =⇒ [αi = 0, i ∈ I] .

(R4): For υ = 1, . . . , N , the lower-level regularity of (Pυ [x, y−υ ]) at (x̄, ȳυ) ∈ X × Y υ
(
x̄, ȳ−υ

)
qυ∑
j=1

βυj ∇yυgυj (x̄, ȳ) = 0,

βυj ≥ 0, βυj g
υ
j (x̄, ȳ)) = 0, j ∈ Jυ ,

 =⇒
[
βυj = 0, j ∈ Jυ .

]

(R5): For υ = 1, . . . , N , the lower-level regularity of (Pυk [x, y−υ , wυ ]) ,k ∈ Sυ , at (x̄, ȳυ , w̄υ) ∈
X × Y υk

(
x̄, ȳ−υ , w̄υ

)
×Wυ .

- In case sυ ≥ 2, υ = 1, . . . , N it is given by

qυ∑
j=1

βυj ∇yυgυj (x̄, ȳ) +
∑

r∈S\{k}
γkr∇yυhυk,r(x̄, ȳ, w̄

υ) = 0

βυj ≥ 0, βυj g
υ
j (x̄, ȳ) = 0, j ∈ Jυ ,

γkr ≥ 0, γkr h
υ
k,r (x̄, ȳ, w̄υ) = 0, r ∈ Sυ\{k}


=⇒

[
γkr = 0, βυj = 0, r ∈ Sυ\{k}, j ∈ Jυ

]
In case sυ = 1, υ = 1, . . . , N it is given by

qυ∑
j=1

βυj ∇yυgυj (x̄, ȳ) = 0,

βυj ≥ 0, βυj g
υ
j (x̄, ȳ)) = 0, j ∈ Jυ ,

 =⇒
[
βυj = 0, j ∈ Jυ .

]
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Theorem 3. Let (x̄, ȳ, w̄) be a local optimal solution of problem (4.5). For υ = 1, . . . , N ,
assume that

(T1) The functions fυ and gυ are strictly differentiable at (x̄, yυ) for all yυ ∈
s⋂

k=1

Ψυ
k

(
x̄, ȳ−υ, w̄υ

)
.

(T2) The functions F and G are strictly differentiable at (x̄, ȳ) and x̄, respectively.

(T3) The solution set mappings Ψυ
k , k ∈ Sυ are inner semicompact at

(
x̄, ȳ−υ, w̄υ

)
and for

all yυ ∈
s⋂

k=1

Ψυ
k

(
x̄, ȳ−υ, w̄υ

)
the point (x̄, yυ, w̄υ) is lower level regular.

(T4) The hypotheses (R1), (R2), (R3) and (R4) are satisfied at (x̄, ȳ, w̄), (x̄, ȳ, w̄), x̄ and
(x̄, ȳυ) respectively.

Then there are scalars συk ∈ Rsυ+ , αi ∈ Rp+, βυk,l, β
υ
j ∈ Rqυ+ , πυk,l ≥ 0, γυk,l ∈ Rsυ+ and

yυk,l ∈ Ψυ
k

(
x̄, y−υl,k , w̄

υ
)

, with k ∈ Sυ and l = 1, . . . , n + 1 such that

n+1∑
l=1

πυl,k = 1 is satisfied

with

0 = ∇xF (x̄, ȳ) +
N∑
υ=1

 sυ∑
k=1

 ∑
r∈Sυ\{k}

συk,r
(
w̄υr∇xfυr (x̄, ȳ)− w̄υk∇xf

υ
k (x̄, ȳ)

)
+

N∑
υ=1

 sυ∑
k=1

συk

∇xfυk (x̄, ȳ)−
n+1∑
l=1

πυk,l

∇xfυk (x̄, yυk,l, ȳ−υ)+

qυ∑
j=1

βυ,lj,k∇xg
υ
j

(
x̄, yυk,l, ȳ

−υ
)

+
∑

r∈Sυ\{k}
γυ,lk,r

(
w̄υr∇xfυr

(
x̄, yυk,l, ȳ

−υ
)
− w̄υk∇xf

υ
k

(
x̄, yυk,l, ȳ

−υ
)))+

qυ∑
j=1

βυj ∇xgυj (x̄, ȳ)


+

p∑
i=1

αi∇Gi(x̄),

0 = ∇yF (x̄, ȳ) +

N∑
υ=1

 sυ∑
k=1

 ∑
r∈Sυ\{k}

συk,r
(
w̄υr∇yυfυr (x̄, ȳ)− w̄υk∇yυf

υ
k (x̄, ȳ)

)
+

sυ∑
k=1

συk ∇yυf
υ
k (x̄, ȳ) +

qυ∑
j=1

βυj ∇yυgυj (x̄, ȳ)

 ,

0 = ∇yυfυk
(
x̄, yυk,l, ȳ

−υ)+

qυ∑
j=1

βυ,lj,k∇yυg
υ
j

(
x̄, yυk,l, ȳ

−υ)+
∑

r∈Sυ\{k}

γυ,lk,r
(
w̄υr∇yυfυr

(
x̄, yυk,l, ȳ

−υ)
− w̄υk∇yυfυk

(
x̄, yυk,l, ȳ

−υ)) , υ = 1, . . . , N, ∀k ∈ Sυ, ∀l = 1, . . . , n+ s+ 1.

0 = γυ,lk,r
(
w̄υr f

υ
r

(
x̄, yυk,l, ȳ

−υ)− w̄υkfυk (x̄, yυk,l, ȳ−υ)) ,
0 = βυ,lj,kg

υ
j

(
x̄, yυk,l, ȳ

−υ) , υ = 1, . . . , N, ∀ k ∈ Sυ, ∀ j ∈ Jυ,
∀ r ∈ Sυ\{k}, ∀ l = 1, . . . , n+ s+ 1.

0 = βυj g
υ
j (x̄, ȳ) , 0 = αiGi (x̄) , υ = 1, . . . , N, ∀ j ∈ Jυ, ∀ i ∈ I.

0 = γυk,r
(
w̄υr f

υ
r

(
x̄, yυk , ȳ

−υ)− w̄υkfυk (x̄, yυk , ȳ−υ)) , υ = 1, . . . , N, ∀ r ∈ Sυ\{k}, ∀ k ∈ Sυ.

0 = συk,r (w̄υr f
υ
r (x̄, ȳ)− w̄υkfυk (x̄, ȳ)) , υ = 1, . . . , N, ∀ r ∈ Sυ\{k}, ∀ k ∈ Sυ.



E.Y. Youness & L. Lahoussine 15

Proof. Let (x̄, ȳ, w̄) be a local optimal solution of problem (4.5). Hence, from [19, Proposition

5.1], and using the strict differentiability assumption of the function F at (x̄, ȳ), we have

0 ∈ ∇F (x̄, ȳ) +NΩ (x̄, ȳ, w̄) .

According to the regularity hypothesis (R2), using [18, Corollary 3.37], we get

0 ∈ ∇F (x̄, ȳ) +
t∑

k=1

NΩk (x̄, ȳ, w̄) .

Using the inner semicompactness of Ψυk , υ = 1, . . . , N , k ∈ Sυ at (x̄, ȳ−υ , w̄υ), and the lower level

regularity (R5) at (x̄, yυ , w̄) for all yυ ∈ Ψυk
(
x̄, ȳ−υ , w̄υ

)
, υ = 1, . . . , N , we deduce from [20,

Theorem 5.2(ii)], that for υ = 1, . . . , N , ϕυk and Υk are Lipschitz continuity around (x̄, ȳ−υ , w̄υ) and

(x̄, ȳ, w̄) respectively. Hence, applying [10, Lemma 3.3] there exist σk > 0 with σk =
(
σ1
k, . . . , σ

N
k

)
,

k ∈ T where
(
σ1
k, . . . , σ

N
k

)
=
((
σ1
k,1, . . . , σ

1
k,s1

)
, . . . ,

(
σNk,1, . . . , σ

N
k,sN

))
such that

0 ∈ ∇F (x̄, ȳ) +

t∑
k=1

∂〈σk,Υk〉 (x̄, ȳ, w̄) +NΞ (x̄, ȳ, w̄) ,

while taking into account the regularity and semi-smoothness property of Ξ, the satisfaction of (R1)

at (x̄, ȳ, w̄) and the fact that Ωk = Ξ ∩Πk,(see Remarks 6).

Let us first calculate A =

s∑
k=1

∂〈σk,Υk〉 (x̄, ȳ, w̄). From [13, Theorem 4.1] one has

∂〈σk,Υk〉 (x̄, ȳ, w̄) =

N∑
υ=1

∑
r∈Sυ\{k}

συk,r∇x,yυ,wυh
υ
k,r (x̄, ȳ, w̄υ) + συk∂x,yυ,wυψ

υ
k,k (x̄, ȳ, w̄υ) .

By summing over k, we obtain

A =

t∑
k=1

[ N∑
υ=1

∑
r∈Sυ\{k}

συk,r∇x,yυ,wυh
υ
k,r (x̄, ȳ, w̄υ) + συk∂x,yυ,wυψ

υ
k,k (x̄, ȳ, w̄υ)

]
.

Since t =
N

max
υ=1

sυ , reordering the summation, we get

A =

N∑
υ=1

 sυ∑
k=1

 ∑
r∈Sυ\{k}

συk,r∇x,yυ,wυh
υ
k,r (x̄, ȳ, w̄υ)

+ συk∂x,yυ,wυψ
υ
k (x̄, ȳ, w̄υ)

 .

Consequently

0 ∈ ∇F (x̄, ȳ) +

N∑
υ=1

 sυ∑
k=1

 ∑
r∈Sυ\{k}

συk,r∇x,yυ,wυh
υ
k,r (x̄, ȳ, w̄υ)


+συk∂x,yυ,wυψ

υ
k (x̄, ȳ, w̄υ)

))
+NΞ (x̄, ȳ, w̄) ,

(4.6)
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and

συk ≥ 0, συr,k ≥ 0 hυk,r (x̄, ȳ, w̄υ) = 0, υ = 1, . . . , N, ∀ r ∈ Sυ\{k}.

For any υ = 1, . . . , N , k ∈ Sυ and r ∈ Sυ\{k} we have

∇hυk,r (x̄, ȳ, w̄υ) =


w̄υr∇xfυr (x̄, ȳ)− w̄υk∇xf

υ
k (x̄, ȳ)

w̄υr∇yυfυr (x̄, ȳ)− w̄υk∇yυf
υ
k (x̄, ȳ)

∇wυhυk,r (x̄, ȳ, w̄υ)

 . (4.7)

Now, let Φ(x, y, w) = [Gi(x), i ∈ I, gυj (x, y), υ = 1, . . . , N, j ∈ Jυ , −w]>, and φ(x, y, w) = w>eRs −
1. Starting with NΞ(x̄, ȳ, w̄), let us note that Ξ can be rewritten as Ξ = {(x, y, w) : Φ(x, y, w) ≤
0, φ(x, y, w) = 0}. Now, the fulfillment of both the upper-level (R3) and lower-level (R4) regularity

conditions implies the satisfaction of the following implication:

〈u,∇Φ(x̄, ȳ, w̄)〉+ 〈v,∇φ(x̄, ȳ, w̄)〉 = 0

u ≥ 0, 〈u,Φ(x̄, ȳ, w̄)〉 = 0

}
=⇒ [u = 0, v = 0].

Hence, from [22, Theorem 6.14], and for υ = 1, . . . , N , we obtain

NΞ(x̄, ȳ, w̄) ⊆





p∑
i=1

αi∇Gi(x̄) +

N∑
υ=1

qυ∑
j=1

βυj ∇xgυj (x̄, ȳ)

N∑
υ=1

qυ∑
j=1

βυj ∇yυgυj (x̄, ȳ)

−ν + ιe


:

µr ≥ 0, µrw̄r = 0, r ∈ Sυ
αi ≥ 0, αiGi(x̄) = 0, i ∈ I,

υ = 1, . . . , N, βυj ≥ 0, βυj g
υ
j (x̄, ȳ) = 0, j ∈ Jυ .


(4.8)

On the other hand, for υ = 1, . . . , N , we have the following convex hull property:

∂
(
−ϕυk

(
x̄, ȳ−υ , w̄υ

))
⊆ co

(
−∂ϕυk

(
x̄, ȳ−υ , w̄υ

))
⊆ −co ∂ϕυk

(
x̄, ȳ−υ , w̄υ

)
.

Then

∂ ψυk (x̄, ȳ, w̄υ) ⊆


∇xfυk (x̄, ȳ)

∇yυfυk (x̄, ȳ)

0

− co ∂x,wυϕυk (x̄, ȳ−υ , w̄υ)× {0Rmυ }.
According to [21, Theorem 7], because the solution set-valued mappings Ψυk , k ∈ S

υ , υ = 1, . . . , N ,

are inner semicompact at
(
x̄, ȳ−υ , w̄υ

)
and the point

(
x̄, yυk , w̄

υ
)

is lower-level regular for all yυk ∈
Ψυk
(
x̄, ȳ−υ , w̄υ

)
, k ∈ Sυ , we get

∂ϕυk
(
x̄, ȳ−υ , w̄υ

)
⊂

⋃
yυ
k
∈Ψυ

k(x̄,ȳ−υ,w̄υ)

⋃
(βυ
k
,γυ
k

)∈Λυ
k(x̄,yυk ,ȳ

−υ,w̄υ)

(4.9)




∇xfυk

(
x̄, yυk , ȳ

−υ)+

qυ∑
j=1

βυj,k∇xg
υ
j (x̄, yυk , ȳ

−υ)∑
r∈Sυ\{k}

γυk,r∇wυh
υ
k,r

(
x̄, yυk , ȳ

−υ , w̄υ
)

+


∑

r∈Sυ\{k}
γυk,r

(
w̄υr∇xfυr

(
x̄, yυk , ȳ

−υ)− w̄υk∇xfυk (x̄, yυk , ȳ−υ))
0




(4.10)
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where Λυk

(
x̄, yυk , y

−υ
k , w̄υ

)
is the collection of lower-level Lagrange multipliers defined by

Λυk
(
x̄, yυk , ȳ

−υ , w̄υ
)

=



(
βυk , γ

υ
k

)
∈ Rsυ+qυ :

βυj,k ≥ 0, βυj,k∇yυg
υ
j (x̄, yυk , ȳ

−υ) = 0, υ = 1, . . . , N, j ∈ Jυ ,
γυk,r ≥ 0, γυk,r

(
w̄υr∇yυfυr

(
x̄, yυk , ȳ

−υ)− w̄υk∇yυfυk (x̄, yυk , ȳ−υ)) = 0,

υ = 1, . . . , N, r ∈ Sυ\{k},

∇yυfυk
(
x, yυk , ȳ

−υ)+

qυ∑
j=1

βυ,kj ∇yυg
υ
j (x̄, yυk , ȳ

−υ)

+
∑

r∈Sυ\{k}
γυk,r

(
w̄υr∇yυfυr

(
x̄, yυk , ȳ

−υ)− w̄υk∇yυfυk (x̄, yυk , ȳ−υ)) = 0


(4.11)

For any pair υ = 1, . . . , N , k ∈ Sυ and
(
aυk , b

υ
k

)
∈ co ∂ϕυk

(
x̄, ȳ−υ , w̄υ

)
. Now, Carathéodory’s theorem

gives us from (4.9), and (4.11) πυk,l, γ
υ,l
r,k, r ∈ Sυ , βυ,lj , j ∈ Jυ , with l = 1, · · ·n+ 1, such that

n+1∑
l=1

πυk,l = 1 (4.12)

bυk =

n+1∑
l=1

πυk,l
∑

r∈Sυ\{k}
γυ,lk,r ∇wh

υ
k,r

(
x̄, yυk,l, ȳ

−υ , w̄υ
)
. (4.13)

aυk =

n+1∑
l=1

πυk,l

∇xfυk (x̄, yυk,l, ȳ
−υ) +

qυ∑
j=1

βυ,lj,k∇xg
υ
j

(
x̄, yυk,l, ȳ

−υ
)

+
∑

r∈Sυ\{k}
γυ,lk,r

(
w̄υr∇xfυr

(
x̄, yυk,l, y

−υ
k,l

)
− w̄υk∇xf

υ
k

(
x̄, yυk,l, ȳ

−υ
)) .

0 = ∇yυfυk
(
x̄, yυk,l, ȳ

−υ
)

+

qυ∑
j=1

βυ,lj,k∇yυg
υ
j

(
x̄, yυk,l, ȳ

−υ
)

+
∑

r∈Sυ\{k}
γυ,lk,r

(
w̄υr∇yυfυr

(
x̄, yυk,l, ȳ

−υ
)
− w̄υk∇yυf

υ
k

(
x̄, yυk,l, ȳ

−υ
))

0 = βυ,lj,k∇yυg
υ
j

(
x̄, yυk,l, ȳ

−υ
)
, βυ,lj,k > 0,

(4.14)

0 = γυ,lk,r

(
w̄υr∇yυfυr

(
x̄, yυk,l, ȳ

−υ
)
− w̄υk∇yυf

υ
k

(
x̄, yυk,l, ȳ

−υ
))

, γυ,lk,r > 0. (4.15)

Combining (4.6),(4.7)-(4.8)-(4.9)-(4.13)-(4.15), we obtain the result.

The upcoming example applies the preceding results to mathematical programs with multiobjective

Nash equilibrium lower-level problems.

Example 1. Consider the mathematical program with multiobjective Nash equilibrium
problem

min
x,y

F (x, y) = x2 +
(
y1)2 : x ∈ X, y ∈ Hweff (x) , (P)

with y =
(
y1, y2

)
.

The leader’s decision variables are represented by x ∈ X = {x ∈ R : G1 (x) = −x ≤
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0} = R+, and Hweff (x) is the set of weakly efficient generalized Nash equilibrium of the
multiobjective generalized Nash equilibrium problem parameterized by x composed by two
players represented below: {

min
yυ

fυ
(
x, yυ, y−υ

)
s.t yυ ∈ Y υ

(
x, y−υ

)
.

(P υ[x, y−υ])

For υ = 1, we have

{
min
y1

f1
(
x, y1; y2

)
=
(
−y1 − y2, y1 − y2

)
g1
(
x, y1, y2

)
=
(
y1 − 2;−y1;−y2 + 3

)
≤ 0,

(P 1[x, y2, w1])

and for υ = 2 we have

{
min
y2

f2
(
x, y2, y1

)
=
(
−2y1 − y2;−2y1 + y2

)
,

g2
(
x, y1, y2

)
=
(
y2 − 3;−y2;−y1 + 2

)
≤ 0.

(P 2[x, y1, w2])

Applying the weighted-sum technique, we get


min
y1

f1
1

(
x, y1, y2

)
= −y1 − y2,

y1 ∈ Y 1
1

(
x, y2, w1

1, 1− w1
1

)
,

y2 ∈ [3,+∞[.

and


min
y1

f1
2

(
x, y1; y2

)
= y1 − y2,

y1 ∈ Y 1
2

(
x, y2, w1

1, 1− w1
1

)
,

y2 ∈ [3,+∞[.


min
y2

f2
1

(
x, y2, y1

)
= −2y1 − y2,

y2 ∈ Y 2
1

(
x, y1, w2

1, 1− w2
1

)
,

y1 ∈ [2,+∞[.

and


min
y2

f2
2

(
x, y2, y1

)
= −2y1 + y2,

y2 ∈ Y 2
1

(
x, y1, w2

1, 1− w2
1

)
,

y1 ∈ [2,+∞[.

where

Y 1
1

(
x, y2, w1

1, 1− w1
1

)
=



[0, 2] if 0 ≤ w1
1 <

y2 − 2

2y2

[0, y2(1− 2w1
1)] if

y2 − 2

2y2
≤ w1

1 ≤
1

2

∅ if
1

2
< w1

1 ≤ 1.

Y 1
2

(
x, y2, w1

1, 1− w1
1

)
=



∅ if 0 ≤ w1
2 <

y2 − 2

2y2
,

[y2(1− 2w1
1), 2] if

y2 − 2

2y2
≤ w1

1 ≤
1

2
,

[0, 1] if
1

2
< w1

1 ≤ 1.

Y 2
1

(
x, y1, w2

1, 1− w2
1

)
=



[0, 3] if 0 ≤ w2
1 <

2y1 − 3

4y1
,

[0, y1(2− 4w2
1)] if

2y1 − 3

4y1
≤ w2

1 ≤
1

2
,

∅ if
1

2
< w2

1 ≤ 1.
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Y 2
2

(
x, y1, w2

1, 1− w2
1

)
=



∅ if 0 ≤ w2
2 <

2y1 − 3

4y1
,

[y1(2− 4w2
1), 3] if

2y1 − 3

4y1
≤ w2

2 ≤
1

2
,

[0, 3] if
1

2
< w2

2 ≤ 1.

It is easy to check that the optimal values are, respectively:

ϕ1
1

(
x, y2, w1

1, 1− w1
1

)
=



− 2− y2 if 0 ≤ w1
1 <

y2 − 2

2y2

− y2(1− 2w1
1)− y2 if

y2 − 2

2y2
≤ w1

1 ≤
1

2

+∞ if
1

2
< w1

1 ≤ 1.

ϕ1
2

(
x, y2, w1

1, 1− w1
1

)
=



+∞ if 0 ≤ w1
1 <

y2 − 2

2y2
,

y2(1− 2w1
1)− y2 if

y2 − 2

2y2
≤ w1

1 ≤
1

2
,

− y2 if
1

2
< w1

1 ≤ 1.

ϕ2
1

(
x, y1, w2

1, 1− w2
1

)
=



− 3− 2y1 if 0 ≤ w2
1 <

2y1 − 3

4y1
,

− y1(2− 4z2
1)− 2y1 if

2y1 − 3

4y1
≤ w2

1 ≤
1

2
,

+∞ if
1

2
< w2

1 ≤ 1.

ϕ2
2

(
x, y1, w2

1, 1− w2
1

)
=



+∞ if 0 ≤ w2
1 <

2y1 − 3

4y1
,

y1(2− 4w2
1)− 2y1 if

2y1 − 3

4y1
≤ w2

1 ≤
1

2
,

− 2y1 if
1

2
< w2

1 ≤ 1,

supported by the solution sets provided by:

Ψ1
1

(
x, y2, w1

1, 1− w1
1

)
=



2 if 0 ≤ w1
1 <

y2 − 2

2y2

y2(1− 2w1
1) if

y2 − 2

2y2
≤ w1

1 ≤
1

2

∅ if
1

2
< w1

1 ≤ 1.

Ψ1
2

(
x, y2, w1

1, 1− w1
1

)
=



∅ if 0 ≤ w1
1 <

y2 − 2

2y2
,

y2(1− 2w1
1) if

y2 − 2

2y2
≤ w1

1 ≤
1

2
,

0 if
1

2
< w1

1 ≤ 1.
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Ψ2
1

(
x, y1, w2

1, 1− w2
1

)
=



3 if 0 ≤ w2
1 <

2y1 − 3

4y1
,

y1(2− 4w2
1) if

2y1 − 3

4y1
≤ w2

1 ≤
1

2
,

∅ if
1

2
< w2

1 ≤ 1.

Ψ2
2

(
x, y2, w2

1, 1− w2
1

)
=



∅ if 0 ≤ w2
1 <

2y1 − 3

4y1
,

y1(2− 4w2
1) if

2y1 − 3

4y1
≤ w2

1 ≤
1

2
,

0 if
1

2
< w2

1 ≤ 1.

Hence, the optimization problem (P) with the multiobjective Nash equilibruim problem can
be replaced by the following optimization problem of the form:min

x,y,w
F (x, y) = x2 +

(
y1)2

s.t x ∈ X, y ∈ H (x,w) .
(4.16)

with

H (x,w) =
{
y = (y1, y2) : y1 ∈ Ψ1

1

(
x, y2, w1

1

)
∩Ψ1

2

(
x, y2, w1

2

)
, y2 ∈ Ψ2

1

(
x, y1, w2

1

)
∩Ψ2

2

(
x, y2, w2

2

)}
Using the optimal value reformulation, (4.16) is equivalent to the one-level optimization

problem. {
min
x,y,w

F (x, y) = x2 +
(
y1
)2

(x, y, w1
1, w

1
2, w

2
1, w

2
2) ∈ Ω.

(4.17)

We remark that ū = (x̄, ȳ, w̄1
1, w̄

1
2, w̄

2
1, w̄

2
2) = (0, 2, 3, 1

6
, 5

6
, 1

8
, 7

8
) is a local optimal solution to

problem (4.17). Moreover, the set Ξ and the normal cone to Ξ at ū ∈ Ξ are given by:

Ω = Ξ = [0,+∞[×{2} × {3} ×
{

1

6
,

5

6
,

1

8
,

7

8

}
, NΞ(ū) =]−∞, 0]× R× R× R

Let

ψ1
1

(
x, y1, y2, w1

1, 1− w1
1

)
=



− y1 + 2 if 0 ≤ w1
1 <

y2 − 2

2y2

− y1 + y2(1− 2w1
1) if

y2 − 2

2y2
≤ w1

1 ≤
1

2

−∞ if
1

2
< w1

1 ≤ 1.

ψ1
2

(
x, y1, y2, w1

1, 1− w1
1

)
=



−∞ if 0 ≤ w1
1 <

y2 − 2

2y2
,

y1 − y2(1− 2w1
1) if

y2 − 2

2y2
≤ w1

1 ≤
1

2
,

y1 if
1

2
< w1

1 ≤ 1.
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ψ2
1

(
x, y1, y2, w2

1, 1− w2
1

)
=



− y2 + 3 if 0 ≤ w2
1 <

2y1 − 3

4y1
,

− y2 + y1(2− 4w2
1) if

2y1 − 3

4y1
≤ w2

1 ≤
1

2
,

−∞ if
1

2
< w2

1 ≤ 1.

ψ2
2

(
x, y1, y2, w2

1, 1− w2
1

)
=



−∞ if 0 ≤ w2
1 <

2y1 − 3

4y1
,

y2 − y1(2− 4w2
1) if

2y1 − 3

4y1
≤ w2

1 ≤
1

2
,

y2 if
1

2
< w2

1 ≤ 1.

we have

D∗ψ (ū) (σ) =

{
(0,−σ1+σ2+

3

2
σ3− 3

2
σ4,

1

2
σ1− 1

2
σ2−σ3+σ4,−6σ1+6σ2, 0,−8σ3+8σ4, 0)

}

Consequently

D∗ψ (ū) (σ) ∩ (−bd NΞ (x̄, ȳ)) = ∅

where σ = (σ1, σ2, σ3, σ4) and

ψ(x, y1, y2, w1
1, 1− w1

1, w
2
1, 1− w2

1) =

(
ψ1

1

(
x, y2, w1

1, 1− w1
1

)
, ψ1

2

(
x, y2, w1

1, 1− w1
1

)
,

ψ2
1

(
x, y1, y2, w2

1, 1− w2
1

)
, ψ2

2

(
x, y1, y2, w2

1, 1− w2
1

))

The set valued mappings Ψ1
1,Ψ1

2, Ψ2
1,Ψ2

2 are inner semicompact at
(
0, 2, 3, 1

6
, 5

6

)
,
(
0, 2, 3, 1

6
, 5

6

)
,(

0, 2, 3, 1
8
, 7

8

)
and

(
0, 2, 3, 1

8
, 7

8

)
respectively, and the hypotheses (R3), (R4) and (R5) hold

true.
Then, there exist (σ1

1 , σ
1
2) = ( 1

2
, 1

2
), (σ2

1 , σ
2
2) = ( 1

4
, 1

4
), (σ1

1,2, σ
1
2,1) = ( 1

5
, 1

5
), (σ2

1,2, σ
2
2,1) =

(1, 1), α1 = 0, (β1
1 , β

l
2) = ( 4

3
, 1

3
), (β2

1 , β
2
2) = ( 5

3
, 1

3
), (γ1,l

1,2, γ
1,l
2,1) = ( 1

3
, 1

3
), (γ2,l

1,2, γ
2,l
2,1) = (1, 1),

(β1,l
1 , β1,l

2 ) = (3, 3), (β2,l
1 , β2,l

2 ) = (2, 2) and y1,l
l = y1,l

2 = y2,l
l = y2,l

2 = {0}, with l = 1 . . . , 4,
4∑
l=1

π1
l =

4∑
l=1

π2
l = 1 such that

0 = ∇xF (0, 0) +

2∑
υ=1

 2∑
k=1

 ∑
r∈{1,2}\{k}

συk,r (w̄υr∇xfυr (0, 0)− w̄υk∇xfυk (0, 0))


+

2∑
υ=1

(
2∑
k=1

συk

[
∇xfυk (0, 0)−

2∑
l=1

πυk,l

(
∇xfυk (0, 0, 0) +

2∑
j=1

βυ,lj,k∇xg
υ
j (0, 0, 0)

+
∑

r∈{1,2}\{k}

γυ,lk,r (w̄υr∇xfυr (0, 0, 0) − w̄υk∇xfυk (0, 0, 0)))

+

2∑
j=1

βυj∇xgυj (0, 0)


+α1∇G1(0),
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0 = ∇yF (0, 0) +

2∑
υ=1

 2∑
k=1

 ∑
r∈{1,2}\{k}

συk,r (w̄υr∇yυfυr (0, 0)− w̄υk∇yυfυk (0, 0))


+

2∑
k=1

συk ∇yυfυk (0, 0) +

2∑
j=1

βυj∇yυgυj (0, 0)

]
,

0 = ∇yυfυk (0, 0, 0) +

2∑
j=1

βυ,lj,k∇yυg
υ
j (0, 0, 0) +

∑
r∈{1,2}\{k}

γυ,lk,r (w̄υr∇yυfυr (0, 0, 0)

− w̄υk∇yυfυk (0, 0, 0)) , υ = 1, 2, ∀k ∈ {1, 2}, ∀l = 1, . . . , 4.

0 = γυ,lk,r (w̄υr f
υ
r (0, 0, 0)− w̄υkfυk (0, 0, 0)) ,

0 = βυ,lj,kg
υ
j (0, 0, 0) , υ = 1, 2, ∀ k ∈ {1, 2}, ∀ j = 1, 2, ∀ r ∈ {1, 2}\{k},∀ l = 1, . . . , 4.

0 = βυj g
υ
j (0, 0) , 0 = α1G1 (0) , υ = 1, 2, ∀ j = 1, 2.

0 = γυk,r (w̄υr f
υ
r (0, 0, 0)− w̄υkfυk (0, 0, 0)) , υ = 1, 2, ∀ r ∈ {1, 2}\{k}, ∀ k ∈ {1, 2}.

0 = συk,r (w̄υr f
υ
r (0, 0)− w̄υkfυk (0, 0)) , υ = 1, 2, ∀ r ∈ {1, 2}\{k}, ∀ k ∈ {1, 2}.

5. Conclusions

We are concerned in this article with a mathematical programming problem (P ). We presented

a concept of equilibrium for generalized Nash equilibrium problems with many goals and provide
its scalarization formulation. Based on this, we looked at the relationship between problem (P )

and a related scalar programming problem (4.3), which is established by applying the kth-objective

weighted-constraint technique to problem (P )’s multiobjective lower level problem. It has been
proven that this relationship is nonhazardous when globally optimal solutions are considered;

however, the analysis of locally optimal solutions is more sensitive. We exploited the equivalence

of (P ) and (4.3) in order to derive new necessary optimality conditions. Finally, we showed our
discovery using an example.
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