

Research Article

Strength based domination in graphs

A. Lekha¹, K.S. Parvathy² and S. Arumugam^{3,*}

Received: 16 February 2024; Accepted: 15 May 2024 Published Online: 5 June 2024

Abstract: Let G=(V,E) be a connected graph. Let $A\subseteq V$ and $v\in V-A$. The dominating strength of A on v is defined by $s(v,A)=\sum_{u\in A}\frac{1}{d(u,v)}$. A subset D of

V is called a strength based dominating set if for every vertex $v \notin D$, there exists a subset A of D such that $s(v,A) \geq 1$. The sb-domination number $\gamma_{sb}(G)$ is the minimum cardinality of a strength based dominating set of G. In this paper we initiate a study of this parameter and indicate directions for further research.

Keywords: distance, domination, dominating strength, sb-domination.

AMS Subject classification: 05C69

1. Introduction

By a graph G = (V, E) we mean a finite, undirected, connected graph with neither loops nor multiple edges. For graph theoretic terminology we refer to the book [1]. A subset D of V is called a dominating set of G if every vertex v in V - D is adjacent to a vertex u in D. The minimum cardinality of a dominating set of G is called the domination number of G and is denoted by $\gamma(G)$. The concept of domination in graphs and its several variants have been extensively investigated. For fundamentals of domination in graphs we refer to [5].

¹Department of Mathematics, Government Engineering College, Thrissur-680 009, Kerala, India alekharemesh@gmail.com

² Department of Mathematics, St. Mary's College, Thrissur-680 020, Kerala, India parvathy.math@gmail.com

³ Adjunct Professor, Department of Computer Science and Engineering, Ramco Institute of Technology, Rajapalayam-626117, Tamilnadu, India *s.arumugam@ritrjpm.ac.in, s.arumugam.klu@gmail.com

^{*} Corresponding Author

Different types of dominating sets have been formulated by putting restrictions on the induced subgraph G[D]. Connected domination, total domination, independent domination and paired domination are some of the domination parameters under this category. For a detailed study of total domination in graphs we refer to the book [6]. Another type of generalization is by putting restrictions on $N(v) \cap D$ and examples of such a type are weak domination, strong domination, k-domination and perfect domination. For further details of various types of domination models we refer to the Appendix in [5].

The distance d(u, v) between two vertices u and v in a graph is the length of a shortest u-v path in G. The eccentricity of a vertex v is defined by $ecc(v) = \max\{d(u, v) : u \in V\}$. The radius and diameter of G are defined by $rad(G) = \min\{ecc(v) : v \in V\}$ and diam G = $\max\{ecc(v) : v \in V\}$.

In several real life situations such as social networks, communication networks and biological networks, the influence of a vertex extends beyond its neighborhood but decreases with distance. To address this problem Dankelmann et al. [2] introduced the concept of exponential domination and exponential domination number of a graph, in which the dominating power of a vertex is decreasing exponentially by the factor $\frac{1}{2}$ with distance.

Goddard et al. [4] introduced the concept of disjunctive domination number of a graph. This concept reconsider in [3].

Definition 1. Let G = (V, E) be a connected graph. A subset D of V is called a disjunctive dominating set of G, if every vertex $v \notin D$ is adjacent to a vertex in D or has at least two distinct vertices at a distance two from v. The minimum cardinality of a disjunctive dominating set of G is called disjunctive domination number of G and is denoted by $\gamma_2^d(G)$.

Theorem 1. ([4]) Let G be any graph. Then $\gamma_2^d(G) \leq \gamma(G)$.

Theorem 2. ([4]) For any positive integer n, $\gamma_2^d(P_n) = \left\lceil \frac{n+1}{4} \right\rceil$.

Theorem 3. ([4]) For any positive integer $n \geq 3$,

$$\gamma_2^d(C_n) = \begin{cases} 2 & \text{if } n = 4\\ \lceil \frac{n}{4} \rceil & \text{if } n \neq 4 \end{cases}$$

We need the following definitions and theorem.

Definition 2. Let G_1 and G_2 be two graphs. The corona $G_1 \circ G_2$ is the graph obtained from one copy of G_1 and $|V(G_1)|$ copies of G_2 by joining the i^{th} vertex of G_1 to all the vertices in the i^{th} copy of G_2 .

Definition 3. The Cartesian product $G = G_1 \square G_2$ of two graphs G_1 and G_2 has $V(G) = V(G_1) \times V(G_2)$ and two vertices (u_1, v_1) and (u_2, v_2) are adjcent in G if either $u_1 = u_2$ and $v_1v_2 \in E(G_2)$ or $v_1 = v_2$ and $u_1u_2 \in E(G_1)$.

Theorem 4. ([5], Page 56) For any connected graph G, $\left\lceil \frac{diam(G)+1}{3} \right\rceil \leq \gamma(G)$.

In this paper we introduce the concept of strength based domination in graphs which is a variant of the exponential model considered by Dankelmann et al. [2]. We present several basic results on strength based domination number and indicate directions for further research.

2. On sb-domination

In a social network a member v is very often influenced by another member u who is not in its neighborhood N(v). In fact there is a possibility that the member v is influenced by a group of members who are not in N(v). We propose the concept of dominating strength and the associated parameters to address the above situation.

Definition 4. Let G = (V, E) be a connected graph and let $u, v \in V$. The dominating strength s(u, v) between u and v is defined as $s(u, v) = \frac{1}{d(u, v)}$. The dominating strength ds(v) of v is defined as $ds(v) = \sum_{u \neq v} s(u, v) = \sum_{u \neq v} \frac{1}{d(u, v)}$. The sequence $\Pi = (ds(v_1), ds(v_2), \ldots, ds(v_n))$ where $ds(v_1) \geq ds(v_2) \geq \cdots \geq ds(v_n)$ is called the dominating strength sequence or simply the ds-sequence of G.

Example 1. For the graph G given in Figure 1,

$$ds(v_i) = \begin{cases} \frac{157}{60} & \text{if } i = 1 \text{ or } 6\\ \frac{43}{12} & \text{if } i = 2 \text{ or } 5\\ \frac{13}{3} & \text{if } i = 3 \text{ or } 4\\ \frac{11}{3} & \text{if } i = 7. \end{cases}$$

Hence the ds-sequence Π is given by

$$\Pi = \left(\frac{13}{3}, \frac{13}{3}, \frac{11}{3}, \frac{43}{12}, \frac{43}{12}, \frac{157}{60}, \frac{157}{60}\right)$$
$$= (\operatorname{ds}(v_3), \operatorname{ds}(v_4), \operatorname{ds}(v_7), \operatorname{ds}(v_2), \operatorname{ds}(v_5), \operatorname{ds}(v_1), \operatorname{ds}(v_6)).$$

Observation 5. Let G be a connected graph of order n and let $v \in V$. Then $deg(v) \leq ds(v)$ and equality holds if and only if deg(v) = n - 1.

Definition 5. Let G be a connected graph of order n. Let $A \subseteq V$ and $v \in V - A$. Then the dominating strength of A on v is defined by $ds(A, v) = \sum_{u \in A} \frac{1}{d(v, u)}$.



Figure 1. A graph and its ds-sequence

Example 2. A graph G with its ds-sequence is given in Figure 1. In this graph

$$ds(\{v_1, v_2\}, v_6) = \frac{1}{d(v_6, v_1)} + \frac{1}{d(v_6, v_2)} = \frac{1}{5} + \frac{1}{4} = 0.45.$$

If D is a dominating set of G, then any vertex $v \notin D$ is dominated by a vertex in D. In the case of disjunctive domination, v is dominated by a single vertex in D or is dominated by a set of two vertices in D each at distance 2 from v. We now introduce the concept of strength based domination in which v is dominated by a subset D_1 of D and this is a generalization of domination and disjunctive domination.

Definition 6. Let G = (V, E) be a connected graph. A subset D of V is called a strength based dominating set or a sb-dominating set of G if for every $v \in V - D$, there exists a subset D_1 of D such that $ds(D_1, v) \ge 1$. The minimum cardinality of a sb-dominating set of G is called the sb-domination number of G and is denoted by $\gamma_{sb}(G)$. Also sb-dominating set of cardinality γ_{sb} is called a γ_{sb} -set of G.

Observation 6. Let D be a sb-dominating set of G and let $v \in V - D$. Obviously $ds(D,v) \ge 1$ if and only if there exists a subset D_1 of D such that $ds(D_1,v) \ge 1$. The concept of sb-domination has interesting applications in social networks and in a large network identifying a subset D_1 such that the members of D_1 can collectively influence a member $v \in V - D$ is a significant and relevant issue. Thus from application perspective the subset D_1 in the above definition plays a crucial role.

Observation 7. For any graph G, we have $\gamma(G) = \gamma_{sb}(G) = 1$ if and only if $\Delta = n - 1$.

Observation 8. Clearly any dominating set of G and any disjunctive dominating set of G are sb-dominating sets. Hence $\gamma_{sb}(G) \leq \gamma_2^d(G) \leq \gamma(G)$.

Example 3. For the Petersen graph G given in Figure 2, $D = \{v_1, v_2\}$ is a sb-dominating set of G, since $d(u, v_1) = d(u, v_2) = 2$ for all vertices $u \in (V - D) \cup N(v_1) \cup N(v_2)$. Also $\Delta = 3 < n - 1$. Hence $\gamma_{sb}(G) = 2$.

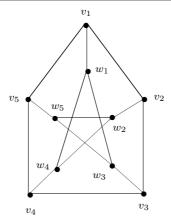


Figure 2. Petersen graph $G: \gamma_{sb}(G) = 2$.

Example 4. Let $G = K_n \circ K_1$. Let $V(K_n) = \{v_1, v_2, \dots, v_n\}$ and let w_i be the pendent vertex adjacent to v_i . Clearly $D = \{v_1, v_2\}$ is a sb-dominating set of G and hence $\gamma_{sb}(G) \leq 2$. Since $\Delta < |V(G)| - 1, \gamma_{sb}(G) \geq 2$. Hence $\gamma_{sb}(G) = 2$. Since $\gamma(G) = n$, it follows that the difference between $\gamma_{sb}(G)$ and $\gamma(G)$ can be arbitrarily large.

Theorem 9. For any positive integer k, there exists a graph G with $\gamma_{sb}(G) = k$.

Proof. For any graph G with $\gamma(G)=1$ or 2, we have $\gamma_{sb}(G)=\gamma(G)$. Suppose $k\geq 3$. Let G be the graph obtained from $K_{1,k}$ by sub-dividing each edge (k-2) times. Let $V(K_{1,k})=\{v_0,v_1,\ldots,v_k\}$ and $deg(v_0)=k$. Let $w_{i_1},w_{i_2},\ldots,w_{i_{(k-2)}})$ be the vertices sub-dividing the edge v_0v_i . Let $P_i=(v_0,w_{i_1},w_{i_2},\ldots,w_{i_{(k-2)}},v_i)$. Let $D=\{w_{11},w_{21},\ldots,w_{k1}\}$. Now, $\mathrm{ds}(D,v_i)=(k-1)\frac{1}{k}+\frac{1}{k-2}=1+\left(\frac{1}{k-2}-\frac{1}{k}\right)>1$. Also, $\mathrm{ds}(D,u)\geq \mathrm{ds}(D,v_i)$ for all $u\in V-D$. Hence D is a sb-dominating set of G and therefore $\gamma_{sb}(G)\leq k$. Now let S be any γ_{sb} -set of G. If $S\cap V(P_i)=\emptyset$ for some i, then $\mathrm{ds}(v_i,S)\leq \frac{k-1}{k}+\frac{1}{k-1}<1$. Hence $S\cap V(P_i)\neq\emptyset$ for all $i,1\leq i\leq k$ and so $|S|\geq k$. Thus $\gamma_{sb}(G)\geq k$ and hence $\gamma_{sb}(G)=k$.

3. Bounds for γ_{sb}

The following theorems give an upper bound for $\gamma_{sb}(G)$ and a characterization of all extremal graphs which attain the bound.

Theorem 10. Let G be a connected graph of order n. Let $\Delta_{sb} = \max\{\operatorname{ds}(v) : v \in V\}$. Then $\gamma_{sb}(G) \leq n - \lfloor \Delta_{sb} \rfloor$.

Proof. Let $v \in V$ and $ds(v) = \Delta_{sb}$. Let $n-i = \lfloor \Delta_{sb} \rfloor$. Hence $n-i \leq \Delta_{sb} < n-i+1$. Therefore, $n-i \leq ds(v) < n-i+1$. Also $ds(v) \leq deg(v) + \frac{n-1-deg(v)}{2} = \frac{deg(v)}{2} + \left(\frac{n-1}{2}\right)$

and hence $n-i \leq \frac{deg(v)}{2} + \left(\frac{n-1}{2}\right)$. Thus, $deg(v) \geq n-2i+1$. Since $\lfloor \Delta_{sb} \rfloor = n-i$, we have $deg(v) \leq n-i$. Hence, $n-2i+1 \leq deg(v) \leq n-i$. Thus, deg(v) = n-2i+j where $1 \leq j \leq i$. Now let $G_1 = G[V-N[v]]$. Clearly, $|V(G_1)| = n-deg(v)-1=2i-j-1$. Let A denote the set of all isolated vertices in G_1 and let |A|=k. Then G_1-A is a graph of order 2i-j-1-k and has no isolated vertices. Let D be a γ -set of G_1-A . Therefore

$$|D| = \gamma(G_1 - A) \le \left| \frac{2i - j - 1 - k}{2} \right| \le \left| \frac{2i - 2 - k}{2} \right| = i - 1 - \left\lceil \frac{k}{2} \right\rceil.$$

Hence

$$|D| \le i - 1 - \left\lceil \frac{k}{2} \right\rceil. \tag{3.1}$$

If k = 0, let $B = \{v\}$.

If k = 1 or 2, let B be a subset of N(v) of minimum order such that B dominates A. Clearly |B| = 1 if k = 1 and |B| = 1 or 2 if k = 2.

If $k \geq 3$, let $B = \{v, u, w\}$ where $u, w \in A$. Let $D_1 = D \cup B$. It follows from (3.1) that

$$|D_1| \le i \text{ if } k = 0, 3 \text{ or } 4 \text{ or } k = 2 \text{ and } |B| = 2$$
 (3.2)

and
$$|D_1| < i$$
 if $k = 2$ and $|B| = 1$ or $k \ge 5$. (3.3)

Since D dominates $G_1 - A$ and B sb-dominates $N[v] \cup A$, it follows that D_1 is a sb-dominating of G. Also $|D_1| \le i = n - \lfloor \Delta_{sb} \rfloor$. Hence $\gamma_{sb} \le n - \lfloor \Delta_{sb} \rfloor$.

Theorem 11. Let G = (V, E) be a connected graph of order n. Then $\gamma_{sb}(G) = n - \lfloor \Delta_{sb} \rfloor$ if and only if the following conditions hold.

- (i) There exists a vertex v such that $ds(v) = \Delta_{sb}$ and $deg(v) = 2|\Delta_{sb}| + 1 n$.
- (ii) The number of isolated vertices k in G N[v] is at most 4 and if k = 2, then the two isolated vertices have no common neighbor in N(v).

Proof. $\gamma_{sb} = n - \lfloor \Delta_{sb} \rfloor$ if and only if equality holds in (1) and (2) of Theorem 10. Also equality holds in (1) if and only if j = 1 and $\gamma(G - N[v]) = \lfloor \frac{|V(G) - N[v]|}{2} \rfloor + k$. Equality holds in (2) if and only if $k \leq 4$ and |B| = 2 when k = 2. Hence the result follows.

We now proceed to obtain lower bounds for γ_{sb} .

Theorem 12. Let G be a connected graph of order n. Then $\gamma_{sb}(G) \geq \left\lceil \frac{n}{1+\Delta_{sb}} \right\rceil$ and the bound is sharp.

Proof. Let D be a γ_{sb} -set of G. Since $\mathrm{ds}(v) \leq \Delta_{sb}$ for all $v \in D$, we have $\sum_{v \in D} \mathrm{ds}(v) \leq |D|\Delta_{sb}$. Also $\mathrm{ds}(D,w) \geq 1$ for all $w \in V - D$ and hence $\sum_{v \in D} \mathrm{ds}(v) \geq n - |D|$. Thus $n - |D| \leq \sum_{v \in D} \mathrm{ds}(v) \leq |D|\Delta_{sb}$. Hence $n \leq |D|(\Delta_{sb} + 1)$ and so $\gamma_{sb} \geq \left\lceil \frac{n}{1 + \Delta_{sb}} \right\rceil$. Also for the graph G given in Figure 3, $\Delta_{sb} = 5.75$ and $D = \{v, w\}$ is a γ_{sb} -set of G. Hence $\gamma_{sb}(G) = 2 = \left\lceil \frac{n}{1 + \Delta_{sb}} \right\rceil$. Thus the bound is sharp.

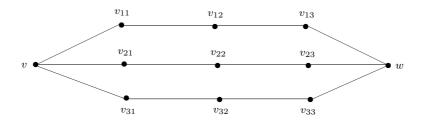


Figure 3. A graph G with $\gamma_{sb}(G) = \left\lceil \frac{n}{1 + \Delta_{sb}} \right\rceil$.

Theorem 13. Let $\Pi = (\operatorname{ds}(v_1), \operatorname{ds}(v_2), \dots, \operatorname{ds}(v_n))$ be the ds-sequence of a graph and let $\operatorname{ds}(v_1) \ge \operatorname{ds}(v_2) \ge \dots \ge \operatorname{ds}(v_n)$. Let $t = \min\{k : k + \operatorname{ds}(v_1) + \operatorname{ds}(v_2) + \dots + \operatorname{ds}(v_k) \ge n\}$. Then $\gamma_{sb}(G) \ge t$ and the bound is sharp.

Proof. Let S be any subset of V with |S| = r < t. Hence $r + \operatorname{ds}(v_1) + \operatorname{ds}(v_2) + \cdots + \operatorname{ds}(v_t) < n$. Also $\sum_{v \in S} \operatorname{ds}(v) \le \operatorname{ds}(v_1) + \operatorname{ds}(v_2) + \cdots + \operatorname{ds}(v_t)$. Hence $|S| + \sum_{v \in S} \operatorname{ds}(v) < n$. Thus

$$|S| + \sum_{v \in S} \left(\sum_{u \neq v} \frac{1}{d(v, u)} \right) < n. \tag{3.4}$$

Now, suppose S is a sb-dominating of G.

Then $\sum_{v \in S} \frac{1}{d(u,v)} \ge 1$ for all $u \in V - S$. Hence $\sum_{u \in V - S} \left(\sum_{v \in S} \frac{1}{d(u,v)}\right) \ge n - |S|$. Therefore $|S| + \sum_{u \in V - S} \left(\sum_{v \in S} \frac{1}{d(u,v)}\right) \ge n$ which contradicts (4). Hence S is not a sb-dominating set of G. So $\gamma_{sb}(G) \ge t$.

4. sb-domination and diameter

In this section we present several basic results and bounds for γ_{sb} in terms of the diameter of a graph.

Observation 14. If diam(G) = 1, then $G = K_n$ and $\gamma_{sb}(G) = diam(G) = 1$. If diam(G) = 2, then $\gamma_{sb}(G) = \begin{cases} 1 & \text{if } \Delta = n - 1 \\ 2 & \text{otherwise.} \end{cases}$

Lemma 1. Let G be a connected graph. Then $\gamma_{sb}(G) \leq diam(G)$ and the bound is sharp.

Proof. Let diam(G) = d and let $D = \{v_1, v_2, \ldots, v_d\}$ be any subset of V with |D| = diam(G) = d. Since $d(u, v) \leq d$ for all $u, v \in V$, it follows that D is a sb-dominating set of G and hence $\gamma_{sb}(G) \leq d$. By Observation 14, it follows that equality holds if d = 1 or d = 2 and $\Delta \neq n - 1$.

For any positive integer t, there exists a graph G with $\gamma_{sb}(G) = diam(G) = t$, as shown in the following theorem.

Theorem 15. For any positive integer t, there exists a graph G with $\gamma_{sb}(G) = diam(G) = t$.

Proof. Let $G = K_t \square K_t \square \cdots \square K_t$ be the Cartesian product of t copies of K_t . Clearly, diam(G) = t and hence $\gamma_{sb}(G) \le t$. Now let $D = \{v_1, v_2, \dots, v_{t-1}\}$ be any subset of V(G). Let $V_i = \{u_{i_1}, u_{i_2}, \dots, u_{i_t}\}$ be the vertex set of the i^{th} copy of K_t in G. Let $v_j = (u_{1j_1}, u_{2j_2}, \dots, u_{tj_t})$, where $1 \le j \le t-1$. Let $1 \le r \le t$. Since |D| = t-1, we can choose $u_{rk_r} \in V_r$ such that $u_{rk_r} \ne u_{rj_r}$ for all j with $1 \le j \le t-1$. Let $u = (u_{1k_1}, u_{2k_2}, \dots, u_{tk_t})$. Since u differs from v_j in all the t coordinates $d(u, v_j) = t$. Hence $ds(D, u) = \frac{t-1}{t} < t$. Thus D is not a sb-dominating set of G and hence $\gamma_{sb}(G) \ge t$. Thus $\gamma_{sb}(G) = t = \text{diam}(G)$.

Observation 16. Let r be the radius of G and let Z(G) denote the centre of G. If $|Z(G)| \ge r$, then Z(G) is a sb-dominating set of G and hence $\gamma_{sb}(G) \le r$.

Theorem 17. Let G be a connected graph of order n with $\gamma_{sb}(G) = 2$. Then $diam(G) \leq 6$.

Proof. Let $D = \{u, v\}$ be a sb-dominating set of G. If D is a dominating set of G, then it follows from Theorem 4 that $\operatorname{diam}(G) \leq 5$. Suppose D is not a dominating set. Let $D_1 = N[u] \cup N[v]$ and $D_2 = V - D_1$. Clearly $D_2 \neq \emptyset$. Since D is a sb-dominating set of G, it follows that d(x, u) = d(x, v) = 2 for all $x \in D_2$. Hence $d(x, y) \leq 4$ if $x, y \in D_2$ and $d(x, y) \leq 3$ if $x \in D_2$ and $y \in D_1$. Now, let $x, y \in D_1$. If $x, y \in N(u)$ or $x, y \in N(v)$ then $d(x, y) \leq 2$. If $x \in N(u)$ and $y \in N(u)$, let $w \in D_2$. Then $d(x, y) \leq d(x, u) + d(u, w) + d(w, v) + d(v, y) = 6$. Thus $d(x, y) \leq 6$ for all $x, y \in V$ and hence $\operatorname{diam}(G) \leq 6$.

Theorem 18. Let k be a positive integer with $2 \le k \le 6$. Then there exists a graph G such that $\gamma_{sb}(G) = 2, \gamma(G) > 2$ and diam(G) = k.

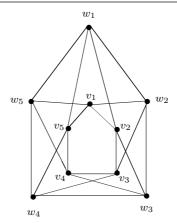


Figure 4. A graph G with $\gamma_{sb}(G) = diam(G) = 2$ and $\gamma(G) > 2$.

Proof. If k = 5 then for the graph G given in Figure 1, $\gamma_{sb}(G) = 2$, $\gamma(G) = 3$ and $\operatorname{diam}(G) = 5$. If k = 6, then for the path $G = P_7 = (v_1, v_2, v_3, v_4, v_5, v_6, v_7)$, we have $\gamma_{sb}(G) = 2$, $\gamma(G) = 3$ and $\operatorname{diam}(G) = 6$. If k = 4, then let $G = P_3 \circ K_1$ where $P_3 = v_1v_2v_3$ and let w_i be the pendent vertex adjacent to v_i . Then $\{v_1, v_3\}$ is a γ_{sb} -set of G, $\{v_1, v_2, v_3\}$ is a γ -set of G and $d(w_1, w_3) = 4$. Thus $\gamma_{sb}(G) = 2$, $\gamma(G) = 3$ and $\operatorname{diam}(G) = 4$.

Assume now that k=2. For the graph G given in Figure 4, $\operatorname{diam}(G)=2$ and $\Delta(G) \leq n-2$. Hence $\gamma_{sb}(G)=2$. Also for any two vertices x,y in G, $N(x) \cap N(y) \neq \emptyset$, |N(x)|=|N(y)|=4 and hence $|N[x] \cup N[y]| \leq 9$. Thus $\{x,y\}$ is not a dominating set of G and hence $\gamma(G)>2$.

Finally let k=3. Let G be the graph obtained from $K_4 \circ K_1$ by removing one pendent vertex. Let $V(K_4) = \{v_1, v_2, v_3, v_4\}$ and let w_i be the pendent vertex adjacent to $v_i, 1 \leq i \leq 3$. Then $D = \{v_1, v_2\}$ is a γ_{sb} -set of G, $D_1 = \{v_1, v_2, v_3\}$ is a γ -set of G and $d(w_1, w_3) = 3$. Thus $\gamma_{sb}(G) = 2, \gamma(G) = 3$ and $\operatorname{diam}(G) = 3$.

5. Conclusion and Scope

The dominating strength ds(v) of a vertex is a topological index which is useful in identifying the most influential member in a social network. Also the concept of sb-domination is a natural generalization of domination and disjunctive domination in graphs. A study of total sb-domination, independent sb-domination and algorithmic aspects of sb-domination are a few promising directions for further research.

Conflict of Interest: The authors declare that they have no conflict of interest.

Data Availability: Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

- [1] G. Chartrand, L. Lesniak, and P. Zhang, *Graphs & Digraphs*, 6th ed., Chapman & Hall London, New York, 2015.
- P. Dankelmann, D. Day, D. Erwin, S. Mukwembi, and H. Swart, *Domination with exponential decay*, Discrete Math. 309 (2009), no. 19, 5877–5883.
 https://doi.org/10.1016/j.disc.2008.06.040.
- [3] Z Gao, Y Shi, C Xi, and J Yue, The extended dominating sets in graphs, Asia-Pacific Journal of Operational Research 40 (2023), no. 5, Article ID: 2340015. https://doi.org/10.1142/S0217595923400158.
- [4] W. Goddard, M.A. Henning, and C.A. McPillan, The disjunctive domination number of a graph, Quaest. Math. 37 (2014), no. 4, 547–561.
 https://doi.org/10.2989/16073606.2014.894688.
- [5] T.W. Haynes, S. Hedetniemi, and P. Slater, Fundamentals of Domination in Graphs, CRC press, Boca Raton, 1998.
- [6] M.A. Henning and A. Yeo, Total Domination in Graphs, Springer, New York, 2013.