Research Article

Strength based domination in graphs

A. Lekha¹, K.S. Parvathy² and S. Arumugam^{3,*}

1 Department of Mathematics, Government Engineering College, Thrissur-680 009, Kerala, India. alekharemesh@gmail.com

2 Department of Mathematics, St. Mary's College, Thrissur-680 020, Kerala, India. parvathy.math@gmail.com

³Adjunct Professor, Department of Computer Science and Engineering, Ramco Institute of Technology, Rajapalayam-626117, Tamilnadu, India [∗]s.arumugam@ritrjpm.ac.in, s.arumugam.klu@gmail.com

> Received: 16 February 2024; Accepted: 15 May 2024 Published Online: 5 June 2024

Abstract: Let $G = (V, E)$ be a connected graph. Let $A \subseteq V$ and $v \in V - A$. The dominating strength of A on v is defined by $s(v, A) = \sum_{u \in A}$ $\frac{1}{d(u,v)}$. A subset D of

V is called a strength based dominating set if for every vertex $v \notin D$, there exists a subset A of D such that $s(v, A) \geq 1$. The sb-domination number $\gamma_{sb}(G)$ is the minimum cardinality of a strength based dominating set of G . In this paper we initiate a study of this parameter and indicate directions for further research.

Keywords: distance, domination, dominating strength, sb-domination.

AMS Subject classification: 05C69.

1. Introduction

By a graph $G = (V, E)$ we mean a finite, undirected, connected graph with neither loops nor multiple edges. For graph theoretic terminology we refer to the book [\[1\]](#page-8-0). A subset D of V is called a dominating set of G if every vertex v in $V - D$ is adjacent to a vertex u in D . The minimum cardinality of a dominating set of G is called the domination number of G and is denoted by $\gamma(G)$. The concept of domination in graphs and its several variants have been extensively investigated. For fundamentals of domination in graphs we refer to [\[5\]](#page-9-0).

Different types of dominating sets have been formulated by putting restrictions on the induced subgraph $G[D]$. Connected domination, total domination, independent

[∗] Corresponding Author

domination and paired domination are some of the domination parameters under this category. For a detailed study of total domination in graphs we refer to the book [\[6\]](#page-9-1). Another type of generalization is by putting restrictions on $N(v) \cap D$ and examples of such a type are weak domination, strong domination, k-domination and perfect domination. For further details of various types of domination models we refer to the Appendix in $[5]$.

The distance $d(u, v)$ between two vertices u and v in a graph is the length of a shortest u-v path in G. The eccentricity of a vertex v is defined by $ecc(v) = \max\{d(u, v) : u \in$ V }. The radius and diameter of G are defined by $rad(G) = min{ecc(v) : v \in V}$ and diam $(G) = \max\{ecc(v) : v \in V\}.$

In several real life situations such as social networks, communication networks and biological networks, the influence of a vertex extends beyond its neighborhood but decreases with distance. To address this problem Dankelmann et al. [\[2\]](#page-8-1) introduced the concept of exponential domination and exponential domination number of a graph, in which the dominating power of a vertex is decreasing exponentially by the factor $\frac{1}{2}$ with distance.

Goddard et al. [\[4\]](#page-9-2) introduced the concept of disjunctive domination number of a graph. This concept reconsider in [\[3\]](#page-9-3).

Definition 1. Let $G = (V, E)$ be a connected graph. A subset D of V is called a disjunctive dominating set of G, if every vertex $v \notin D$ is adjacent to a vertex in D or has at least two distinct vertices at a distance two from v . The minimum cardinality of a disjunctive dominating set of G is called disjunctive domination number of G and is denoted by $\gamma_2^d(G)$.

Theorem 1. ([\[4\]](#page-9-2)) Let G be any graph. Then $\gamma_2^d(G) \leq \gamma(G)$.

Theorem 2. ([\[4\]](#page-9-2)) For any positive integer n, $\gamma_2^d(P_n) = \lceil \frac{n+1}{4} \rceil$.

Theorem 3. ([\[4\]](#page-9-2)) For any positive integer $n \geq 3$,

$$
\gamma_2^d(C_n) = \begin{cases} 2 & \text{if } n = 4\\ \lceil \frac{n}{4} \rceil & \text{if } n \neq 4 \end{cases}
$$

We need the following definitions and theorem.

Definition 2. Let G_1 and G_2 be two graphs. The corona $G_1 \circ G_2$ is the graph obtained from one copy of G_1 and $|V(G_1)|$ copies of G_2 by joining the ith vertex of G_1 to all the vertices in the i^{th} copy of G_2 .

Definition 3. The Cartesian product $G = G_1 \square G_2$ of two graphs G_1 and G_2 has $V(G)$ $V(G_1) \times V(G_2)$ and two vertices (u_1, v_1) and (u_2, v_2) are adjcent in G if either $u_1 = u_2$ and $v_1v_2 \in E(G_2)$ or $v_1 = v_2$ and $u_1u_2 \in E(G_1)$.

Theorem 4. ([\[5\]](#page-9-0), Page 56) For any connected graph G , $\left\lceil \frac{diam(G)+1}{3} \right\rceil \leq \gamma(G)$.

In this paper we introduce the concept of strength based domination in graphs which is a variant of the exponential model considered by Dankelmann et al. [\[2\]](#page-8-1). We present several basic results on strength based domination number and indicate directions for further research.

2. On sb-domination

In a social network a member v is very often influenced by another member u who is not in its neighborhood $N(v)$. In fact there is a possibility that the member v is influenced by a group of members who are not in $N(v)$. We propose the concept of dominating strength and the associated parameters to address the above situation.

Definition 4. Let $G = (V, E)$ be a connected graph and let $u, v \in V$. The dominating strength $s(u, v)$ between u and v is defined as $s(u, v) = \frac{1}{d(u,v)}$. The dominating strength ds(v) of v is defined as $ds(v) = \sum_{u \neq v} s(u, v) = \sum_{u \neq v}$ $\frac{1}{d(u,v)}$. The sequence $\Pi = (ds(v_1), ds(v_2), \ldots, ds(v_n))$ where $ds(v_1) \ge ds(v_2) \ge \cdots \ge ds(v_n)$ is called the dominating strength sequence or simply the ds-sequence of G.

Example 1. For the graph G given in Figure [1,](#page-2-0)

$$
ds(v_i) = \begin{cases} \frac{157}{60} & \text{if } i = 1 \text{ or } 6\\ \frac{43}{12} & \text{if } i = 2 \text{ or } 5\\ \frac{13}{3} & \text{if } i = 3 \text{ or } 4\\ \frac{11}{3} & \text{if } i = 7. \end{cases}
$$

Hence the ds-sequence Π is given by

$$
\Pi = \left(\frac{13}{3}, \frac{13}{3}, \frac{11}{3}, \frac{43}{12}, \frac{43}{12}, \frac{157}{60}, \frac{157}{60}\right)
$$

= $(ds(v_3), ds(v_4), ds(v_7), ds(v_2), ds(v_5), ds(v_1), ds(v_6)).$

Figure 1. A graph and its ds-sequence

Observation 5. Let G be a connected graph of order n and let $v \in V$. Then $deg(v) \leq ds(v)$ and equality holds if and only if $deg(v) = n - 1$.

Definition 5. Let G be a connected graph of order n. Let $A \subseteq V$ and $v \in V - A$. Then the dominating strength of A on v is defined by $ds(A, v) = \sum_{u \in A}$ $\frac{1}{d(v,u)}$.

Example 2. A graph G with its ds-sequence is given in Figure [1.](#page-2-0) In this graph

$$
ds({v1, v2}, v6) = \frac{1}{d(v6, v1)} + \frac{1}{d(v6, v2)} = \frac{1}{5} + \frac{1}{4} = 0.45.
$$

If D is a dominating set of G, then any vertex $v \notin D$ is dominated by a vertex in D. In the case of disjunctive domination, v is dominated by a single vertex in D or is dominated by a set of two vertices in D each at distance 2 from v . We now introduce the concept of strength based domination in which v is dominated by a subset D_1 of D and this is a generalization of domination and disjunctive domination.

Definition 6. Let $G = (V, E)$ be a connected graph. A subset D of V is called a strength based dominating set or a sb-dominating set of G if for every $v \in V - D$, there exists a subset D_1 of D such that $ds(D_1, v) \geq 1$. The minimum cardinality of a sb-dominating set of G is called the sb-domination number of G and is denoted by $\gamma_{sb}(G)$. Also sb-dominating set of cardinality γ_{sb} is called a γ_{sb} -set of G.

Observation 6. Let D be a sb-dominating set of G and let $v \in V - D$. Obviously $ds(D, v) \ge 1$ if and only if there exists a subset D_1 of D such that $ds(D_1, v) \ge 1$. The concept of sb-domination has interesting applications in social networks and in a large network identifying a subset D_1 such that the members of D_1 can collectively influence a member $v \in V - D$ is a significant and relevant issue. Thus from application perspective the subset D_1 in the above definition plays a crucial role.

Observation 7. For any graph G, we have $\gamma(G) = \gamma_{sb}(G) = 1$ if and only if $\Delta = n - 1$.

Observation 8. Clearly any dominating set of G and any disjunctive dominating set of G are sb-dominating sets. Hence $\gamma_{sb}(G) \leq \gamma_2^d(G) \leq \gamma(G)$.

Example 3. For the Petersen graph G given in Figure [2,](#page-4-0) $D = \{v_1, v_2\}$ is a sb-dominating set of G, since $d(u, v_1) = d(u, v_2) = 2$ for all vertices $u \in (V - D) \cup N(v_1) \cup N(v_2)$. Also $\Delta = 3 < n - 1$. Hence $\gamma_{sb}(G) = 2$.

Example 4. Let $G = K_n \circ K_1$. Let $V(K_n) = \{v_1, v_2, \ldots, v_n\}$ and let w_i be the pendent vertex adjacent to v_i . Clearly $D = \{v_1, v_2\}$ is a sb-dominating set of G and hence $\gamma_{sb}(G) \leq 2$. Since $\Delta < |V(G)| - 1$, $\gamma_{sb}(G) \geq 2$. Hence $\gamma_{sb}(G) = 2$. Since $\gamma(G) = n$, it follows that the difference between $\gamma_{sb}(G)$ and $\gamma(G)$ can be arbitrarily large.

Theorem 9. For any positive integer k, there exists a graph G with $\gamma_{sb}(G) = k$.

Figure 2. Petersen graph $G: \gamma_{sb}(G) = 2$.

Proof. For any graph G with $\gamma(G) = 1$ or 2, we have $\gamma_{sb}(G) = \gamma(G)$. Suppose $k \geq 3$. Let G be the graph obtained from $K_{1,k}$ by sub-dividing each edge (k– 2) times. Let $V(K_{1,k}) = \{v_0, v_1, \ldots, v_k\}$ and $deg(v_0) = k$. Let $w_{i_1}, w_{i_2}, \ldots, w_{i_{(k-2)}}\}$ be the vertices sub-dividing the edge v_0v_i . Let $P_i = (v_0, w_{i_1}, w_{i_2}, \ldots, w_{i_{(k-2)}}, v_i)$. Let $D = \{w_{11}, w_{21}, \ldots, w_{k1}\}.$ Now, $ds(D, v_i) = (k-1)\frac{1}{k} + \frac{1}{k-2} = 1 + \left(\frac{1}{k-2} - \frac{1}{k}\right) > 1.$ Also, $ds(D, u) \ge ds(D, v_i)$ for all $u \in V - D$. Hence D is a sb-dominating set of G and therefore $\gamma_{sb}(G) \leq k$. Now let S be any γ_{sb} -set of G. If $S \cap V(P_i) = \emptyset$ for some *i*, then $ds(v_i, S) \leq \frac{k-1}{k} + \frac{1}{k-1} < 1$. Hence $S \cap V(P_i) \neq \emptyset$ for all $i, 1 \leq i \leq k$ and so $|S| \geq k$. Thus $\gamma_{sb}(G) \geq k$ and hence $\gamma_{sb}(G) = k$. \Box

3. Bounds for γ_{sb}

The following theorems give an upper bound for $\gamma_{sb}(G)$ and a characterization of all extremal graphs which attain the bound.

Theorem 10. Let G be a connected graph of order n. Let $\Delta_{sb} = \max\{ds(v) : v \in V\}$. Then $\gamma_{sb}(G) \leq n - \lfloor \Delta_{sb} \rfloor$.

Proof. Let $v \in V$ and $ds(v) = \Delta_{sb}$. Let $n-i = \lfloor \Delta_{sb} \rfloor$. Hence $n-i \leq \Delta_{sb} < n-i+1$. Therefore, $n-i \le ds(v) < n-i+1$. Also $ds(v) \le deg(v) + \frac{n-1-deg(v)}{2} = \frac{deg(v)}{2} + (\frac{n-1}{2})$ and hence $n - i \le \frac{deg(v)}{2} + (\frac{n-1}{2})$. Thus, $deg(v) \ge n - 2i + 1$. Since $|\Delta_{sb}| = n - i$, we have $deg(v) \leq n - i$. Hence, $n - 2i + 1 \leq deg(v) \leq n - i$. Thus, $deg(v) = n - 2i + j$ where $1 \leq j \leq i$. Now let $G_1 = G[V - N[v]]$. Clearly, $|V(G_1)| = n - deg(v) - 1 = 2i - j - 1$. Let A denote the set of all isolated vertices in G_1 and let $|A| = k$. Then $G_1 - A$ is a graph of order $2i - j - 1 - k$ and has no isolated vertices. Let D be a γ -set of $G_1 - A$. Therefore

$$
|D| = \gamma(G_1 - A) \le \left\lfloor \frac{2i - j - 1 - k}{2} \right\rfloor \le \left\lfloor \frac{2i - 2 - k}{2} \right\rfloor = i - 1 - \left\lceil \frac{k}{2} \right\rceil.
$$

Hence

$$
|D| \leq i - 1 - \left\lceil \frac{k}{2} \right\rceil. \tag{3.1}
$$

If $k = 0$, let $B = \{v\}.$

If $k = 1$ or 2, let B be a subset of $N(v)$ of minimum order such that B dominates A. Clearly $|B| = 1$ if $k = 1$ and $|B| = 1$ or 2 if $k = 2$.

If $k \geq 3$, let $B = \{v, u, w\}$ where $u, w \in A$. Let $D_1 = D \cup B$. It follows from [\(3.1\)](#page-5-0) that

$$
|D_1| \le i \text{ if } k = 0, 3 \text{ or } 4 \text{ or } k = 2 \text{ and } |B| = 2 \tag{3.2}
$$

and
$$
|D_1| < i
$$
 if $k = 2$ and $|B| = 1$ or $k \ge 5$. (3.3)

Since D dominates $G_1 - A$ and B sb-dominates $N[v] \cup A$, it follows that D_1 is a sb-dominating of G. Also $|D_1| \leq i = n - \lfloor \Delta_{sb} \rfloor$. Hence $\gamma_{sb} \leq n - \lfloor \Delta_{sb} \rfloor$. \Box

Theorem 11. Let $G = (V, E)$ be a connected graph of order n. Then $\gamma_{sb}(G) = n - |\Delta_{sb}|$ if and only if the following conditions hold.

- (i) There exists a vertex v such that $ds(v) = \Delta_{sb}$ and $deg(v) = 2[\Delta_{sb}] + 1 n$.
- (ii) The number of isolated vertices k in $G N[v]$ is at most 4 and if $k = 2$, then the two isolated vertices have no common neighbor in $N(v)$.

Proof. $\gamma_{sb} = n - \lfloor \Delta_{sb} \rfloor$ if and only if equality holds in (1) and (2) of Theorem [10.](#page-4-1) Also equality holds in (1) if and only if $j = 1$ and $\gamma(G - N[v]) = \left| \frac{|V(G) - N[v]|}{2} \right|$ $\frac{-N[v]|}{2}$ + k. Equality holds in (2) if and only if $k \leq 4$ and $|B| = 2$ when $k = 2$. Hence the result follows. \Box

We now proceed to obtain lower bounds for γ_{sb} .

Theorem 12. Let G be a connected graph of order n. Then $\gamma_{sb}(G) \ge \left[\frac{n}{1+\Delta_{sb}}\right]$ and the bound is sharp.

Proof. Let D be a γ_{sb} -set of G. Since ds $(v) \leq \Delta_{sb}$ for all $v \in D$, we have $\sum_{v \in D}$ $ds(v) \leq$ $|D|\Delta_{sb}$. Also $ds(D, w) \ge 1$ for all $w \in V - D$ and hence $\sum_{v \in D}$ $ds(v) \geq n - |D|$. Thus $n-|D| \leq \sum_{s} ds(v) \leq |D|\Delta_{sb}$. Hence $n \leq |D|(\Delta_{sb}+1)$ and so $\gamma_{sb} \geq \left\lceil \frac{n}{1+\Delta_{sb}} \right\rceil$. Also for the graph G given in Figure [3,](#page-6-0) $\Delta_{sb} = 5.75$ and $D = \{v, w\}$ is a γ_{sb} -set of G. Hence $\gamma_{sb}(G) = 2 = \left\lceil \frac{n}{1+\Delta_{sb}} \right\rceil$. Thus the bound is sharp. \Box

Figure 3. A graph G with $\gamma_{sb}(G) = \left\lceil \frac{n}{1+\Delta_{sb}} \right\rceil$.

Theorem 13. Let $\Pi = (d\mathbf{s}(v_1), d\mathbf{s}(v_2), \dots, d\mathbf{s}(v_n))$ be the ds-sequence of a graph and let $ds(v_1) \ge ds(v_2) \ge \cdots \ge ds(v_n)$. Let $t = \min\{k : k + ds(v_1) + ds(v_2) + \cdots + ds(v_k) \ge n\}$. Then $\gamma_{sb}(G) \geq t$ and the bound is sharp.

Proof. Let S be any subset of V with $|S| = r < t$. Hence $r + ds(v_1) + ds(v_2) + \cdots$ $ds(v_t) < n$. Also $\sum_{v \in S} ds(v) \le ds(v_1) + ds(v_2) + \cdots + ds(v_t)$. Hence $|S| + \sum_{v \in S}$ v∈S $ds(v) < n$. Thus

$$
|S| + \sum_{v \in S} \left(\sum_{u \neq v} \frac{1}{d(v, u)} \right) < n. \tag{3.4}
$$

Now, suppose S is a sb-dominating of G . $\left(\sum_{i=1}^{n} a_i \right)$ $\Big\}\geq n-|S|.$ Therefore $\frac{1}{d(u,v)} \geq 1$ for all $u \in V - S$. Hence $\sum_{u \in V - S}$ $\frac{1}{d(u,v)}$ Then Σ v∈S v∈S $\sqrt{\Sigma}$ $\Big) \geq n$ which contradicts (4). Hence S is not a sb-dominating $\frac{1}{d(u,v)}$ $|S| + \sum$ $u \in V - S$ v∈S set of G. So $\gamma_{sh}(G) \geq t$. \Box

4. sb-domination and diameter

In this section we present several basic results and bounds for γ_{sb} in terms of the diameter of a graph.

Observation 14. If $\text{diam}(G) = 1$, then $G = K_n$ and $\gamma_{sb}(G) = \text{diam}(G) = 1$. If $\text{diam}(G) = 2$, then $\gamma_{sb}(G) = \begin{cases} 1 & \text{if } \Delta = n - 1 \\ 2 & \text{otherwise} \end{cases}$ 2 otherwise.

Lemma 1. Let G be a connected graph. Then $\gamma_{sb}(G) \leq diam(G)$ and the bound is sharp.

Proof. Let diam(G) = d and let $D = \{v_1, v_2, \ldots, v_d\}$ be any subset of V with $|D| = diam(G) = d$. Since $d(u, v) \leq d$ for all $u, v \in V$, it follows that D is a sbdominating set of G and hence $\gamma_{sb}(G) \leq d$. By Observation [14,](#page-6-1) it follows that equality holds if $d = 1$ or $d = 2$ and $\Delta \neq n - 1$. \Box For any positive integer t, there exists a graph G with $\gamma_{sb}(G) = diam(G) = t$, as shown in the following theorem.

Theorem 15. For any positive integer t, there exists a graph G with $\gamma_{sb}(G) = diam(G)$ t.

Proof. Let $G = K_t \square K_t \square \cdots \square K_t$ be the Cartesian product of t copies of K_t . Clearly, $diam(G) = t$ and hence $\gamma_{sb}(G) \leq t$. Now let $D = \{v_1, v_2, \ldots, v_{t-1}\}$ be any subset of $V(G)$. Let $V_i = \{u_{i_1}, u_{i_2}, \ldots, u_{i_t}\}\$ be the vertex set of the i^{th} copy of K_t in G. Let $v_j = (u_{1j_1}, u_{2j_2}, \dots, u_{tj_t}),$ where $1 \leq j \leq t-1$. Let $1 \leq r \leq t$. Since $|D| = t-1$, we can choose $u_{rk_r} \in V_r$ such that $u_{rk_r} \neq u_{rj_r}$ for all j with $1 \leq j \leq t-1$. Let $u = (u_{1k_1}, u_{2k_2}, \dots, u_{tk_t})$. Since u differs from v_j in all the t coordinates $d(u, v_j) = t$. Hence $ds(D, u) = \frac{t-1}{t} < t$. Thus D is not a sb-dominating set of G and hence $\gamma_{sb}(G) \geq t$. Thus $\gamma_{sb}(G) = t = \text{diam}(G)$.

Observation 16. Let r be the radius of G and let $Z(G)$ denote the centre of G. If $|Z(G)| \geq r$, then $Z(G)$ is a sb-dominating set of G and hence $\gamma_{sb}(G) \leq r$.

Theorem 17. Let G be a connected graph of order n with $\gamma_{sb}(G) = 2$. Then diam(G) ≤ 6 .

Proof. Let $D = \{u, v\}$ be a sb-dominating set of G. If D is a dominating set of G, then it follows from Theorem [4](#page-1-0) that $\dim(G) \leq 5$. Suppose D is not a dominating set. Let $D_1 = N[u] \cup N[v]$ and $D_2 = V - D_1$. Clearly $D_2 \neq \emptyset$. Since D is a sb-dominating set of G, it follows that $d(x, u) = d(x, v) = 2$ for all $x \in D_2$. Hence $d(x, y) \leq 4$ if $x, y \in D_2$ and $d(x, y) \leq 3$ if $x \in D_2$ and $y \in D_1$. Now, let $x, y \in D_1$. If $x, y \in N(u)$ or $x, y \in N(v)$ then $d(x, y) \leq 2$. If $x \in N(u)$ and $y \in N(u)$, let $w \in D_2$. Then $d(x, y) \leq d(x, u) + d(u, w) + d(w, v) + d(v, y) = 6$. Thus $d(x, y) \leq 6$ for all $x, y \in V$ and hence diam(G) ≤ 6 . \Box

Theorem 18. Let k be a positive integer with $2 \leq k \leq 6$. Then there exists a graph G such that $\gamma_{sb}(G) = 2, \gamma(G) > 2$ and $diam(G) = k$.

Proof. If $k = 5$ then for the graph G given in Figure [1,](#page-2-0) $\gamma_{sb}(G) = 2$, $\gamma(G) = 3$ and diam(G) = 5. If $k = 6$, then for the path $G = P_7 = (v_1, v_2, v_3, v_4, v_5, v_6, v_7)$, we have $\gamma_{sb}(G) = 2, \gamma(G) = 3$ and diam(G) = 6. If $k = 4$, then let $G = P_3 \circ K_1$ where $P_3 = v_1v_2v_3$ and let w_i be the pendent vertex adjacent to v_i . Then $\{v_1, v_3\}$ is a γ_{sb} -set of $G, \{v_1, v_2, v_3\}$ is a γ -set of G and $d(w_1, w_3) = 4$. Thus $\gamma_{sb}(G) = 2, \gamma(G) = 3$ and $diam(G) = 4.$

Assume now that $k = 2$. For the graph G given in Figure [4,](#page-8-2) diam(G) = 2 and $\Delta(G) \leq n-2$. Hence $\gamma_{sb}(G) = 2$. Also for any two vertices x, y in $G, N(x) \cap N(y) \neq \emptyset$ $\langle \emptyset, |N(x)| = |N(y)| = 4$ and hence $|N[x] \cup N[y]| \leq 9$. Thus $\{x, y\}$ is not a dominating set of G and hence $\gamma(G) > 2$.

Figure 4. A graph G with $\gamma_{sb}(G) = diam(G) = 2$ and $\gamma(G) > 2$.

Finally let $k = 3$. Let G be the graph obtained from $K_4 \circ K_1$ by removing one pendent vertex. Let $V(K_4) = \{v_1, v_2, v_3, v_4\}$ and let w_i be the pendent vertex adjacent to $v_i, 1 \leq i \leq 3$. Then $D = \{v_1, v_2\}$ is a γ_{sb} -set of $G, D_1 = \{v_1, v_2, v_3\}$ is a γ -set of G and $d(w_1, w_3) = 3$. Thus $\gamma_{sb}(G) = 2, \gamma(G) = 3$ and $diam(G) = 3$. \Box

5. Conclusion and Scope

The dominating strength $ds(v)$ of a vertex is a topological index which is useful in identifying the most influential member in a social network. Also the concept of sb-domination is a natural generalization of domination and disjunctive domination in graphs. A study of total sb-domination, independent sb-domination and algorithmic aspects of sb-domination are a few promising directions for further research.

Conflict of Interest: The authors declare that they have no conflict of interest.

Data Availability: Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

- [1] G. Chartrand, L. Lesniak, and P. Zhang, Graphs & Digraphs, 6th ed., Chapman & Hall London, New York, 2015.
- [2] P. Dankelmann, D. Day, D. Erwin, S. Mukwembi, and H. Swart, Domination with exponential decay, Discrete Math. 309 (2009), no. 19, 5877–5883. https://doi.org/10.1016/j.disc.2008.06.040.
- [3] Z Gao, Y Shi, C Xi, and J Yue, The extended dominating sets in graphs, Asia-Pacific Journal of Operational Research 40 (2023), no. 5, Article ID: 2340015. https://doi.org/10.1142/S0217595923400158.
- [4] W. Goddard, M.A. Henning, and C.A. McPillan, The disjunctive domination number of a graph, Quaest. Math. 37 (2014), no. 4, 547–561. https://doi.org/10.2989/16073606.2014.894688.
- [5] T.W. Haynes, S. Hedetniemi, and P. Slater, Fundamentals of Domination in Graphs, CRC press, Boca Raton, 1998.
- [6] M.A. Henning and A. Yeo, Total Domination in Graphs, Springer, New York, 2013.