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Abstract: In this study, for a decomposed multi-objective optimization problem, we

propose the direct sum of the preference matrices of the subproblems provided by the

decision maker (DM). Then, using this matrix, we present a new generalization of the
rational efficiency concept for solving the multi-objective optimization problem (MOP).

A problem that sometimes occurs in multi-objective optimization is the existence of

a large set of Pareto optimal solutions. Hence, decision making based on selecting a
unique preferred solution becomes difficult. Considering models with the concept of

generalized rational efficiency can relieve some of the burden from the DM by shrinking

the solution set. This paper discusses both theoretical and practical aspects of ratio-
nally efficient solutions related to this concept. Moreover, we present two techniques

to reduce the Pareto optimal solutions using. The first technique involves using the

powers of the preference matrix, while the second technique involves creating a new
preference matrix by modifying the decomposition of the MOP.

Keywords: pareto, nondominated, AP -efficiency, multi-objective programming
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1. Introduction

Because of the conflicting nature of the objective functions, a MOP usually does

not have a single optimal solution for all objectives, but a set of Pareto optimal so-

lutions exists. Several multi-objective optimization approaches exist that generate

subsets of Pareto optimal solutions, which can be overwhelming to the DM in the

task of selecting the most appropriate solution to implement. More recently, these

approaches have categorized into a priori, a posteriori, interactive, and pruning meth-

ods by Petchrompo et al. [12].

∗ Corresponding Author



2 Two techniques to reduce the Pareto optimal solutions

In the a priori method, a MOP is converted into a single objective problem before

obtaining a solution. A priori methods use DM preferences to bias the search of

optimal solutions towards a preferred region, for example by changing the definition

of dominance [7, 9, 19], by giving different weights to the objectives [17], by assigning

reference values (goals) and priority levels to the objectives [18], by assuming a utility

function describing the DM behaviour and interest in the alternative solutions [8]. The

a posteriori method generates a representative set of Pareto optimal solutions and the

DM chooses the best one among them, [16, 20]. Interactive methods allow the DM to

guide the search by alternating optimization, and preference articulation iteratively,

[8, 15]. Pruning methods are applied before, during, or after the optimization process

to reduce the number of Pareto optimal solutions, [12, 13].

One approach to reduce the size of the Pareto optimal set is to combine multiple

objectives, i.e. by summing them, before employing tools to solve the resulting MOP,

[2]. This method also reduces the objective space dimension using DM’s preference

matrix. In particular, it can be used to discard certain unwanted solutions, especially

the extreme points which are found by minimizing just one of the objectives given in

the classical sense while disregarding the rest. Unfortunately, the problem of com-

bining several objectives does not seem to have attracted too much attention in the

literature so far.

Berman and Naumov [1] were perhaps the first to construct a matrix of a cone to

represent DM’s preferences by interval trade-offs. Noghin [10, 11] investigated the rel-

ative importance of objectives and provided a definition of weights (which he called

coefficients) for objective functions as well as for groups of objective functions. Podi-

nowski [14] extended the concept of ”one criterion is more important than another”

to ”‘one criterion is n-times more important than another” by applying pairwise co-

efficients of relative importance obtained from the DM. Also, using these coefficients,

he constructed a matrix that represents DM’s preferences. The polyhedral cone and

the partial order characterized by it are discussed by Engau and Wiecek [3]. They

discussed the relationship between the optimal solutions with respect to a polyhe-

dral cone represented by a matrix A and the optimal solutions of a multi-objective

optimization with respect to the natural order after linear transformation of the ob-

jective functions by a matrix A. Hunt et al. [5] developed a convex polyhedral

cone-based preference modeling framework for decision making with multiple criteria,

which extends the classical notion of Pareto optimality and accounts for the relative

importance of criteria. Dempe et al. [2] investigated the impact of using linear com-

binations of objectives and which solutions are eliminated by doing so. They showed

how the strategy of combining objectives linearly influences the efficient set.

In this paper, we do not focus on constructing a preference matrix. Instead, we

investigate two pruning techniques to reduce the number of Pareto optimal solutions,

by applying the strategy of linear combination of objectives. The present study is an

extension of some results obtained by [6, 7].

The paper is organized as follows. In Section 2, we give some basic and preliminary

concepts. In Section 3, we introduce the concept of rational AP -efficiency, and we

define rational AP -efficiency in terms of vector inequalities, in order to make it prac-
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tical. In Section 4, the concept of Ar
P -efficiency is examined to generate a subset of

Pareto optimal solutions, for r = 1, 2, . . .. Moreover, the AP -efficient solutions are

reduced by constructing a new preference matrix which based on P and AP , in Sec-

tion 5. Also, an algorithm is presented to generate a subset of AP -efficient solutions.

In addition, the numerical examples are provided to confirm the efficiency of these

methods. Finally, Section 6 concludes the paper.

2. Terminology

In this article, the following notations will be used. Let Rm be the Euclidean vector

space and y′, y′′ ∈ Rm. y′ 5 y′′ denotes y′i ≤ y′′i for all i = 1, . . . ,m. y′ < y′′ denotes

y′i < y′′i for all i = 1, . . . ,m. y′ ≤ y′′ denotes y′ 5 y′′ but y′ 6= y′′.

Consider a decision problem defined as an optimization problem with m objective

functions. For simplification, we assume, without losing generality, that the objective

functions should be minimized. The problem can be defined as follows:

min (f1(x), . . . , fm(x))

subject to x ∈ X, (2.1)

where x denotes a vector of decision variables selected from the feasible set X and

f(x) = (f1(x), . . . , fm(x)) is a vector function that maps the feasible set X into the

objective (criterion) space Rm. We refer to the elements of the objective space as

outcome vectors. An outcome vector y is attainable if it expresses the outcomes of

a feasible solution, i.e., y = f(x) for some x ∈ X. The set of all attainable outcome

vectors will be denoted by Y = f(X).

In single objective minimization problems, we compare the objective values at differ-

ent feasible decisions to select the best decision. Decisions are ranked according to

the objective values at those decisions and the decision resulting in the least smallest

objective value is the most preferred decision. Similarly, to make the multi-objective

optimization model operational, one needs to assume some solution concept specify-

ing what it means to minimize multi-objective functions. The solution concepts are

defined by the properties of the corresponding preference model. We assume that

solution concepts depend only on the evaluation of the outcome vectors while not

taking into account any other solution properties not represented within the outcome

vectors. Thus, we can limit our considerations to the preference model in the ob-

jective space Y . In the following, some basic concepts and definitions of preference

relations are reviewed from [6].

Definition 1. Let y′, y′′ ∈ Rm and let � be a relation of weak preference defined on Rm

× Rm. The corresponding relations of strict preference ≺ and indifference ' are defined as
follows:

y′ ≺ y′′ ⇔ (y′ � y′′and not y′′ � y′), (2.2)

y′ ' y′′ ⇔ (y′ � y′′and y′′ � y′). (2.3)
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Definition 2. Preference relations satisfying the following axioms are called rational
preference relations:
1. Reflexivity: for all y ∈ Rm: y � y.
2. Transitivity: for all y′, y′′, y′′′ ∈ Rm: y′ � y′′ and y′′ � y′′′ ⇒ y′ � y′′′.
3. Strict monotonicity: for all y ∈ Rm: y − εei ≺ y for ε > 0 where ei denotes the ith unit
vector in Rm.

The rational preference relations allow us to formalize the Pareto optimal solution

concept with the following definitions.

Definition 3. Let y′, y′′ ∈ Y . We say that y′ rationally dominates y′′, and denote by
y′ ≺r y

′′ iff y′ ≺ y′′ for all rational preference relations �. An outcome vector y is rationally
nondominated if and only if there does not exist another outcome vector y′ such that y′ ≺r y.
Analogously, a feasible solution x ∈ X is a rationally efficient solution of the MOP (2.1) if
and only if y = f(x) is rationally nondominated.

A relationship between the weak rational preference relation �r and the Pareto re-

lation has been established in [6]. As the following proposition shows finding non-

dominated points with respect to the relation �r can be done by means of Pareto

preference.

Proposition 1. ([6], Proposition 1.1) For any two vectors y′, y′′ ∈ Y , we have

y′ �r y
′′ ⇔ y′ 5 y′′,

y′ ≺r y
′′ ⇔ y′ ≤ y′′.

The set of all rationally efficient solutions x ∈ X is denoted by XE and called the

efficient set. The set of all rationally nondominated points y = f(x) ∈ Y , where

x ∈ XE , is denoted by YN and called the nondominated set.

3. The concept of rational AP -efficiency

In this section, we will introduce a dominance relation to generate solutions that are

rationally AP -efficient. The following definitions are necessary for the concepts of

interest in this paper.

Definition 4. Let M = {1, . . . ,m} be the index set of objective functions f = (f1, . . . , fm)
and n be a positive integer such that n 6 m. A collection P = {Pk ⊆ M : k = 1, . . . , n}
is called a decomposition of M , and also it is said a partition of M if

⋃n
k=1 Pk = M, and

Pi ∩ Pj = ∅ for all i 6= j, where i, j ∈ {1, . . . , n} and Pk is index set of objective functions in
class k. The multi-objective problem

min(fj(x))j∈Pk (k = 1, . . . , n),

subject to x ∈ X, (3.1)
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is called a subproblem of the multi-objective problem (2.1) and the collection of all these
subproblems is called a decomposition of the multi-objective problem (2.1).

To simplify the notations, we put fk = (fj)j∈Pk
and fk(x) = (fj(x))j∈Pk

. Also,

we will use the notation y = (yPk
)nk=1, where yPk

= (yi)i∈Pk
, for any vector y =

(y1, . . . , ym) ∈ Rm. It is noteworthy that the functions fk maps the feasible set X

into the space R|Pk|, where |Pk| denotes the cardinality of the set Pk for k = 1, . . . , n,

and m = |P1|+ · · ·+ |Pn|.
The preference information identifies the relative importance of different objectives in

the optimization problem. The DM can select the preference matrix Ak that displays

the relative importance of different objectives in the subproblem (3.1) as follows. Let

i, j ∈ Pk, i 6= j and criterion j be relatively more important than criterion i, so that

an improvement of the former is desired even when the latter decays. Let akij > 0

represent the minimum desired improvement in the j-th objective function for a unit

loss in the i-th objective function. If criteria i and j are equally important than there is

no specific preference relation between them and the corresponding coefficient akij = 0

. For i = j, let akij = 1. The elements akij form a |Pk| × |Pk| matrix Ak = [akij ]. For

the case of Pareto domination, the matrix Ak is an identity matrix with akij = 1 for

i = j and 0 otherwise. In general, the preference matrix represents a polyhedral cone

that plays the role of a domination cone for the used preference model, which is based

on the trade-off between objectives. For more details, the reader can refer to [1–3, 5].

In this paper, we do not focus on how to construct a preference matrix that is pro-

vided by a DM. Instead, we suggest two pruning methods that are based on preference

matrix. The idea behind these is that the DM classifies the objective functions in dif-

ferent classes and determines a partition P = {Pk ⊆ M : k = 1, . . . , n} of {1, . . . ,m}
according to the importance of objective functions. The DM should provide the pref-

erence matrix Ak for the relative importance of the objectives of subproblem (3.1) for

k = 1, . . . , n. Thus, we introduce the matrix AP = A1 ⊕ . . .⊕An, which is the direct

sum of the matrices A1, . . . An, i.e.

AP =


A1 0 . . . 0

0 A2 . . . 0
...

...
. . .

...

0 0 . . . An

 .

We have AP (y) = (A1(yP1), . . . , An(yPn)) for y ∈ Y , where yPk
= (yj)j∈Pk

for k =

1, . . . , n.

Definition 5. Let y′, y′′ ∈ Y be two outcome vectors. We say that y′ rationally AP -
dominates y′′, and denote by y′ ≺rAP y′′ if and only if AP (y′) ≺ AP (y′′) for all rational
preference relations �. An outcome vector y is called rationally AP -nondominated if and
only if there is not another outcome vector y′ such that y′ ≺rAP y. Analogously, a feasible
solution x ∈ X is called a rationally AP -efficient solution of the problem (2.1) if and only if
y = f(x) is rationally AP -nondominated point.
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The set of all rationally AP -efficient solutions x ∈ X is denoted by XAPE and is called

the rationally AP -efficient set. The set of all rationally AP -nondominated points

y = f(x) ∈ Y , where x ∈ XAPE , is denoted by YAPN and is called the rationally

AP -nondominated set.

Let A be the preference matrix representing the relative importance of different ob-

jectives in the problem (2.1). It should be noted that AP = A, when n = 1 or

P1 = {1, . . . ,m}. Therefore, we can rewrite the above definition for the matrix A as

follows.

Definition 6. Let y′, y′′ ∈ Y . We say that y′ rationally A-dominates y′′, and denote by
y′ ≺rA y′′ if and only if A(y′) ≺ A(y′′) for all rational preference relations �. An outcome
vector y is called rationally A-nondominated if and only if there is not another outcome
vector y′ such that y′ ≺rA y. Analogously, a feasible solution x ∈ X is called a rationally
A-efficient solution of the problem (2.1) if and only if y = f(x) is rationally A-nondominated
point.

It is worth noting that for n = 1 or P1 = {1, . . . ,m}, we have XAPE = XAE and

YAPN = YAPN . Let I denote the identity matrix. If Pk = {k} and Ak = I for all

k = 1, . . . ,m, then the relation ≺rAP
becomes the rational relation ≺r.

Similar to the relation ≺rAP
, we can define the relation of rational AP -indifference,

'rAP
, and the relation of rational weak AP -dominance, �rAP

. We say that y′ 'rAP

y′′ if and only AP (y′) ' AP (y′′) for all rational preference relations �, and also

y′ �rAP
y′′ if and only AP (y′) � AP (y′′) for all rational preference relations �. The

relations ≺rAP
, 'rAP

and �rAP
satisfy conditions (2.2-2.3).

It is clear that the preference relation �rAP
satisfies the reflexivity and transitivity

axioms. To continue, we express some conditions that guarantee the relation �rAP

is a rational preference relation. Throughout this section, we assume that eki ∈ Rk is

the unit vector with the i-th component equal to one and the remaining ones equal

to zero, where k = 1, . . . and i ∈ {1, . . . , k}.

Theorem 1. The strict monotonicity axiom for the preference �rAP is equivalent to the
condition

aki ≥ 0 (i = 1, . . . , |Pk|), (3.2)

where aki is the column i of the matrix Ak for k = 1, . . . , n.

Proof. We will prove that if matrix Ap satisfies condition (3.2), then the strict

monotonicity axiom holds for preference �rAP
. For y ∈ Y , i ∈ {1, . . . ,m}, ε > 0 and

y′ = y− εemi , we show that y′ ≺rAP
y. There exists an index k ∈ {1, . . . , n} such that

i ∈ Pk. It’s obvious that y′Pj
= yPj

and Aj(y
′
Pj

) = Aj(yPj
), when j ∈ {1, . . . , n}−{k}.
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Since y′Pk
= yPk

− εe|Pk|
i , we have y′Pk

≤ yPk
. According to condition (3.2), we obtain

|Pk|∑
j=1

akij(y
′
Pk

)j 6
|Pk|∑
j=1

akij(yPk
)j (i = 1, . . . , |Pk|),

where strict inequality holds at least once. So Ak(y′Pk
) ≤ Ak(yPk

) and the proof is

complete by applying Proposition 1.

Conversely, assuming that the preference �rAP
follows the strict monotonicity axiom.

We have

emj − emj ≺eAP
emj , (j = 1, . . . ,m),

which, together with Proposition 1, imply that matrix AP satisfies condition (3.2).

To make it practical, rational AP -efficiency is defined in terms of vector inequalities.

To do that, we define a certain preference relation.

Definition 7. Suppose that y′, y′′ ∈ Y are two outcome vectors. We define the relation
≤AP as follows:

y′ ≤AP y′′ ⇔ AP (y′) 5 AP (y′′). (3.3)

Also, we can define the relations <AP
and =AP

as follows:

y′ <AP
y′′ ⇔ (y′ ≤AP

y′′and not y′′ ≤AP
y′),

y′ =AP
y′′ ⇔ (y′ ≤AP

y′′and y′′ ≤AP
y′).

It is clear that the preference relation ≤AP
, satisfies reflexivity, transitivity and mono-

tonicity. This means that, the relation (3.3) is a rational preference relation. Note

that the relation ≤AP
becomes the Pareto relation, when A = I and Pk = {k} for all

k = 1, . . . ,m.

In the following, we will discuss the relationship between two preferences �rAP
and

≤AP
.

Corollary 1. Let y′, y′′ ∈ Y be two outcome vectors. We have

y′ �rAP y′′ ⇔ y′ ≤AP y′′,

y′ ≺rAP y′′ ⇔ y′ <AP y′′.
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Proof. Based on Definition 5, Proposition 1 and Definition 7, we can conclude that

y′ �rAP
y′′ ⇔ AP (y′) �r AP (y′′)

⇔ AP (y′) 5 AP (y′′)

⇔ y′ ≤AP
y′′.

The statement below is true according to Theorem 1 and Corollary 1.

Corollary 2. The preference ≤AP is a rational preference relation if and only if the
matrix AP satisfies condition (3.2).

Note that Corollary 1 permits one to express rational AP -efficiency for problem (2.1)

in terms of the standard efficiency for the MOP with objectives AP (f(x)),

minAP (f(x))

subject to x ∈ X. (3.4)

Corollary 3. A feasible solution x ∈ X is a rationally AP -efficient solution to the
problem (2.1) if and only if it is an efficient solution to the problem (3.4).

Remark 1. If P1 = {1, . . . ,m} in Corollary 3, then any feasible solution x ∈ X is a
rationally A-efficient solution of the problem (2.1), if and only if it is an efficient solution of
the problem

minA(f(x))

subject to x ∈ X. (3.5)

Also, if Ak = I is identity matrix for all k = 1, . . . , n, then we have Corollary 3.2 from [7].
In addition, if Ak = I and Pk = {k} for all k = 1, . . . ,m, we have Proposition 1.1 from [6].

Example 1. Let

X =
{

(x1, x2, x3) ∈ R3 : x1 + x2 > 1 and x1, x2, x3 > 0
}
,

and f(x1, x2, x3) = (x1, x2, x3) and P1 = {1, 2} and P2 = {3}. We get

XE =
{

(x1, x2, x3) ∈ R3 : x1 + x2 = 1 and x1, x2 > 0, x3 = 0
}
.

For A1 =

[
1 0
α 1

]
and A2 =

[
1
]
, we have AP (f(x)) = (x1, αx1 + x2, x3), where α > 0 and

x ∈ X. The assumption x1 +x2 = 1 implies that αx1 +x2 = (α− 1)x1 + 1. Hence, it is easy
to obtain that XAPE = XE , when 0 6 α < 1.
Now, let α > 1 and x̂ ∈ X be a feasible solution with x̂1 > 0. For 0 < ε < x̂1, we
put x1 = x̂1 − ε, x2 = x̂2 + ε and x3 = x̂3. After some calculations, we conclude that
AP (f(x)) ≤ AP (f(x̂)), and thus XAPE = {(0, 1, 0)}.
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Finally, we show that rational AP -efficiency is scale invariant with respect to linear

scaling with a positive factor.

Theorem 2. Let g : R→ R be a strictly increasing linear function. The feasible solution
x ∈ X is a rationally AP -efficient solution of the problem (2.1), if and only if it is a rationally
AP -efficient solution of the problem

min
x∈X

(g(f1(x)), . . . , g(fm(x))) . (3.6)

Proof. Let x be a rationally AP -efficient solution of the problem (2.1). If x is

not a rationally AP -efficient solution of the problem (3.6). Then there is a fea-

sible vector x′ such that the outcome vectors y = (g(f1(x)), . . . , g(fm(x))) and

y′ = (g(f1(x′)), . . . , g(fm(x′))) satisfy

Ak(y′Pk
) 5 Ak(yPk

) (k = 1, . . . , n),

and Ak(y′Pk
) ≤ Ak(yPk

) for some k ∈ {1, . . . , n}. Since the function g is strictly

increasing and linear, we obtain

Ak(fPk
(x′)) 5 Ak(fPk

(x)) (k = 1, . . . , n),

and Ak(fPk
(x′)) ≤ Ak(fPk

(x)) for some k ∈ {1, . . . , n}. Hence f(x′) rationally AP -

dominates f(x), which contradicts the rationally AP -efficient of x. The proof of

converse part can be done in a similar way.

4. The concept of Ar
P -efficiency

In this section, we investigate the relationship between AP -efficient solutions and

Ar
P -efficient solutions. Then, we introduce the concept of A∞P -efficient to generate a

subset of efficient solutions, which aims to offer a limited number of representative

solutions to the DM. At first, we study the relationship between AP -efficient solutions

and (AB)P -efficient solutions. To do this, we require the following theorem.

Theorem 3. Let A = (a1, . . . , am) and B = (b1, . . . , bm) be two m×m matrices, where
aj and bj are column j of the matrices A and B, respectively.

(i) Let AB = C = (c1, . . . , cm), where cj is column j of the matrix C. If aj ≥ 0 and
bj ≥ 0 for all j = 1, . . . ,m, then cj ≥ 0 for all j = 1, . . . ,m.

(ii) If aj ≥ 0 for all j = 1, . . . ,m and y′, y′′ are two outcome vectors in Rm, then

y′ <B y′′ =⇒ y′ <AB y′′,

y′ ≤B y′′ =⇒ y′ ≤AB y′′.

Hence Y(AB)N ⊂ YBN . This implies that X(AB)E ⊂ XBE. In particular, we have
XAE ⊂ XE, when B = I.
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Proof. (i) We have

cj =

(
m∑

k=1

aikbkj

)m

i=1

.

The condition bj ≥ 0 implies that bkj ≥ 0 for all k = 1, . . . ,m and bk′j > 0 for some

k′ ∈ {1, . . . ,m}. Also ak′ ≥ 0 conclude that aik′ ≥ 0 for any i = 1, . . . ,m and ai′k′ > 0

for some i′ ∈ {1, . . . ,m}. Thus aikbkj ≥ 0 for any i, k = 1, . . . ,m and ai′k′bk′j > 0,

which means that cj ≥ 0.

(ii) Let y′, y′′ ∈ Rm
= and y′ <B y′′, hence

m∑
j=1

bkjy
′
j ≤

m∑
j=1

bkjy
′′
j (k = 1, . . . ,m),

and
∑m

j=1 bk′jy
′
j <

∑m
j=1 bk′jy

′′
j for some k′ ∈ {1, . . . ,m}. Now according to assump-

tion, we have aik ≥ 0 for all i, k = 1, . . . ,m, and also there exists i′ ∈ {1, . . . ,m} such

that ai′k′ > 0. This implies that

m∑
k=1

aik

m∑
j=1

bkjy
′
j ≤

m∑
k=1

aik

m∑
j=1

bkjy
′′
j (i = 1, . . . ,m),

=⇒
m∑
j=1

(
m∑

k=1

aikbkj

)
y′j ≤

m∑
j=1

(
m∑

k=1

aikbkj

)
y′′j (i = 1, . . . ,m),

where the inequality is strict for i = i′. Thus ABy′ ≤ ABy′′, which means that

y′ <AB y′′.

Theorem 4. Let AP = A1⊕ . . .⊕An and BP = B1⊕ . . .⊕Bn be two m×m matrices and
aj ≥ 0 for j = 1, . . . ,m, where aj is column j of the matrix AP . If y′, y′′ are two outcome
vectors in Rm with y′ <BP y′′, then y′ <(AB)P y′′, hence Y(AB)PN ⊂ YBPN . This concludes
that X(AB)PE ⊂ XBPE.

Proof. Let y′, y′′ ∈ Y and y′ <BP
y′′. Hence

Bk(y′Pk
) 5 Bk(y′′Pk

) (k = 1, . . . , n),

and Bk(y′Pk
) ≤ Bk(y′′Pk

) for some k ∈ {1, . . . , n}. Let akj be column j of the matrix

Ak for k = 1, . . . , n. Since akj ≥ 0, by using Theorem 3, we have

AkBk(y′Pk
) 5 AkBk(y′′Pk

) (k = 1, . . . , n),

and AkBk(y′Pk
) ≤ AkBk(y′′Pk

) for some k ∈ {1, . . . , n}. This implies that y′ <(AB)P

y′′.
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The following statement states the relationship among AP -efficient solutions, A-

efficient solutions and efficient solution of problem (2.1).

Corollary 4. Let AP = A1 ⊕ . . .⊕An be an m×m matrix and aj ≥ 0 for j = 1, . . . ,m,
where aj is column j of the matrix AP . If y′, y′′ ∈ Y and y′ ≤ y′′, then y′ <AP y′′, hence
YAPN ⊂ YN . This concludes that XAPE ⊂ XE. Thus if x ∈ X is an efficient solution of
problem (3.4), then it is an efficient solution of problem (2.1). In particular, If n = 1, then
YAN ⊂ YN and XAE ⊂ XE. Thus, if x ∈ X is an efficient solution of problem (3.5), then it
is an efficient solution of problem (2.1).

Proof. Setting BP = I in the above theorem gives the desired result.

For a square matrix A and a positive integer r, Ar represents the product of A

multiplied by itself r times. We also define A0 = I.

Corollary 5. Suppose that the matrix AP satisfies the condition aj ≥ 0 for j = 1, . . . ,m.
If r is a non-negative integer, then Y

Ar+1
P

N
⊂ YAr

P
N ⊂ YN .

Proof. The result follows by replacing Ar instead of B, in Theorem 4.

Let Rm
= = {d ∈ Rm : d = 0} be non-negative orthant of Rm. By Corollary 3, one can

easily verify that the feasible solution x̂ ∈ X is a rationally Ar
P -efficient solution if

and only if

(Ar
P (f(x̂))− Rm

= )
⋂
Ar

P (f(X)) = {Ar
P (f(x̂))} . (4.1)

The condition aj ≥ 0 for j = 1, . . . ,m, in the above results are necessary. To investi-

gate this fact, we give the following example.

Example 2. Let

X = Y =
{

(y1, y2) : y21 + y22 6 1
}
,

and A =

[
1 0
0 −1

]
and P1 = {1, 2}. Using the relation (4.1) for r = 0 and r = 1, we have

YN =
{

(y1, y2) : y21 + y22 = 1, −1 6 y1, y2 6 0
}
,

and

YAN =
{

(y1, y2) : y21 + y22 = 1, −1 6 y1 6 0, 0 6 y2 6 1
}
,

respectively. Since A2r = I and A2r+1 = A for r = 0, 1, . . ., we get YA2rN = YN and
YA2r+1N = YAN .
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Figure 1. The Ar
P -efficient solutions of the test problem (4.2) for r = 0, 1, 2, 7.

In the following example, we investigate Corollary 5, and show that the set of Ar
P -

efficient solutions are reducing when r is increasing. For this purpose, a large number

of random solutions are generated for scalable test function. From this large set of

solutions, efficient solutions and Ar
P -efficient are calculated for r = 1, 2, 7.

Example 3. Let us consider the following test problem from [4],

min
x∈R2

y = (f1(x), f2(x), f3(x), f4(x), f5(x), f6(x))

f1(x) = x21 + (x2 + 1)2

f2(x) = (x1 − 0.5)2 + (x2 + 0.5)2

f3(x) = (x1 − 1)2 + x22 (4.2)

f4(x) = (x1 + 1)2 + x22

f5(x) = (x1 − 0.5)2 + (x2 − 0.5)2

f6(x) = x21 + (x2 − 1)2

x1, x2 ∈ [−1, 1].

To solve this problem, we use MATLAB software environment. We select 3000 random
solutions (x1, x2) ∈ [−1, 1] × [−1, 1], and compare the values of the objective functions at
these solutions. Among these solutions, there are 1741 efficient solutions, which are indicated
by the blue points in Figure 1. Let P1 = {1, 2, 3}, P2 = {4, 5, 6} and

A1 =

 1 0.5 0
0.9 0.8 0.5
1 0 0

 , A2 =

1 0.7 0
1 0 0.8
0 0.5 0.8

 ,
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be given by the DM. By comparing the values of Ar
P (f(x)) at the efficient solutions for

r = 1, 2, 7, we obtain 888 AP -efficient solutions, 420 A2
P -efficient solutions and 129 A7

P -
efficient solutions, which are shown by red circles, green square and cyan star, respectively,
in Figure 1.

Using the results above, we can define infinite order dominance as follows:

≤A∞
P

=
⋃
r∈N
≤Ar

P
,

where N = {0, 1, . . .}. This means that,

y′ ≤A∞
P
y′′ ⇔ y′ ≤Ar

P
y′′ (for some r ∈ N).

Definition 8. The outcome vector y is A∞P -nondominated if and only if there does
not exist another outcome vector y′ such that y′ ≤A∞

P
y. Analogously, a feasible solution

x is called an A∞P -efficient solution of the problem (2.1) if and only if y = f(x) is A∞P -
nondominated.

By using Definition 8, we can conclude that YA∞
P N =

⋂
r∈N YAr

PN .

Corollary 6. If x ∈ X is an A∞P -efficient solution for problem (2.1) and AP is a matrix
with the condition aj ≥ 0 for j = 1, . . . ,m. Then, x is an efficient solution for problem
(2.1).

Proof. By applying the definition of A∞P -efficiency and Corollary 5, the proof is

trivial.

Corollary 6 indicates that to reduce Pareto optimal solutions, we can use A∞P -efficient

solutions.

5. The reduction of AP -efficient solutions

In this section, our focus is on reducing the set of AP -efficient by creating a new

preference matrix. This is done by modifying the decomposition of the MOP. As

in the previous sections, assume that the partition P and the preferences matrices

AP
1 , . . . , A

P
n are provided by the DM and AP = AP

1 ⊕ . . .⊕AP
n .

Definition 9. Let P = {P1, . . . , Pn} be a partition of {1, . . . ,m} and F = {F1, . . . , Ft} be
a partition of {1, . . . , n}. The generated partition E = {E1, . . . , Et} by P and F of {1, . . . ,m}
is defined by Ek =

⋃
j∈Fk

Pj(k = 1, . . . , t), where Fk is index set classes in partition P should
be integrated for class k in partition E.
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Let AP = AP
1 ⊕ . . .⊕AP

n . If Fk = {k1, k2, . . . , k|Fk|} in Definition 9, we define

AE
k = [A

′P
k1
A

′P
k2
. . . A

′P
k|Fk|

],

where

A
′P
kj

=

[
AP

kj

0

]
|Ek|×|Pkj

|

,

for j = 1, . . . , |Fk|.

Example 4. Suppose that P1 = {1, 2}, P2 = {3}, P3 = {4}, F1 = {1, 2} and F2 = {3}.
The generated partition by P and F is E1 = P1 ∪ P2 = {1, 2, 3} and E2 = P3 = {4}. For

example, if AP
1 =

[
2 1
1 3

]
, AP

2 =
[
1
]

and AP
3 =

[
4
]

then A
′P
1 =

2 1
1 3
0 0

, A
′P
2 =

1
0
0

 and

AE
1 = [A

′P
1 A

′P
2 ] =

2 1 1
1 3 0
0 0 0

. Also we have AE
2 = A

′P
3 =

[
4
]
.

In the following, we will investigate the relationship between preference relations ≤AP

and ≤AE
.

Theorem 5. Let P, F , E and AP , AE be as in Definition 9. For any two outcome vectors
y′, y′′ ∈ Y , we have

y′ <AP y′′ ⇒ y′ <AE y′′.

Hence YAEN ⊂ YAPN . In particular, if P = {P1, . . . , Pn} is an arbitrary partition of

{1, . . . ,m}, then YAN ⊂ YAPN , where A = [A
′P
1 . . . A

′P
n ] and

A
′P
j =

[
AP

j

0

]
m×|Pj |

.

Proof. Let y′ <AP
y′′. Using Corollary 1, we deduce that

AP
k (y′Pk

) 5 AP
k (y′′Pk

) (k = 1, . . . , n),

and AP
k (y′Pk

) ≤ AP
k (y′′Pk

) for some k ∈ {1, . . . , n}. Since Ek =
⋃

j∈Fk
Pj , for all

k = 1, . . . , t and AE
k = [A

′P
k1
. . . A

′P
k|Fk|

], we obtain y′ <AE
y′′. Hence YAEN ⊂ YAPN .

In particular, let P = {P1, . . . , Pn} be an arbitrary partition of {1, . . . ,m}. For

F1 = {1, . . . , n}, the generated partition by P and F = {F1} equal to E = {E1},
where E1 =

⋃
j∈F1

Pj = {1, . . . ,m}. Now by applying the first part of the theorem,

we obtain YAN ⊂ YAPN .
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As shown in the example below, the converse of Theorem 5 is not always true.

Example 5. Let P1 = {1} and P2 = {2} and F1 = {1, 2}. The generated partition by P

and F is E1 = P1 ∪ P2 = {1, 2}. If AP
1 = AP

2 =
[
1
]
, then AE

1 = [A
′P
1 A

′P
2 ] =

[
1 1
0 0

]
. For

y′ = (2, 1) and y′′ = (1, 3), we have y′ <AE y′′, while y′ ≮AP y′′.

In the following, we obtain the relationship between AE-efficient solutions and AP -

efficient solutions by Theorem 5.

Corollary 7. Let P, F and E be as in Definition 9 and let x ∈ X be a feasible solution. If
x is an AE-efficient solution of problem (2.1), then it is an AP -efficient solution of problem
(2.1). Hence XAEE ⊆ XAPE. Therefore, if x ∈ X is an efficient solution of the problem

minAE(f(x))

subject to x ∈ X, (5.1)

then it is an efficient solution of the problem (3.4).

According to Theorem 5 and Corollary 7, an algorithm is offered to generate AE-

efficient solutions, whereby is reduced AE-efficient solutions.

Algorithm 1.

Step 1: Determine a partition P = {P1, . . . , Pn} of {1, . . . ,m} and the matrix AP , according to the

DM.
Step 2: put t = 1.

Step 3: Consider the partition F , where F1 = {1, . . . , t}, F2 = {t + 1}, . . ., Fn−t+1 = {n}.
Step 4: Calculate the partition E and the matrix AE , where Ek =

⋃
j∈Fk

Pj for k = 1, . . .,
n− t + 1, according to Definition 9.

Step 5: Solve the MOP (5.1).

Step 6: If the DM chooses the desired solution, stop.
Step 7: Otherwise put t = t + 1, if t > n stop, the model does not answer.
Step 8: Otherwise, go to Step 3.

In the first iteration of Algorithm 1, we have t = 1. Thus Fi = {i} for i = 1, . . . , n,

and hence Ek = Pk for k = 1, . . . , n. Therefore, the output of the first iteration of

the algorithm is the generation of AP -efficient solutions. In particular, if Pj = {j}
and AP

j = I for j = 1, . . . ,m, then Pareto optimal solutions are computed in the

first iteration of this algorithm. For t = 2, we get F1 = {1, 2} and Fi = {i + 1}
for i = 2, . . . , n − 1, and hence E1 = P1 ∪ P2 and Ek = Pk+1 for k = 2, . . . , n − 1.

Hence, in the second iteration of Algorithm 1, the AE-efficient solutions are computed.

Applying Corollary 7 for these two iterations, we conclude that XAEE ⊆ XAPE . By

continuing this process, we observe that the set of solutions obtained in each iteration

is reduced compared to the previous iteration, when t increases to a maximum of n.

In the following example, we obtain the AP -efficient solutions where the partition P

of {1, . . . ,m} and the matrix AP are given by the DM. Then, we gradually reduce
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Figure 2. The Pareto optimal and AP -efficient solutions with P1 = {1, 2}, P2 = {3, 4}, P3 = {5, 6} and
AE-efficient solutions generated by Algorithm 1.

these solutions by AE-efficient solutions in the next iterations of the Algorithm 1.

For this purpose, a large number of random solutions are generated for scalable test

function. From this large set of solutions, efficient solutions, AP -efficient solutions

and AE-efficient solutions are calculated.

Example 6. Let us consider again the test problem (4.2). In Figure 2 from 3000 random
solutions, 1804 solutions (blue points) are efficient. Let P1 = {1, 2}, P2 = {3, 4}, P3 = {5, 6}
and

AP
1 =

[
1 0.5

0.9 0.8

]
, AP

2 =

[
1 0.7
0 0.5

]
, AP

3 =

[
0.5 0.6
0.7 0.4

]
,

be given by the DM. In the first iteration of the Algorithm 1, 1042 solutions (red circles) are
AP -efficient. 271 solutions (green square) are AE1 -efficient, which are obtained by assuming
E1

1 = P1 ∪ P2 = {1, 2, 3, 4} and E1
2 = P3 = {5, 6}, in the second iteration of the algorithm.

Also in the third iteration of the Algorithm 1, 7 solutions (cyan star) are AE2 -efficient, which
are obtained by assuming E2

1 = P1 ∪ P2 ∪ P3 = {1, 2, 3, 4, 5, 6}.

6. Conclusion

The aim of this paper is introducing the new concept of rational AP -efficiency for

solving of the MOPs, where the preference matrix AP is given by DM. This concept is

obtained by rational preference relations on the certain cumulative vector AP (y) for

y ∈ Y . We have investigated both the theoretical and practical aspects of rationally
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AP -efficient solutions. Using the powers of AP , the concept of Ar
P -efficiency is

expressed to generate a subset of Pareto optimal solutions for r = 1, 2, . . .. Also,

we proved that the Ar
P -efficient sets are decreasing with respect to r, and the

intersection of these sets is the A∞P -efficient set. We investigated the relationship

between AP -efficient and AE-efficient solutions, where AE is derived from the

preference matrix AP . Moreover, two experiments were carried out on randomly

generated solutions to better compare the efficient solutions with the Ar
P -efficient

solutions and the AP -efficient solutions with the AE-efficient solutions. These

experiments show that the Ar
P -efficient set is significantly smaller than the efficient

set. Furthermore, the AE-efficient set is considerably smaller than the AP -efficient set.
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