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Abstract: For a connected graph G with vertex set {v1, . . . , vn}, the distance matrix

of G, denoted by D(G), is an n×n matrix with zero main diagonal, such that its (i, j)-
entry is d(vi, vj), where i 6= j and d(vi, vj) is the distance between vi and vj . Let

θ1, . . . , θn be the eigenvalues of D(G). The distance Estrada index of G is defined as
DEE(G) =

∑n
i=1 e

θi . In this paper we find some new sharp bounds for the distance

Estrada index of graphs. Our results improve the previous bounds on the distance

Estrada index of graphs.
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1. Introduction

In this paper we consider only simple graphs (finite and undirected, without loops

and multiple edges). Let G = (V (G), E(G)) be a simple graph. The order of G

denotes the number of vertices of G. For two vertices u and v by e = uv we mean the

edge e between the vertices u and v. By u ∼ v we mean that u and v are adjacent

(similarly, by u 6∼ v we mean that u and v are not adjacent). The degree of a vertex v

of G, denoted by degG(v), is the number of edges incident with v. A r-regular graph

is a graph such that every vertex of that has degree r. The distance between two

vertices u and v denoted by d(u, v) is the length of a shortest path between u and v.

The diameter of G denoted by diam(G) is the maximum of d(u, v) among all pairs

of vertices of u and v of G. A graph is called connected if there is at least one path

between any two vertices of that. The complement of G, denoted by G, is the simple

graph with vertex set V (G) such that two distinct vertices of G are adjacent if and

only if they are not adjacent in G. As usual the edgeless graph (empty graph), the

complete graph, the cycle, and the path of order n, are denoted by Kn, Kn, Cn and

Pn, respectively. By Kn1,...,nt we mean the complete multipartite graph with parts
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size n1, . . . , nt. In particular, the complete bipartite graph with part sizes m and n is

denoted by Km,n. For two disjoint graphs G and H, the disjoint union of G and H,

denoted by G ∪ H is the graph with the vertex set V (G) ∪ V (H) and the edge set

E(G)∪E(H). The graph rG denotes the disjoint union of r copies of G. The identity

matrix and the matrix whose all of entries are equal to 1 are denoted by I and J ,

respectively.

Let G be a simple connected graph with vertex set {v1, . . . , vn}. The distance matrix

of G, denoted by D(G) = [dij ], is the n× n matrix such that

dij :=

{
0, if i = j;

d(vi, vj), if i 6= j.

Since the distance matrix is real and symmetric, all of its eigenvalues are real. By

distance eigenvalues of G, denoted by θ1(G), . . . , θn(G), we mean the eigenvalues of

its distance matrix (see [9–11]).

In chemical graph theory, there are very important invariants. One of them is the

Estrada index. This index was introduced by Ernesto Estrada. We recall that the

Estrada index of a graph G of order n, denoted by EE(G), is defined as EE(G) =∑n
i=1 e

λi , where λ1, . . . , λn are the eigenvalues of the adjacency matrix of G. There

are remarkable variety of properties, chemical and non-chemical applications of the

Estrada index of graphs. For more details on some of the chemical applications of

this index we refer to [3–7]. Using power-series expansion of the function ex, we note

that

EE(G) =

+∞∑
t=0

At(G)

t!
,

where

At(G) =

n∑
i=1

λti.

It is well known that for every graph G of order n, A1(G) = 0, A2(G) = 2m and

A3(G) = 6t, where m is the number of edges and t is the number of triangles of G,

see [2].

Similar to the definition of the Estrada index, in [8] the authors defined the distance

Estrada index as follows. Let G be a connected graph of order n. The distance

Estrada index of G, denoted by DEE(G), is

DEE(G) =

n∑
i=1

eθi ,

where θ1, . . . , θn are the distance eigenvalues of G (the eigenvalues of D(G)).

In [1, 8, 14] some properties of the distance Estrada index of graphs have been ob-

tained. In [8] the authors found some bounds for this index in terms of the number
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of vertices and the number of edges of graphs. In this paper we study the distance

Estrada index of graphs and find some sharp bounds for this. We show that our

results generalize and improve the previous bounds on the distance Estrada index of

graphs that have been obtained in [8] and [14].

2. Distance Estrada index of graphs

In this section, we find some bounds for the Distance Estrada index of graphs in

terms of the number of vertices, the number of edges and the diameter of graphs.

Our approach is different from the other researchers. We use the next result to obtain

our bounds.

Theorem 1. [13] Let f(x1, . . . , xn) = ex1 + · · · + exn . Then the maximum and the
minimum value of the function f under the conditions

x1 + · · ·+ xn = 0 and x21 + · · ·+ x2n = k > 0, (2.1)

are as following. If k ≥ n, then for every (x1, . . . , xn) satisfying the conditions (2.1),

(n− 1)e

√
k

n(n−1) + e−
√

k(n−1)
n ≤ f(x1, . . . , xn) ≤ e

√
k(n−1)

n + (n− 1)e
−
√

k
n(n−1) .

Moreover in the left hand side the equality holds if and only if (xσ(1), . . . , xσ(n)) =
(−c, d, d, . . . , d) and in the right hand side the equality holds if and only if (xρ(1), . . . , xρ(n)) =

(c,−d,−d, . . . ,−d) for some permutations σ and ρ on {1, . . . , n}, where c =
√

k(n−1)
n

and

d =
√

k
n(n−1)

.

It is not hard to prove the following lemmas.

Lemma 1. Let A,B and C are positive numbers. Then the following hold:

(i) f(x) = e
√
Ax + Be−

√
Cx is a strictly increasing function on the interval [0,∞) if and

only if A ≥ B2C.

(ii) g(x) = Ae
√
Bx + e−

√
Cx is a strictly increasing function on the interval [0,∞) if and

only if A2B ≥ C.

Lemma 2. [13] Let B be a real symmetric matrix of order n such that the main diagonal
of B is zero and the other entries are positive. Then the following hold:

(i) The eigenvalues of B are α, β, . . . , β︸ ︷︷ ︸
n−1

where α > 0 and β < 0 if and only if n ≥ 2 and

B = t(J − I) for some positive real number t.

(ii) The eigenvalues of B are α, β, . . . , β︸ ︷︷ ︸
n−1

where α < 0 and β > 0 if and only if n = 2 and

B = t(J − I) for some positive real number t.
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Lemma 3. [8] Let G be a connected graph on n vertices v1, . . . , vn. Assume that θ1, . . . , θn
are the distance eigenvalues of G. Then the following hold:

θ1 + · · ·+ θn = 0 (2.2)

and

θ21 + · · ·+ θ2n = 2
∑

1≤i<j≤n

d(vi, vj)
2. (2.3)

Now we prove one of the main results of this paper. We remark that if G is a graph

with one vertex, then G = K1 and so DEE(G) = e0 = 1. Thus in continue we study

graphs of order n ≥ 2.

Theorem 2. Let G be a connected graph on n ≥ 2 vertices v1, . . . , vn and with m edges.
Let

S′ = 2
∑

1≤i<j≤n

d(vi, vj)
2.

Then

(n− 1)e

√
S′

n(n−1) + e−
√

S′(n−1)
n ≤ DEE(G) ≤ e

√
S′(n−1)

n + (n− 1)e
−
√

S′
n(n−1) . (2.4)

Moreover in the left hand side the equality holds if and only if G = K2 and in the right hand
side the equality holds if and only if G = Kn.

Proof. We note that for every adjacent vertices u and v of G, d(u, v) = 1. Hence

S′ ≥ 2m ≥ 2n − 2 ≥ n. By putting k = S′ in Theorem 1 and considering Lemma 3,

Equation (2.4) is obtained. Now we investigate the equality. By Theorem 1, on the

right hand side the equality holds if and only if the distance eigenvalues of G are√
S′(n− 1)

n
,−

√
S′

n(n− 1)
, . . . ,−

√
S′

n(n− 1)︸ ︷︷ ︸
n−1

.

Thus by the first part of Lemma 2 we find that D(G) = t(J − I) for some positive

number t. This shows that the entries of D(G) are 0 or t. If vivj is an edge of G, then

the (i, j)-entry of D(G) is equal to 1. Hence t = 1 and so D(G) = J − I. This shows

that G = Kn. Conversely for G = Kn the upper bound in (2.4) happens. Similarly,

by the second part of Lemma 2, one can prove the equality of the left hand side. The

proof is complete.

In [8] the authors find the following bounds for the distance Estrada index of graphs.
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Theorem 3. [8] Let G be a connected graph with n vertices and with m edges and with
diameter d. Then √

n2 + 4m ≤ DEE(G) ≤ n− 1 + ed
√
n(n−1),

and the equality holds in both sides if and only if G = K1.

Shang [14] found the following upper bound for the distance Estrada index of graphs

in terms of the Wiener index and the diameter of graphs. We recall that the Wiener

index [12] of a connected graph G, denoted by W (G), is

∑
1≤i<j≤n

d(vi, vj),

where V (G) = {v1, . . . , vn}.

Theorem 4. [14] Let G be a connected graph of order n and d = diam(G) and W =
W (G). Then

DEE(G) ≤ n− 1 + e
√
2dW ,

and the equality holds if and only if G = K1.

Here we improve the bounds of Theorem 3. In addition, we show that our bounds are

better than the bound of Theorem 4 for some families of graphs.

Theorem 5. Let G be a connected graph with n ≥ 2 vertices and m edges and d =
diam(G). Then

(n− 1)e

√
4n2−4n−6m

n(n−1) + e
−
√

(4n2−4n−6m)(n−1)
n ≤ DEE(G)

≤ e
√

d2n2−d2n−(2d2−2)m
n(n−1) + (n− 1)e

−
√

(d2n2−d2n−(2d2−2)m)(n−1)
n .

In addition, in the left hand side the equality holds if and only if G = K2 and in the right
hand side the equality holds if and only if G = Kn.

Proof. Let V (G) = {v1, . . . , vn} and

S′ = S′(G) = 2
∑

1≤i<j≤n

d(vi, vj)
2.

For every i 6= j, d(vi, vj) = 1 or 2 ≤ d(vi, vj) ≤ d. Thus

m+4(

(
n

2

)
−m

)
≤

∑
1≤i<j≤n,vi∼vj

d(vi, vj)
2+

∑
1≤i<j≤n,vi 6∼vj

d(vi, vj)
2 ≤ m+d2

((n
2

)
−m

)
.
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Therefore

4n2 − 4n− 6m ≤ S′ ≤ d2n2 − d2n− (2d2 − 2)m (2.5)

and the equality holds (in both sides) if and only if diam(G) ≤ 2. Let

f(x) = e

√
(n−1)x

n + (n− 1)e
−
√

x
n(n−1)

and

g(x) = (n− 1)e
√

x
n(n−1) + e−

√
(n−1)x

n .

By Theorem 2,

g(S′) ≤ DEE(G) ≤ f(S′) (2.6)

and in the left hand side the equality holds if and only if G = K2 and in the right

hand side the equality holds if and only if G = Kn.

On the other hand, by Lemma 1, f(x) and g(x) are strictly increasing functions on

the interval [0,∞). Thus by Equation (2.5), f(S′) ≤ f(d2n2− d2n− (2d2− 2)m) and

g(S′) ≥ g(4n2 − 4n − 6m) and the equality holds (for both of them) if and only if

diam(G) ≤ 2. Using Equation (2.6) we conclude that

g(4n2 − 4n− 6m) ≤ DEE(G) ≤ f(d2n2 − d2n− (2d2 − 2)m)

and the equality holds in the left hand side if and only if G = K2 and the equality

holds in the right hand side if and only if G = Kn. Since

f(d2n2−d2n−(2d2−2)m) = e

√
d2n2−d2n−(2d2−2)m

n(n−1) +(n−1)e−
√

(d2n2−d2n−(2d2−2)m)(n−1)
n

and

g(4n2 − 4n− 6m) = (n− 1)e

√
4n2−4n−6m

n(n−1) + e−
√

(4n2−4n−6m)(n−1)
n

the proof is complete.

Now we show that our bounds for the distance Estrada index (the bounds of Theo-

rem 5) are better than the bounds of Theorem 3. Assume that n ≥ 2. Related to the

upper bound note that d2n(n− 1) < d2n2(n− 1)2. Thus

√
d2n2 − d2n− (2d2 − 2)m

n(n− 1)
< d
√
n(n− 1).
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Therefore

e

√
d2n2−d2n−(2d2−2)m

n(n−1) < ed
√
n(n−1). (2.7)

On the other hand

e−
√

(d2n2−d2n−(2d2−2)m)(n−1)
n < 1 (2.8)

Now by inequalities (2.7) and (2.8), we obtain that

e

√
d2n2−d2n−(2d2−2)m

n(n−1) + (n− 1)e−
√

(d2n2−d2n−(2d2−2)m)(n−1)
n < n− 1 + ed

√
n(n−1).

Now we investigate the lower bound. Since 2m ≤ n2 − n, so

4n2 − 4n− 6m

n(n− 1)
≥ 1.

Thus

(n− 1)e

√
4n2−4n−6m

n(n−1) ≥ e(n− 1). (2.9)

On the other hand (for n ≥ 2),

e2(n− 1)2 > 7(n− 1)2 > 3n2 − 2n ≥ n2 + 4m.

This shows that (by inequality (2.9))

(n− 1)e

√
4n2−4n−6m

n(n−1) ≥ e(n− 1) >
√
n2 + 4m (2.10)

and so

(n− 1)e

√
4n2−4n−6m

n(n−1) + e−
√

(4n2−4n−6m)(n−1)
n >

√
n2 + 4m.

Remark 1. Let G be a connected graph of order n on vertices v1, . . . , vn. Let

S′(G) = 2
∑

1≤i<j≤n

d(vi, vj)
2.

Using the technique that we used in the proof of Theorem 5, by considering the lower bounds
and upper bounds for S′(G), one can find other bounds for the distance Estrada index of
graphs. Let d be the diameter of G. One can see that

n(n− 1) ≤ S′(G) ≤ n(n− 1)d2 ≤ n(n− 1)3. (2.11)

In addition, from the left, the first and the second equality holds if and only if G is the
complete graph Kn and in the right hand side the equality holds if and only if G is the
complete graph K1 or K2. Now by using these bounds for S′(G) and applying Theorem 2,
we obtain some bounds for the distance Estrada index of graphs (see the two following
results).
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Besides the upper bound of Theorem 5, the following upper bound also improves the

upper bound of Theorem 3 for the distance Estrada index of graphs.

Theorem 6. Let G be a connected graph of order n and with diameter d. Then

(n− 1)e+ e1−n ≤ DEE(G) ≤ ed(n−1) + (n− 1)e−d

and the equality holds in both sides if and only if G = Kn.

Remark 2. We note that the upper bound of Theorem 6 is better than the upper bound
of Theorem 2 for some families of graphs. For example one can check for stars the upper
bound of Theorem 6 is better that the upper bound of Theorem 2. We note that for n ≥ 2,
W (K1,n−1) = (n− 1)2 and for n ≥ 3, diam(K1,n−1) = 2.

Using Remark 1 we obtain an upper bound for the distance Estrada index of graphs

in terms of the number of vertices.

Theorem 7. Let G be a connected graph of order n. Then

DEE(G) ≤ e(n−1)2 + (n− 1)e1−n

and the equality holds if and only if G = K1 or G = K2.
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