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Abstract: For a graph G, the Sombor index of G is defined as SO(G) =∑
uv∈E(G)

√
deg(u)2 + deg(v)2, where deg(u) is referring to the degree of vertex u

in G. In this paper, we present a construction, namely Rk-construction which produce
infinitely many families of graphs whose Sombor indices are integers.
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1. Introduction

Throughout this paper, G = (V (G), E(G)) is a simple graph with V (G) as its vertex

set and E(G) as its edge set. The open neighborhood of a vertex v ∈ V (G), denoted

by NG(v) (or just N(v)) is the set {u : uv ∈ E(G)}. The degree of a vertex v, degG(v)

(or just deg(v)) is the number of neighbors of v in G, that is, deg(v) = |NG(v)|.
A graph invariant is a numerical quantity that remains the same under graph iso-

morphism. In chemical graph theory, graph invariants are usually referred to as the

topological indices, which are computed from the molecular graph of a chemical com-

pound. One of the widely studied topological indices recently is the Sombor index

which was introduced by Gutman [3]. The Sombor index of a graph G, denoted by

SO(G), is defined as

SO(G) =
∑

uv∈E(G)

√
deg(v)2 + deg(u)2.

Many papers have been published related to Sombor index, see for instance [1, 2, 4,

5, 9, 10]. One of the main focus related to Sombor index is studying the graphs in

which their Sombor indices are integers. The graphs with integer Sombor index have
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been studied in recent years, see for example, [6–8, 11, 12]. It was claimed in [2] that,

the Sombor index of a connected bipartite graph G is an integer if and only if G is

bipartite semi-regular and its two degrees δ and ∆ appear as non-maximal elements

in a Pythagorean triple. It was later shown in [7] that the ‘only if’ part of the claim

is not true. The author constructed infinite number of connected bipartite graphs

such that there are three or four distinct numbers in their degree sequences. In this

paper, we continue the study of graphs with integer Sombor index. We provide a

construction to produce from a given graph G with integer Sombor index infinitely

many families of graphs whose Sombor indices are integers.

2. The construction

Given a graph G and an integer k ≥ 2, the Rk-construction produces a graph Rk(G)

from G as follows: Let V (G) = {v1, v2, . . . , vn}. We consider k copies of G as

V (Gi) = {vi1, vi2, . . . , vin}, E
(
Gi
)

= {virvis|vrvs ∈ E(G)}

for i = 1, 2, . . . , k. Then

V (Rk(G)) =

k⋃
i=1

V
(
Gi
)

and

E(Rk(G)) =

k⋃
i=1

E
(
Gi
)⋃
{virvjs|i 6= j, vrvs ∈ E(G)}.

We illustrate here an example of the Rk-construction.

Example 1. Suppose that G is a graph with V (G) = {v1, v2, v3, v4, v5} as shown below:

v1 v2 v4 v5

v3

Figure 1. Graph G.

If k = 3, then R3(G) is constructed in Figure 2.
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Figure 2. Graph R3(G).

Also, we define Rl
k(G) iteratively as

Rl
k(G) = Rk

(
Rl−1

k (G)
)

for l ≥ 2.

The main result of this section is as follows.

Theorem 1. For each l ≥ 1 and k ≥ 2,

SO
(
Rl

k(G)
)
=

(
k3 + k2

2

)l

SO(G).

Proof. We only prove for l = 1. Then the result follows by an induction on l. So,

assume that l = 1. We will prove that

SO(Rk(G)) =

(
k3 + k2

2

)
SO(G).

From the definition of Sombor index, we know that

SO(Rk(G)) =
∑

uv∈E(Rk(G))

√
deg2

Rk(G)(u) + deg2
Rk(G)(v).

Notice that, for each vertex vij (for i = 1, 2, . . . , k, j = 1, 2, . . . , n), we have

degRk(G)

(
vij
)

= k degG

(
vj
)
.
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Now, we have

SO(Rk(G)) =
∑

uv∈E(Rk(G))

√
deg2

Rk(G)(u) + deg2
Rk(G)(v)

=

k∑
l=1

∑
vivj∈E(G)

√
deg2

Rk(G)

(
vli
)

+ deg2
Rk(G)

(
vlj
)

+
∑

1≤l,l′≤k,l6=l′

∑
vivj∈E(G)

√
deg2

Rk(G)

(
vli
)

+ deg2
Rk(G)

(
vl

′
j

)
.

= k

k∑
l=1

∑
vivj∈E(G)

√
deg2

(G)

(
vi
)

+ deg2
(G)

(
vj
)

+ k
∑

1≤l,l′≤k,l6=l′

∑
vivj∈E(G)

√
deg2

(G)

(
vi
)

+ deg2
(G)

(
vj
)
.

= k2SO(G) + k
(k

2

)
SO(G) =

(
k3 + k2

2

)
SO(G).

Since k3 + k2 is even, for each integer k, we obtain the following.

Corollary 1. If G is a graph with integer Sombor index, then for each l ≥ 1, k ≥ 2,
Rl

k(G) is a graph with integer Sombor index.

3. Concluding Remarks

The Randić index of a graph G is defined by

R(G) =
∑

uv∈E(G)

1√
deg(u) deg(v)

.

The reciprocal Randić index is defined by

RR(G) =
∑

uv∈E(G)

√
deg(u) deg(v).

Similar to Theorem 1, we can obtain the following:

Theorem 2. For each l ≥ 1, k ≥ 2,

RR
(
Rl

k(G)
)
=

(
k3 + k2

2

)l

RR(G) and R
(
Rl

k(G)
)
=

(
k + 1

2

)l

R(G).

The proofs are similar to that of Theorem 1 and are thus omitted.
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