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Abstract: Let G be a graph of order n with eigenvalues A1 > A2 > -+ > Ay. The
n
energy of G is defined as E (G) = Z [Ai|. In the present paper, new bounds on E(G)

i=1
are provided. In addition, some bounds of E(G) are compared.
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1. Introduction

Let G = (V,E) be a simple graph with n vertices and m edges, where V =
{v1,v2,...,v,}. If v; and v; are two adjacent vertices of G, it is denoted by ¢ ~ j.
Denote by A = dy > dy > --- > d, = 0 the vertex degree sequence of G. The
Randié¢ index of G is one of the most important graph topological indices defined as

R(G) =3, \/ﬁ [31] (see also [21]).

Let A (G) be the (0,1) —adjacency matrix of a graph G. Eigenvalues of A (G), A\ >
A2 > -+ > Ay, are the eigenvalues of G. Denote by |Aj| > |\5| > -+ > |\’ the non-
increasing arrangement of the absolute values of eigenvalues of G. For the spectral
radius A; of G, it is a well known fact that Ay = |[Af]. Evidently,

AT+ DS+ X =2m
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and

[T 121 = Idet A].
i=1

One of the most studied graph spectrum-based invariants in graph theory is the graph
energy defined in [19]. It is calculated as

EG)=Y_IN=>_Inl
=1 =1

Details on the theory and applications of F (G) including its basic properties and
various bounds can be found in monograph [23] and recent papers [5, 9, 15, 16, 20,
26, 27]. We now list some bounds on E (G), reported earlier in the literature.

Two of the present authors [27] proved that

2m +n 7] |\
E@G) > n
AT+ AR

and obtained the following inequality as a corollary of (1.1)

2/Zmn NI

B TR 12
which was established in [12]. However, the equality case was not given properly
in [27]. This was corrected in [9]. Nine years after paper [12] was published, the
inequality (1.2) was again proved by Oboudi [30]. More interestingly, the author [30]
proved (1.1) as an intermediate result, while proving (1.2). In [20], the inequality
(1.2) was named as Oboudi-type inequality. It is worth mentioning here that the
inequalities (1.1) and (1.2) were obtained as special case of one more general result
reported in [25].

Very recently, Filipovski [15] obtained that

2m
> — .
EG)2 % (13)
and for triangle-free graphs
E(G) <V2nR(G), (1.4)

where R (G) is Randi¢ index of G.
In this paper, we obtain new bounds for F(G). In addition, we compare some bounds
of E(G).
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2. Lemmas

In this section, we list some preliminary lemmas that will be used in the subsequent
section.

Lemma 1. [7] Let ax > a2 > -+ > an > 0 be a sequence of positive real numbers. Then

a + an)2)1/n

a1+-~+anZn(a1a2-~~an)l/n(( 1aa (2.1)
1Un

Equality holds if a2 = a3 =+ = an_1 = L2522

Lemma 2. [18] For ai,az,...,an >0 and p1,p2,...,pn > 0 such that > pi =1,

Y pia; — - al’ > n L Y a; — - aj/n , (2.2)
—y i—1 i i—1

where A = min{p1, p2,...,pn}. Moreover, the equality in (2.2) holds if and only if a1 = a2 =

= QAp.

Lemma 3. [22] Let p = (p;) and a = (a;), i = 1,2,...,n, be sequences of positive real
numbers such that

n
Zpizl and O0<r<a; <R.
i=1

Then )
i P~ kg — . 2.3

Sra3ti< (V) )
Lemma 4. [29, 32] Let p = (p;) and a = (a;), i = 1,2,...,n, be real number sequences
such that

Zpizl and O0<r<a; <R.

i=1
Then

n n
Di
pia; +T7RY — <r+4+R. (2.4)

Remark 1. From the inequality between arithmetic and geometric means (AM-GM), we
obtain

n

2 rRilpiaiZfZ§ilpiai+rRZn1§Z§r+R. (2.5)

i=1

Having this in mind, the inequality (2.3) can be obtained from (2.4), that is (2.3) is a
corollary of (2.4).
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Lemma 5. [28] Letx = (;),i=1,2,...,n, be a real number sequence with the properties
n n

in:() and Z\a}”zl.

i=1

i=1

Then for any real number sequence a = (a;), 1 = 1,2,...,n, holds

Zaixi < = ( max a; — min ai> . (2.6)
pt 2 \1<i<n 1<i<n
Lemma 6. [29] Let p= (p;), i =1,2,...,n, be a sequence of non-negative real numbers
and a = (a;), i = 1,...,n, a sequence of positive real numbers. Then for any real v, r < 0

orr >1, holds
n r—1 , n r
(zpz-) S pual > (zp> | o
=1 =1 =1

When 0 < r < 1, the opposite inequality is valid. FEquality holds if and only if either r = 0,
orr=1,0ra1=--=ap,orpr=--=pr=0and 41 =+ =an, 0r a1 = -+- = a¢ and
Pi41 = - = Pn, for somet, 1 <t <n-—1.

Lemma 7. [28] Let p = (pi), a = (a;) and b = (b;), i = 1,2,...,n, be positive real
number sequences such that a = (a;) and b= (b;) are of similar monotonicity. Then

> Y piaibi = > piai y_ pibi. (2.8)
=1 i=1 i=1 i=1
Equality holds if and only if a1 = --- =an orby =--- =by.

Lemma 8. [11] Let G be a graph with n vertices, m edges and vertex degree sequence
dy >dy>--->dy,. Then

E(G) < zn: Vi . (2.9)

Lemma 9. [13] Let G be a triangle-free graph with n vertices and m edges. Then,

M <Vm<R(G),

where R (G) is Randié index of G.
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3. Main Results

Theorem 1. Let G be a non-singular graph with n vertices and m edges and let |\}| >

[A3] > -+ > |An] > 0 be a non-increasing arrangement of the absolute values of eigenvalues
of G. Then
2m — A}
E(G)> M+ 221 (3.1)
23]
Equality in (3.1) holds if and only if |N5| =--- = |\;].

Proof. Observe that

n n
* * *12 *
|/\2‘Z|/\i| ZZ\)\H =2m — \”
=2 1=2

that is,
2 _ A*2
E(G) N > =
A3
wherefrom the inequality (3.1) is obtained. Moreover, the equality in (3.1) holds if
and only if [A5| =+ = |A%]. O

Remark 2. We should note that

2m — A\ _ 2m
E@G)> M+ > 2"
(D225 =

when A\ = [A]] # |A3|. By the above result and the fact that A1 < A [§],

2m — \? 2m _ 2m
E > —_— > > 2
(G)> M+ Nl S S A (3.2)

This implies that the lower bound (3.1) is stronger than the lower bound (1.3).

Remark 3. Notice that the following inequality is valid

2m +n || [AL]  2m
Zmrnidilidn] 5, 2M 33
IR (3:3)

since A\; > 22 >, /2™ [g] for all connected non-singular graphs. Considering (1.1), (3.2)

and (3.3), we deduce that the lower bound (1.1) is stronger than the lower bound (1.3) for
connected non-singular graphs.

Corollary 1. Let G be a graph with n vertices and m edges. Then

4dm

> .
A

Equality holds if and only if \i =---=Xp = —dpp1 =+ = —Apn, n = 2p.
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The inequality (3.4) is a special case of one inequality proved in [10].

Remark 4. From (3.2) and (3.4), the following is valid

4m 2m 2m

> A A 2T
E(G)_)\l—An_)\l - A7

which implies that the lower bound (3.4) is stronger than the lower bound (1.3).

Remark 5. Caporossi et al. [6] presented the following lower bound based on the number
of edges as:

E(G) >2ym. (3.5)
Considering (1.1) and (3.3) with Lemma 9, we have that

2m 4+ n| AT AL _ 2m
EG) > —F————F7>—>2ym.
(@)= M+ T T

This implies that the lower bound (1.1) is stronger than the lower bound (3.5) for connected
non-singular triangle-free graphs.

Remark 6. McClelland [24] obtained the following upper bound for graph energy involv-
ing the number of vertices and the number of edges:

E(G) <V2mn. (3.6)

From (3.6) and Lemma 9, one can easily arrive at the upper bound (1.4) obtained in [15].
Moreover, it can be concluded that (3.6) is stronger than (1.4) for triangle-free graphs.

Theorem 2. Let G be a non-singular graph with n vertices, m edges and mazimum
degree A. Let |AT| > |A5] > -+ > |An] > 0 be a non-increasing arrangement of the absolute
values of eigenvalues of G.Then

_ 2 _ * *
E(G)>A+2m A%+ (n 1)|)\2||)\n\'

3.7
= PN (3.7)

Equality in (3.7) holds if and only if G is regular graph with the property |\j| = |\,| or
IAi| =[N3 for anyi=2,...,n.

Proof.  Since |\%| < |Af| < |A3] for any ¢ = 2,...,n, we have that
(AT = IARD (AT = [A2]) < 0.

From the above, we arrive at

(1P = T OXS1+ X3 + Dl al) <o,

n
=2
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that is
2m = A1 — (3] + DE(G) = M) + (n = D3I <0,
ie. )
2m — A+ (n — 1) | N3] A%
E(G) >\ + LA nl (3.8)

Azl + A5

Now consider the function f (x) defined by
2m — z2

f) =24+ e

Azl + A

It can be easily shown that f is decreasing with respect to the x. Since A; < A [§],
we get that
2m — A?

FO) 2 FA) =2+ 7 (3.9)
As]+ A%

Thus, by (3.8) and (3.9), we obtain (3.7). The equality in (3.7) holds if and only if

all inequalities used in the derivation of (3.7) must be equalities. This implies that G

is regular graph with the property |\f| = |A%| or [Af| = |A\5| for any i =2,...,n. O

Corollary 2. Let G be a non-singular graph with n vertices, m edges and mazimum
degree A. Let |A1| > |A5] > -+ > |A%| > 0 be a non-increasing arrangement of the absolute
values of eigenvalues of G. Then

2¢/2m (n — 1) N3] [Ag] — A
FE > A .
(@) =4+ ENH

(3.10)

Remark 7. Recall that the equality in (3.7) holds if and only if G is regular graph
with the property |Aj| = |An| or |Aj| = |A3] for any ¢ = 2,...,n. For instance, line graph of
Petersen graph G is a 4-regular graph with 15 vertices, 30 edges and spectrum

{4, [£2°, [-1*}.

For this graph, E (G1) = 28. On the other hand, the lower bounds (3.7) and (1.1) give the
values 28 and 24, respectively.

Akbari and Hosseinzadeh [3] propose the following conjecture.

Conjecture 3.1. [3] For every non-singular graph G, E(G) > A + § and the equality
holds if and only if G is a complete graph.

The proofs of special cases of this conjecture were given in recent papers [1, 2, 4, 17].
The lower bound (3.7) yields a new case when Conjecture 3.1 holds.
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Corollary 3. Let G be a non-singular graph with n vertices, m edges and mazimum
degree A. Let |AT| > |A5] > - > |An] > 0 be a non-increasing arrangement of the absolute
values of eigenvalues of G. If G has the following property

2m — A%+ (n — 1) [A3] [An] > 6 (IA5] + L))
then
E(G)>A+54.

The proof of the next theorem is analogous to that of Theorem 2, thus omitted.

Theorem 3. Let G be a non-singular bipartite graph with n vertices, m edges and
mazimum degree A. Let |AT| > [A3] > -+ > |A,| > 0 be a non-increasing arrangement of the
absolute values of eigenvalues of G. Then

m — 202 + (n — 2) | 5] A%

2
E(G) > 2A +
@)=z IHEDSH

(3.11)

Equality in (3.11) holds if and only if G is a bipartite regular graph with the property |\j| =
[An] or |AT| = |[A3] for anyi=3,...,n.

Corollary 4. Let G be a non-singular bipartite graph with n vertices, m edges and
mazimum degree A. Let |AT| > [A3] > -+ > || > 0 be a non-increasing arrangement of the
absolute values of eigenvalues of G. Then

_ * * [ 2
22A+2\/2m(n NI 2A_

E
©) ]+ ]

(3.12)

Remark 8. The equality in (3.11) holds if and only if G is a bipartite regular graph with
the property |Aj| = |A;| or |[Aj]| = |A3] for any ¢ = 3,...,n. Recall that Franklin graph G is
a 3-regular bipartite graph with 12 vertices, 18 edges and spectrum

{i3, [i\/ﬁr, [i1]3}.

For graph G2, E (G2) = 12+4+/3. Moreover, the lower bound (3.11) gives 12+ 4+1/3 whereas
the lower bound (1.1) gives 18.

For a; = |Af|,7i=2,3,...,n, from (2.1) we obtain the following result.

Proposition 1.  Let G be a graph with n vertices. Let |A\T| > -+ > [A5]| > 0 be a
non—increasing arrangement of the absolute values of eigenvalues of G. Then

| det A|>”(“> (<|A;| + A:D?)”("”

EG) > M+ (n—-1
@2 x+m- (15 T

Equality holds when [A\3] = -+ = |\h_1| = W
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Theorem 4. Let G be a graph with n vertices and m edges, where 2m > n. Then for
any real &, \1 > € > 277"

(k+1)n—k
(k+1D)n(n—1)
E(G) 2 ¢+ (n—1) ((k+1)%k|detA|l/"). (3.13)

Equality in (3.13) holds if and only if G = S K> (n is even).

Proof. Let us take, a; = |\}| for i = 1,2,...,n, p1 = ﬁ and p; = %
for i =2,...,n, in (2.2), where k > 0 is a real number. Then, we get the following

inequality

4 (ktln—k e L ek
)\1“!‘ Z‘)\ﬂ_)\l( +)nH|A;"|(k+l)n(n71)
(k+1n™" " (k+1)n(n—1) = 11

> k+1 Zu kHHuW"
that is,

et A|W

EG)>M+(k+1)(n—1) —k(n—1)|det A" (3.14)
)\m
Consider the function f (x) defined as
k+1)(n—1 (i yn—k
f (x) =+ % |det A| (kiir)mn—kn .
L TFDE=D

It can be easily seen that

(k+)n—k (k+)n—k

J(z) =1—|det A ETicEy T GFD(-D

and f is increasing for = > |det A\l/n. Then, for any real £, A\; > £ > 22

A1>§>2ﬂ> 2sz(G)

n n n

> |det A"
(see, Theorem 2.2 in [5]). Thus

\det A| <k+1>r2(w 1)

gm

F) =2 f() =6+ (k+1)(n—-1)
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Combining this with (3.14), we get the desired lower bound (3.13). Assume that the
equality in (3.13) holds. Then,

A= ] = € and [M] = A3 = - = X

The above conditions imply that the equality in (3.13) holds if and only if G = 5 Ko
(n is even). O

Corollary 5. Let G be a graph with n vertices and m edges, where 2m > n. Then

(k+1)n—k
R+)n(n—1)
E@ =2 f =) [ (1) 9ATTTD e apin ) (3.15)

Equality in (3.15) holds if and only if G = S K> (n is even).

Remark 9. The following inequalities were obtained in [5]

1/(n—1)
E(G) > %m +(n—1) (”‘%JA') (3.16)

and -
E(G)>E+(n—1) ('dezA|> , (3.17)

where £ is a real number such that Ay > £ > 2™ Note that (3.16) and (3.17) are, respectively,
obtained from (3.15) and (3.13) for k = 0.

Theorem 5. Let G be a graph with n vertices. Then
E(G) < n (IX]+ Xl = AT X [det 4] 77 (3.18)
Equality holds if and only if G = 5 K>, where n is even.

Proof. For p; =1, a; = |X;|, R=|\{|, r = |\;], i = 1,...,n, the inequality (2.4)
becomes

1 & NN o= 1
f§ 2| 4 2l E < |\* AL
ni:1| 7,|+ n P |>\:<| —| 1‘+| n|7

that is
* * = 1 * *
E(G)+|A1||)\n|§:7|/\>,<| < (AT + N0 - (3.19)
i=1 17
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D) g,

On the other hand, from the AM—GM inequality, we have that

_ 3.20

Z |)\* |detA|1/" (3:20)
Now from (3.19) and (3.20) we arrive at (3.18).
Equality in (3.20) holds if and only if [A]| = --- = ||, which implies that equality
in (3.18) holds if and only if G = 3 K5, where n is even. O
Having in mind (2.5) we have the following corollary of Theorem 5.
Corollary 6. Let G be a graph with n vertices. Then

* *1\2 1/n

AN A%

The inequality (3.21) was proven in [16].
The proof of the next theorem in analogous to that of Theorem 5, hence omitted.

Theorem 6. Let G be a graph with n > 3 vertices. Then

A\ Ve
E(G) <X+ (n—1) |)\2|+|An‘_|)‘2||An‘(ldetA‘> ’

Equality holds when [A\3] = -+ = |\}].

Corollary 7. Let G be a graph with n > 3 vertices. Then

i sl 1 |det A\ 1/(n=1)
E <A .
(@) < IA; ( PoRaii
Equality holds when [A\3] = -+ = |A\}].
For z; = E?&)’ i=1,2,...,n, from (2.6) the following result is obtained.

Proposition 2. Let G be a graph with n vertices and m edges. Then for any real number
sequence a = (a;), 1 = 1,2,...,n, holds

(max a; — min ai> E(G)

1<i<n 1<i<n

2

(3.22)
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Corollary 8. Let G be a graph with n vertices and vertex degree sequence A = dy > da >
-->d,=6>0. Then
D didi < w . (3.23)
=1

Equality holds if G is a reqular graph.

The inequality (3.23) was proven in [14].

Theorem 7. Let G be a graph with n > 2 vertices, m edges and without isolated vertices.
Then

VA+VE- /2
Niv .

Equality holds if and only if = 3 K, for even n.

2m (
EG) < (3.24)

Proof. For p; = 4%, a; = /d;, i = 1,2,...,n, r = V5, R = VA, the inequality
(2.4) transforms into

ST a2+ VA Vi < 2m(VA + V). (3.25)
i=1 i=1
On the other hand, for r = %, pi =1, a; =d;, i = 1,2,...,n, the inequality (2.7)
becomes
n 2 ., n 3/2
i=1 i=1 i=1
that is

. 2m
N d? > 2my = (3.26)
=1

From (3.25) and (3.26) we obtain that

2m1/27m+\/A76i\/d7§2m(\/Z+\/3),

that is
. 2m (VA + Vo - /22
d; < .
; VAL
Now from the above and (2.9) we arrive at (3.24).
Equality in (3.26) holds if and only if d; = dy = -+ - = d,,, which implies that equality

in (3.24) holds if and only if G = § K>, for even n. O
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Denote by D = diag(dy,da, . .., d,) the diagonal degree matrix of graph G. In the next
corollary, we give an upper bound for E(G) in terms of m, A, ¢ and the determinant
of the matrix D, (detD).

Corollary 9. Let G be a graph with n > 2 vertices, m edges and without isolated vertices.
Then

E(G) < (2m(\/Z +/3) — n(det DY*/ <2“>) . (3.27)

-
(=9

Equality holds if and only if G = 5 K2, for even n.

Proof.  Since
n n 1/n
Z df/Q >n (H d§/2> = n(det D)3/ (") |
i=1 i=1

From the above and inequality (3.25) we obtain

Y ! 3/(2n
> @ST(Qm(\/E+\/3)_n<detD) e

(9]

i=1
From the above and inequality (2.9) we obtain (3.27). O

Theorem 8. Let G be a graph with n > 2 vertices and m edges. Then

n

B(G) < 2 (2m+ M (G)). (3.28)

4m

Equality holds if and only if G = 5 K>, for even n, or G = K,.

Proof. For p; =1, a; = ||, b; =d;, i =1,2,...,n, the inequality (2.8) becomes
n Y Al > Y XD di = 2mE(G). (3.29)
i=1 i=1 i=1

Bearing in mind the AM—GM inequality, we have that
s n 2, g2y _ 1
nzmui <32 (NP +df) = 52m+Mi(G). (3.30)

i=1

From (3.29) and (3.30) we obtain

2mE(G) < = (2m + Mi(G)),

|3
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from which (3.28) is obtained.

Equality in (3.29) holds if and only if dy = -+ = d,,, or |Aj| = --- = |A%|. Equality
in (3.30) holds if and only if |Af| = d;, for every i = 1,2,...,n. This implies that
equality (3.28) holds if and only if [A]| = --- = |Ay|, that is if and only if G = § K>,
for even n, or G = K,,. O

Since M1(G) < 2mA we have the next corollary of Theorem 8.

Corollary 10. Let G be a graph with n > 2 vertices. Then

E(G) <

|3

(1+A4). (3.31)
Equality holds if and only if G = 5 Ka, for even n.

Remark 10. In [33, Theorem 2.1] the following upper bound on F(G) was proven

E(G) < ng(G). (3.32)

The upper bounds (3.28) and (3.31) are incomparable with (3.32). Thus, for example, when
G = K5, the exact value is E(G) = 8, while the bound (3.32) is equal to 10, and both
bounds (3.28) and (3.31) are equal to 12.5. However, when G 2 Ps, the exact value is
E(G) = 5.4641, while the bound (3.32) is equal to 19.799, and bounds given by (3.28) and
(3.31) are equal to 6.875 and 7.5, respectively.
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