

Research Article

On the A_{α} -spectrum of the k-splitting signed graph and neighbourhood coronas

Shariefuddin Pirzada*, Mir Riyaz ul Rashid[†]

Department of Mathematics, University of Kashmir, Srinagar, India *pirzadasd@kashmiruniversity.ac.in †mirriyaz4097@gmail.com

> Received: 10 May 2024; Accepted: 13 June 2024 Published Online: 28 June 2024

Abstract: Let $\Sigma=(G,\sigma)$ be a signed graph with adjacency matrix $A(\Sigma)$ and D(G) be the diagonal matrix of its vertex degrees. For any real $\alpha\in[0,1]$, the A_{α} -matrix of a signed graph Σ is defined as $A_{\alpha}(\Sigma)=\alpha D(G)+(1-\alpha)A(\Sigma)$. Given a signed graph Σ with vertex set $V=\{v_1,v_2,\ldots,v_n\}$, the k-splitting signed graph $S_k(\Sigma)$ of Σ is obtained by adding to each vertex $v\in V(\Sigma)$ new k vertices say u^1,u^2,\ldots,u^k and joining every neighbour say u of the vertex v to $u^i, 1\leq i\leq k$ by an edge which inherits the sign from uv. In this paper, we determine the A_{α} -spectrum of $S_k(\Sigma)$ in case of Σ being a regular signed graph. For k=1, we introduce two distinct coronas of signed graphs Σ_1 and Σ_2 based on $S_1(\Sigma_1)$, namely the splitting V-vertex neighbourhood corona and the splitting S-vertex neighbourhood corona. By examining the A_{α} -characteristic polynomial of the resulting signed graphs, we derive their A_{α} -spectra under certain regularity conditions on the constituent signed graphs. As applications, we use these results to construct infinite pairs of nonregular A_{α} -cospectral signed graphs.

Keywords: signed graph; k-splitting signed graph, regular signed graph, net-regular signed graph, A_{α} -matrix, cospectrality.

AMS Subject classification: 05C22, 05C50

1. Introduction

Let G be a simple graph of order n with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and the edge set E(G). The signed graph $\Sigma = (G, \sigma)$ is a graph G together with a function $\sigma \colon E(G) \longrightarrow \{+1, -1\}$ called the signature of G. If $\sigma(e) = 1$ (respectively, $\sigma(e) = -1$) for every edge e, then σ is called the all-positive (respectively, all-negative) signature and $\Sigma = (G, \sigma)$ is called an all-positive (respectively, all-negative) signed graph. The underlying graph G is interpreted as a signed graph where all its edges are positive. The degree of a vertex v in Σ is its degree in G. The number of positive edges incident

^{*} Corresponding Author

with a vertex v is the positive degree of v, denoted by d_v^+ and the number of negative edges incident with v is the negative degree of v, denoted by d_v^- . The net degree d_v^{net} is the difference between positive and the negative edges incident with v. Accordingly, Σ is s-net-regular if d_v^{net} =s, for every vertex v of Σ . Finally, Σ is co-regular (or (r, s)-co-regular) if the underlying graph G is r-regular and Σ is s-net-regular [4]. For other basic notions and concepts, see [15].

For a signed graph Σ with vertex set V and $U \subset V$, Σ^U denotes the signed graph obtained from Σ by reversing the sign of every edge between U and $V(G) \setminus U$. We say that Σ and Σ^U are switching equivalent. In matrix terminology, the signed graphs Σ and Σ' are switching equivalent if there exists a diagonal matrix X with ± 1 on the main diagonal such that $A(\Sigma') = X^{-1}A(\Sigma)X$. Two signed graphs are switching isomorphic if one of them switches to a signed graph that is isomorphic to the other one.

Let A(G) be the adjacency matrix of G and D(G) the diagonal matrix of vertex degrees of G. In [11], Nikiforov introduced the A_{α} -matrix as the convex linear combination of D(G) and A(G), that is $A_{\alpha}(G) = \alpha D(G) + (1 - \alpha)A(G)$ where $\alpha \in [0, 1]$. Various results on A_{α} -matrix can be seen in [7, 8, 12, 13]. The adjacency matrix $A(\Sigma) = (a_{ij})$ of a signed graph Σ is an $n \times n$ matrix in which $a_{ij} = \sigma(v_i v_j)$ if v_i and v_i are adjacent and 0 otherwise. The eigenvalues of Σ are identified to be the eigenvalues of $A(\Sigma)$ and they form the spectrum of Σ . The eigenvalues of the adjacency matrix $A(\Sigma)$ of a signed graph Σ are denoted by $\lambda_1(\Sigma), \lambda_2(\Sigma), \ldots, \lambda_n(\Sigma)$. In [2], Belardo et al. introduced the notion of A_{α} -matrix in signed graphs and defined it as $A_{\alpha}(\Sigma) = \alpha D(G) + (1-\alpha)A(\Sigma)$ where $\alpha \in [0,1]$. Pasten et al. [14], studied some basic properties of $A_{\alpha}(\Sigma)$ and obtained some bounds for its eigenvalues. The A_{α} -characteristic polynomial $|xI - A_{\alpha}(\Sigma)|$ and the eigenvalues of the A_{α} -matrix of a signed graph Σ are denoted by $\phi_{\Sigma}(x)$ and $\lambda_1(A_{\alpha}(\Sigma)), \lambda_2(A_{\alpha}(\Sigma)), \ldots, \lambda_n(A_{\alpha}(\Sigma)),$ respectively. The set of all eigenvalues of $A_{\alpha}(\Sigma)$ together with their multiplicaties is called the A_{α} -spectrum of Σ . Two signed graphs are cospectral (resp. A_{α} -cospectral) if they are not switching isomorphic, but share the same spectrum (A_{α} -spectrum).

Until now, researchers have explored the A_{α} -spectrum of various graph operations. For instance, in [6], Li et al. studied the A_{α} -spectrum of graph products, Tahir et al. [20], studied the A_{α} - eigenvalues of coronae graphs. Some other results on A_{α} -spectrum of graph operations can be seen in [1, 16]. Recently, the spectra of some graph operations based on splitting graph have been studied in [5, 9]. Also some recent work on spectra of signed graphs can be seen in [18, 19].

Motivated by the above works, in this paper we first define the k-splitting signed graph $S_k(\Sigma)$ of Σ and determine its A_{α} -spectrum in case of Σ being regular. We introduce two distinct coronas of signed graphs Σ_1 and Σ_2 based on $S_1(\Sigma_1)$, namely $S_1(\Sigma_1)\dot{\nabla}\Sigma_2$ -the splitting V-vertex neighbourhood corona and $S_1(\Sigma_1)\overline{\nabla}\Sigma_2$ -the splitting S-vertex neighbourhood corona. By examining the A_{α} -characteristic polynomial of the resulting signed graphs, we derive their A_{α} -spectra under certain regularity conditions on the constituent signed graphs. As applications, we use these results to construct infinite pairs of nonregular A_{α} -cospectral signed graphs.

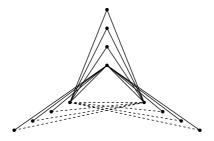


Figure 1. The k-splitting signed graph of a signed triangle with one negative edge and k = 3. Negative edges are dashed.

2. A_{α} -spectrum of k-splitting signed graph

We will use the symbols O, I and \mathbf{j} to denote the all-zero matrix, the identity matrix and the all-one column vector, respectively. In all cases, the size may be given in the subscript.

The Kronecker product $A \otimes B$ of two matrices $A = (a_{ij})_{m \times n}$ and $B_{p \times q}$ is the $mp \times nq$ matrix obtained from A by replacing each element a_{ij} by $a_{ij}B$. This is an associative operation with the property that $(A \otimes B)^T = A^T \otimes B^T$ and $(A \otimes B)(C \otimes D) = AC \otimes BD$ whenever the product AC and BD exist. The later implies $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$ for non-singular matrices A and B. Moreover, if A and B are $n \times n$ and $p \times p$ matrices, then $\det(A \otimes B) = (\det A)^p(\det B)^n$.

The *M*-coronal $\chi_M(x)$ of an $n \times n$ square matrix *M* is defined to be the sum of the entries of the matrix $(xI_n - M)^{-1}$, that is, $\chi_M(x) = \mathbf{j}_n^{\mathsf{T}}(xI_n - M)^{-1}\mathbf{j}_n$ [10]. If *M* has a constant row sum *l*, then $\chi_M(x) = \frac{n}{x-l}$.

Lemma 1 (Schur complement formula, [3, Lemma 2.2]). Let A_1 , A_2 , A_3 , A_4 be, respectively, $p \times p$, $p \times q$, $q \times p$, $q \times q$ matrices, with A_1 and A_4 invertible. Then

$$\det \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix} = \det A_4 \cdot \det(A_1 - A_2 A_4^{-1} A_3)$$
$$= \det A_1 \cdot \det(A_4 - A_3 A_1^{-1} A_2).$$

Let $\Sigma = (G, \sigma)$ be a signed graph with vertex set $V(G) = \{v_1, v_2, \dots, v_n\}$ and edge set E(G) with |E(G)| = m. The k-splitting signed graph $S_k(\Sigma)$ of Σ is obtained by adding to each vertex $v \in V(\Sigma)$ new k vertices say u^1, u^2, \dots, u^k and joining every neighbour say u of the vertex v to u^i , $1 \le i \le k$ by an edge which inherits the sign from uv. The signed graph $S_k(\Sigma)$ has n(k+1) vertices and m(2k+1) edges. Note that for k=1, the signed graph $S_1(\Sigma)$ is called the splitting signed graph of Σ [17]. An example of k-splitting signed graph is illustrated in Figure 1. We label the vertices of $S_k(\Sigma)$ as follows. Let $V(G) = \{v_1, v_2, \dots, v_n\}$ and $\{u_i^1, u_i^2, \dots, u_i^k\}$ denote the vertex set added corresponding to vertex v_i for $1 \le i \le n$. Let $V^j(G) = \{u_j^1, v_j^2, \dots, v_n^j\}$,

 $1 \le j \le k$. Then

$$V(G) \cup V^{1}(G) \cup V^{2}(G) \cup \ldots \cup V^{k}(G)$$

$$(2.1)$$

is the partition of $V(S_k(\Sigma))$. The degree of the vertices of $S_k(\Sigma)$ are

$$\begin{split} d_{S_k(\Sigma)}(v_i) &= (k+1)d_{\Sigma}(v_i), \quad \text{for} \quad i=1,2,\ldots,n \text{ and} \\ d_{S_k(\Sigma)}(u_i^j) &= d_{\Sigma}(v_i), \quad \text{for} \quad i=1,2,\ldots,n \text{ and } 1 \leq j \leq k. \end{split}$$

In the following theorem, we show that the operation on Σ , resulting in a k-splitting signed graph $S_k(\Sigma)$ preserves the switching equivalence.

Theorem 1. If Σ_1 and Σ_2 are switching equivalent signed graphs, then $S_k(\Sigma_1)$ and $S_k(\Sigma_2)$ are also switching equivalent.

Proof. Given that Σ_1 and Σ_2 are switching equivalent, therefore $A(\Sigma_1) = X^{-1}A(\Sigma_2)X$, for some switching matrix X. We have

$$A(S_{k}(\Sigma_{1})) = \begin{pmatrix} A(\Sigma_{1}) & A(\Sigma_{1}) & \dots & A(\Sigma_{1}) \\ A(\Sigma_{1}) & O_{n \times n} & \dots & O_{n \times n} \\ \vdots & \vdots & \vdots & \vdots \\ A(\Sigma_{1}) & O_{n \times n} & \dots & O_{n \times n} \end{pmatrix}$$

$$= \begin{pmatrix} X^{-1}A(\Sigma_{2})X & X^{-1}A(\Sigma_{2})X & \dots & X^{-1}A(\Sigma_{2})X \\ X^{-1}A(\Sigma_{2})X & O_{n \times n} & \dots & O_{n \times n} \\ \vdots & \vdots & \vdots & \vdots \\ X^{-1}A(\Sigma_{2})X & O_{n \times n} & \dots & O_{n \times n} \end{pmatrix}$$

$$= \begin{pmatrix} X^{-1} & O & \dots & O \\ O & X^{-1} & \dots & O \\ \vdots & \vdots & \vdots & \vdots \\ O & O & \dots & X^{-1} \end{pmatrix} \begin{pmatrix} A(\Sigma_{2}) & A(\Sigma_{2}) & \dots & A(\Sigma_{2}) \\ A(\Sigma_{2}) & O_{n \times n} & \dots & O_{n \times n} \\ \vdots & \vdots & \vdots & \vdots \\ A(\Sigma_{2}) & O_{n \times n} & \dots & O_{n \times n} \end{pmatrix} \begin{pmatrix} X & O & \dots & O \\ O & X & \dots & O \\ \vdots & \vdots & \vdots & \vdots \\ O & O & \dots & X \end{pmatrix}$$

$$= D^{-1}A(S_{k}(\Sigma_{2}))D,$$

and we are done, since the adjacency matrices are switching similar.

Next, we compute the A_{α} -spectrum of $S_k(\Sigma)$ when Σ is r-regular. Observe that if $\lambda(\Sigma)$ is an eigenvalue of r-regular signed graph Σ , then $\alpha r + (1 - \alpha)\lambda(\Sigma)$ is the A_{α} -eigenvalue of Σ .

Theorem 2. Let Σ be the r-regular signed graph with n vertices and eigenvalues $\lambda_1(\Sigma)$, $\lambda_2(\Sigma), \ldots, \lambda_n(\Sigma)$. The A_{α} -spectrum of $S_k(\Sigma)$ consists of

- (i) αr with multiplicity (k-1)n and
- (ii) the roots of $x^2 ((k+2)\alpha r + (1-\alpha)\lambda_i(\Sigma))x + \alpha r((k+1)\alpha r + (1-\alpha)\lambda_i(\Sigma)) k(1-\alpha)^2\lambda_i(\Sigma)^2$, for i = 1, 2, ..., n.

Proof. With the partition (2.1), the A_{α} -matrix of $S_k(\Sigma)$ is

$$A_{\alpha}(S_k(\Sigma)) = \begin{pmatrix} (k+1)\alpha r I_n + (1-\alpha)A(\Sigma) & (1-\alpha)A(\Sigma) & \dots & (1-\alpha)A(\Sigma) \\ (1-\alpha)A(\Sigma) & \alpha r I_n & \dots & O_{n\times n} \\ \vdots & & \vdots & \vdots \\ (1-\alpha)A(\Sigma) & O_{n\times n} & \dots & \alpha r I_n \end{pmatrix}.$$

The corresponding A_{α} -characteristic polynomial is given by

$$\phi_{S_k(\Sigma)}(x) = \det \left(x I_{(k+1)n} - A_{\alpha}(SP_k(\Sigma)) \right)$$

$$= \det \begin{pmatrix} (x - (k+1)\alpha r) I_n - (1-\alpha)A(\Sigma) & -(1-\alpha)A(\Sigma) & \dots & -(1-\alpha)A(\Sigma) \\ -(1-\alpha)A(\Sigma) & (x-\alpha r) I_n & \dots & O_{n\times n} \\ \vdots & & \vdots & \vdots \\ -(1-\alpha)A(\Sigma) & O_{n\times n} & \dots & (x-\alpha r) I_n \end{pmatrix}.$$

By performing row operations $R_1 + \frac{1-\alpha}{x-\alpha r}A(\Sigma)R_i \longrightarrow R_1$, for i = 2, 3, ..., k+1, we have

$$\phi_{S_{k}(\Sigma)}(x) = \det \begin{pmatrix} (x - (k+1)\alpha r)I_{n} - (1-\alpha)A(\Sigma) - \frac{k(1-\alpha)^{2}}{x-\alpha r}A(\Sigma)^{2} & O_{n\times n} & \dots & O_{n\times n} \\ -(1-\alpha)A(\Sigma) & (x-\alpha r)I_{n} & \dots & O_{n\times n} \\ & \vdots & & \vdots & \vdots \\ -(1-\alpha)A(\Sigma) & O_{n\times n} & \dots & (x-\alpha r)I_{n} \end{pmatrix}$$

$$= (x - \alpha r)^{(k-1)n} \det \begin{pmatrix} (x - (k+1)\alpha r)I_{n} - (1-\alpha)A(\Sigma) - \frac{k(1-\alpha)^{2}}{x-\alpha r}A(\Sigma)^{2} & O_{n\times n} \\ -(1-\alpha)A(\Sigma) & (x-\alpha r)I_{n} \end{pmatrix}$$

$$= (x - \alpha r)^{kn} \det \left((x - (k+1)\alpha r)I_{n} - (1-\alpha)A(\Sigma) - \frac{k(1-\alpha)^{2}}{x-\alpha r}A(\Sigma)^{2} \right)$$

$$= (x - \alpha r)^{(k-1)n} \prod_{i=1}^{n} \left(x^{2} - \left((k+2)\alpha r + (1-\alpha)\lambda_{i}(\Sigma) \right) x + \alpha r \left((k+1)\alpha r + (1-\alpha)\lambda_{i}(\Sigma) \right) - k(1-\alpha)^{2}\lambda_{i}(\Sigma)^{2} \right),$$

completing the proof.

From Theorem 2, we observe the following.

Remark 1. If Σ_1 and Σ_2 are cospectral r-regular signed graphs, then $S_k(\Sigma_1)$ and $S_k(\Sigma_2)$ are A_{α} -cospectral for all $k \in \mathbb{N}$ and $\alpha \in [0, 1]$.

It is worth mentioning that every pair of regular graphs, say G_1 and G_2 , with the same number of vertices and the same vertex degree gives rise to a pair of cospectral regular signed graphs constructed in the following way: (1) insert a parallel negative edge between every pair of adjacent vertices of both graphs, (2) their signed line graphs are cospectral. This construction is obtained in [18, 19], and to our knowledge, there is no analogous counterpart for this method within the scope of ordinary graphs.

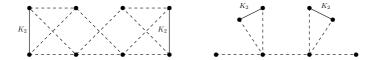


Figure 2. The splitting-V vertex neighbourhood corona and the splitting-S vertex neighbourhood corona.

3. Neighbourhood coronas based on splitting signed graph

Throughout this section, we deal with two signed graphs, $\Sigma_1 = (G_1, \sigma_1)$ and $\Sigma_2 = (G_2, \sigma_2)$ and assume that Σ_i has n_i vertices and m_i edges, for $i \in \{1, 2\}$. Also, let $S(\Sigma_1) = V(S_1(\Sigma_1)) \setminus V(\Sigma_1)$.

Definition 1. The splitting-V vertex neighbourhood corona $S_1(\Sigma_1)\dot{\vee}\Sigma_2$ of Σ_1 and Σ_2 is the signed graph obtained from $S_1(\Sigma_1)$ and n_1 copies of Σ_2 by joining each neighbour, say u, of the vertex $v_i \in V(\Sigma_1)$ to every vertex in the *i*th copy of Σ_2 by an edge which inherits the sign from v_iu . The signed graph $S_1(\Sigma_1)\dot{\vee}\Sigma_2$ has $n_1(n_2+2)$ vertices and $m_1(4n_2+3)+n_1m_2$ edges.

Definition 2. The splitting-S vertex neighbourhood corona $S_1(\Sigma_1)\nabla\Sigma_2$ of Σ_1 and Σ_2 is the signed graph obtained from $S_1(\Sigma_1)$ and n_1 copies of Σ_2 by joining each neighbour, say u, of the vertex $u_i \in S(\Sigma_1)$ to every vertex in the *i*th copy of Σ_2 by an edge which inherits the sign from $u_i u$. The signed graph $S_1(\Sigma_1)\nabla\Sigma_2$ has $n_1(n_2+2)$ vertices and $m_1(2n_2+3)+n_1m_2$ edges.

The above definitions are illustrated in Figure 2 with $\Sigma_1 = K_2^-$ and $\Sigma_2 = K_2$.

3.1. A_{α} -spectrum of the splitting-V vertex neighbourhood corona

Let $\Sigma_1=(G_1,\sigma_1)$ and $\Sigma_2=(G_2,\sigma_2)$ be two signed graphs on disjoint sets of n_1 and n_2 vertices, respectively. We label the vertices of $S_1(\Sigma_1)$ as $V(\Sigma_1)=\{v_1,v_2,\ldots,v_{n_1}\}$, $S(\Sigma_1)=\{u_1,u_2,\ldots,u_{n_1}\}$, and the vertices of Σ_2 as $V(\Sigma_2)=\{w_1,w_2,\ldots,w_{n_2}\}$. Let $V_j(\Sigma_2)=\{w_1^j,w_2^j,\ldots,w_{n_2}^j\}$ denote the vertex set of jth copy of Σ_2 . Then the partition of vertices of $S_1(\Sigma_1)\dot{\nabla}_2$ is given by

$$V(\Sigma_1) \cup S(\Sigma_1) \cup V_1(\Sigma_2) \cup \ldots \cup V_{n_2}(\Sigma_2), \tag{3.1}$$

where $V_i(\Sigma_2) = \{w_i^1, w_i^2, \dots, w_i^{n_1}\}, 1 \leq i \leq n_2$. The degree of the vertices of $S_1(\Sigma_1)\dot{\vee}\Sigma_2$ are

$$\begin{split} d_{S_1(\Sigma_1)\dot{\vee}\Sigma_2}(v_i) &= (n_2+2)d_{\Sigma_1}(v_i), \quad \text{for} \quad i=1,2,\ldots,n_1, \\ d_{S_1(\Sigma_1)\dot{\vee}\Sigma_2}(u_i) &= (n_2+1)d_{\Sigma_1}(v_i), \quad \text{for} \quad i=1,2,\ldots,n_1 \text{ and} \\ d_{S_1(\Sigma_1)\dot{\vee}\Sigma_2}(w_j^i) &= 2d_{\Sigma_1}(v_i) + d_{\Sigma_2}(w_j), \quad \text{for} \quad i=1,2,\ldots,n_1, 1 \leq j \leq n_2. \end{split}$$

Now, we compute the A_{α} -characteristic polynomial of $S_1(\Sigma_1)\dot{\vee}\Sigma_2$ in case of Σ_1 being regular and Σ_2 any arbitrary signed graph.

Theorem 3. Let Σ_1 be the r_1 -regular signed graph with n_1 vertices and eigenvalues $\lambda_1(\Sigma_1), \lambda_2(\Sigma_1), \ldots, \lambda_{n_1}(\Sigma_1)$, and Σ_2 be the signed graph with n_2 vertices having A_{α} -eigenvalues $\lambda_1(A_{\alpha}(\Sigma_2)), \lambda_2(A_{\alpha}(\Sigma_2)), \ldots, \lambda_{n_2}(A_{\alpha}(\Sigma_2))$. Let $\chi_{A_{\alpha}(\Sigma_2)}(x)$ be the $A_{\alpha}(\Sigma_2)$ -coronal of Σ_2 . Then, for each $\alpha \in [0,1]$, the A_{α} -characteristic polynomial of $S_1(\Sigma_1)\dot{\vee}\Sigma_2$ is

$$\begin{split} \phi_{S_1(\Sigma_1)\dot{\vee}\Sigma_2}(x) &= \prod_{i=1}^{n_2} \left(x - 2\alpha r_1 - \lambda_i (A_\alpha(\Sigma_2)) \right)^{n_1} \prod_{i=1}^{n_1} \left(x^2 - \left(\alpha r_1(n_2+1) + \alpha(n_2+2) + 2(1-\alpha)^2 \right) \right. \\ &\quad \cdot \chi_{A_\alpha(\Sigma_2)}(x - 2\alpha r_1) \lambda_i (\Sigma_1)^2 + (1-\alpha) \lambda_i (\Sigma_1) \right) \\ &\quad + (1-\alpha)^2 \chi_{A_\alpha(\Sigma_2)}(x - 2\alpha r_1) \lambda_i (\Sigma_1)^2 \right) \left(\alpha r_1(n_2+1) + (1-\alpha)^2 \chi_{A_\alpha(\Sigma_2)}(x - 2\alpha r_1) \right. \\ &\quad \cdot \lambda_i (\Sigma_1)^2 \right) - \left((1-\alpha) \lambda_i (\Sigma_1) + (1-\alpha)^2 \chi_{A_\alpha(\Sigma_2)}(x - 2\alpha r_1) \lambda_i (\Sigma_1)^2 \right)^2 \right). \end{split}$$

Proof. With respect to the partition (3.1), the adjacency matrix of $S_1(\Sigma_1)\dot{\vee}\Sigma_2$ can be written as

$$A(S_1(\Sigma_1)\dot{\vee}\Sigma_2) = \begin{pmatrix} A(\Sigma_1) & A(\Sigma_1) & A(\Sigma_1) \otimes \mathbf{j}_{\mathbf{n_2}}^{\mathsf{T}} \\ A(\Sigma_1) & O_{n \times n} & A(\Sigma_1) \otimes \mathbf{j}_{\mathbf{n_2}}^{\mathsf{T}} \\ A(\Sigma_1) \otimes \mathbf{j}_{\mathbf{n_2}} & A(\Sigma_1) \otimes \mathbf{j}_{\mathbf{n_2}} & I_{n_1} \otimes A(\Sigma_2) \end{pmatrix}.$$

Let D be the diagonal matrix of vertex degrees of Σ_2 . The diagonal matrix of vertex degrees of $S_1(\Sigma_1)\dot{\vee}\Sigma_2$ is given by

$$D(S_1(\Sigma_1)\dot{\vee}\Sigma_2) = \begin{pmatrix} r_1(n_2+2)I_{n_1} & O & O \\ O & r_1(n_2+1)I_{n_1} & O \\ O & O & I_{n_1} \otimes (2r_1I_{n_2}+D) \end{pmatrix}.$$

Therefore, the A_{α} -matrix of $S_1(\Sigma_1)\dot{\nabla}\Sigma_2$ is given by $A_{\alpha}(SP_1(\Sigma_1)\dot{\nabla}\Sigma_2) =$

$$\begin{pmatrix} \alpha r_1(n_2+2)I_{n_1} + (1-\alpha)A(\Sigma_1) & (1-\alpha)A(\Sigma_1) & (1-\alpha)A(\Sigma_1) \otimes \mathbf{j}_{\mathbf{n_2}}^{\mathsf{T}} \\ (1-\alpha)A(\Sigma_1) & \alpha r_1(n_2+1)I_{n_1} & (1-\alpha)A(\Sigma_1) \otimes \mathbf{j}_{\mathbf{n_2}}^{\mathsf{T}} \\ (1-\alpha)A(\Sigma_1) \otimes \mathbf{j}_{\mathbf{n_2}} & (1-\alpha)A(\Sigma_1) \otimes \mathbf{j}_{\mathbf{n_2}} & I_{n_1} \otimes (2\alpha r_1I_{n_2} + A_{\alpha}(\Sigma_2)) \end{pmatrix}.$$

The A_{α} -characteristic polynomial of $S_1(\Sigma_1)\dot{\vee}\Sigma_2$ is

$$\begin{split} \phi_{S_1(\Sigma_1)\dot{\vee}\Sigma_2}(x) &= \det\left(xI_{2n_1+n_1n_2} - A_{\alpha}(S_1(\Sigma_1)\dot{\vee}\Sigma_2)\right) = \\ &\det\begin{pmatrix} (x - \alpha r_1(n_2+2))I_{n_1} - (1-\alpha)A(\Sigma_1) & -(1-\alpha)A(\Sigma_1) & -(1-\alpha)A(\Sigma_1)\otimes\mathbf{j}_{\mathbf{n_2}}^\intercal\\ -(1-\alpha)A(\Sigma_1) & (x - \alpha r_1(n_2+1))I_{n_1} & -(1-\alpha)A(\Sigma_1)\otimes\mathbf{j}_{\mathbf{n_2}}^\intercal\\ -(1-\alpha)A(\Sigma_1)\otimes\mathbf{j}_{\mathbf{n_2}} & -(1-\alpha)A(\Sigma_1)\otimes\mathbf{j}_{\mathbf{n_2}} & I_{n_1}\otimes((x-2\alpha r_1)I_{n_2} - A_{\alpha}(\Sigma_2)) \end{pmatrix}. \end{split}$$

By performing row operations

 $R_i + ((1-\alpha)A(\Sigma_1) \otimes \mathbf{j_{n_2}}) (I_{n_1} \otimes ((x-2\alpha r_1)I_{n_2} - A_{\alpha}(\Sigma_2)))^{-1} R_3 \to R_i, i \in \{1,2\}$ and using Lemma 1, we obtain

$$\phi_{S_1(\Sigma_1) \dot{\vee} \Sigma_2}(x) = \det \left(I_{n_1} \otimes ((x - 2\alpha r_1)I_{n_2} - A_{\alpha}(\Sigma_2)) \right) \det(M)$$

$$= \prod_{i=1}^{n_2} \left(x - 2\alpha r_1 - \lambda_i (A_{\alpha}(\Sigma_2)) \right)^{n_1} \det(M), \tag{3.2}$$

where
$$\det(M) = \det\begin{pmatrix} M_1 & M_2 \\ M_3 & M_4 \end{pmatrix}$$
 with
$$\begin{aligned} M_1 &= (x - \alpha r_1(n_2 + 2))I_{n_1} - (1 - \alpha)A(\Sigma_1) - (1 - \alpha)^2 \chi_{A_{\alpha}(\Sigma_2)}(x - 2\alpha r_1)A(\Sigma_1)^2, \\ M_2 &= M_3 = -(1 - \alpha)A(\Sigma_1) - (1 - \alpha)^2 \chi_{A_{\alpha}(\Sigma_2)}(x - 2\alpha r_1)A(\Sigma_1)^2 \text{ and} \\ M_4 &= (x - \alpha r_1(n_2 + 1))I_{n_1} - (1 - \alpha)^2 \chi_{A_{\alpha}(\Sigma_2)}(x - 2\alpha r_1)A(\Sigma_1)^2. \\ \text{Again, using Lemma 1, we have } \det(M) &= \det(M_4)\det(M_1 - M_2M_4^{-1}M_3), \text{ that is} \end{aligned}$$

$$\begin{split} \det(M) &= \det \Big((x - \alpha r_1(n_2 + 1)) I_{n_1} - (1 - \alpha)^2 \chi_{A_{\alpha}(\Sigma_2)}(x - 2\alpha r_1) A(\Sigma_1)^2 \Big) \\ & \cdot \det \Big((x - \alpha r_1(n_2 + 2)) I_{n_1} - (1 - \alpha) A(\Sigma_1) - (1 - \alpha)^2 \chi_{A_{\alpha}(\Sigma_2)}(x - 2\alpha r_1) A(\Sigma_1)^2 \\ & - \left((1 - \alpha) A(\Sigma_1) + (1 - \alpha)^2 \chi_{A_{\alpha}(\Sigma_2)}(x - 2\alpha r_1) A(\Sigma_1)^2 \right) \\ & \cdot \left((x - \alpha r_1(n_2 + 1)) I_{n_1} - (1 - \alpha)^2 \chi_{A_{\alpha}(\Sigma_2)}(x - 2\alpha r_1) A(\Sigma_1)^2 \right)^{-1} \\ & \cdot \left((1 - \alpha) A(\Sigma_1) + (1 - \alpha)^2 \chi_{A_{\alpha}(\Sigma_2)}(x - 2\alpha r_1) A(\Sigma_1)^2 \right) \Big) \\ &= \prod_{i=1}^{n_1} \Big(\left(x - \alpha r_1(n_2 + 2) - (1 - \alpha) \lambda_i(\Sigma_1) - (1 - \alpha)^2 \chi_{A_{\alpha}(\Sigma_2)}(x - 2\alpha r_1) \lambda_i(\Sigma_1)^2 \right) \\ & \cdot \left(x - \alpha r_1(n_2 + 1) - (1 - \alpha)^2 \chi_{A_{\alpha}(\Sigma_2)}(x - 2\alpha r_1) \lambda_i(\Sigma_1)^2 \right) \\ &= \prod_{i=1}^{n_1} \Big(x^2 - \left(\alpha r_1(n_2 + 1) + \alpha(n_2 + 2) + 2(1 - \alpha)^2 \chi_{A_{\alpha}(\Sigma_2)}(x - 2\alpha r_1) \lambda_i(\Sigma_1)^2 \right) \Big) \\ &= \prod_{i=1}^{n_1} \Big(x^2 - \left(\alpha r_1(n_2 + 1) + \alpha(n_2 + 2) + 2(1 - \alpha)^2 \chi_{A_{\alpha}(\Sigma_2)}(x - 2\alpha r_1) \lambda_i(\Sigma_1)^2 + (1 - \alpha) (1 - \alpha)^2 \chi_{A_{\alpha}(\Sigma_2)}(x - 2\alpha r_1) \lambda_i(\Sigma_1)^2 \Big) \Big) \\ &\cdot \Big(\alpha r_1(n_2 + 1) + (1 - \alpha)^2 \chi_{A_{\alpha}(\Sigma_2)}(x - 2\alpha r_1) \lambda_i(\Sigma_1)^2 \Big) \\ &- \Big((1 - \alpha) \lambda_i(\Sigma_1) + (1 - \alpha)^2 \chi_{A_{\alpha}(\Sigma_2)}(x - 2\alpha r_1) \lambda_i(\Sigma_1)^2 \Big) \Big). \end{split}$$

Using the value of det(M) in equality (3.2), the result follows.

If Σ_2 is a co-regular signed graph, then we have the following observation.

Corollary 1. Assume that under the assumptions of Theorem 3, Σ_2 is co-regular signed graph with co-regularity pair (r_2, s_2) and $\lambda_k(A_\alpha(\Sigma_2)) = \alpha r_2 + (1 - \alpha)s_2$ for some fixed k $(1 \le k \le n_2)$. The A_α -spectrum of $S_1(\Sigma_1)\dot{\nabla}\Sigma_2$ consists of

(i)
$$2\alpha r_1 + \lambda_i(A_\alpha(\Sigma_2))$$
 with multiplicity n_1 , for $i \in \{1, 2, \dots, k-1, k+1, \dots, n_2\}$ and

(ii) the roots of
$$x^3 - \left(2\alpha r_1 + \alpha r_2 + (1-\alpha)s_2 + \alpha r_1(n_2+1) + \alpha(n_2+2) + (1-\alpha)\lambda_i(\Sigma_1)\right)x^2 + \left(\left(\alpha r_1(n_2+1) + \alpha(n_2+2) + (1-\alpha)\lambda_i(\Sigma_1)\right)\left(2\alpha r_1 + \alpha r_2 + (1-\alpha)s_2\right) - 2n_2(1-\alpha)^2\lambda_i(\Sigma_1)^2 + \alpha r_1(n_2+1)\left(\alpha(n_2+2) + (1-\alpha)\lambda_i(\Sigma_1)\right) - (1-\alpha)^2\lambda_i(\Sigma_1)^2\right)x - \alpha r_1(n_2+1)(2\alpha r_1 + \alpha r_2 + (1-\alpha)s_2)\left(\alpha(n_2+2) + (1-\alpha)\lambda_i(\Sigma_1)\right) + n_2(1-\alpha)^2\lambda_i(\Sigma_1)^2\left(\alpha(n_2+2) + (1-\alpha)\lambda_i(\Sigma_1)\right) + \alpha n_2 r_1(1-\alpha)^2(n_2+1)\lambda_i(\Sigma_1)^2 + (1-\alpha)^2(2\alpha r_1 + \alpha r_2 + (1-\alpha)s_2)\lambda_i(\Sigma_1)^2 - 2n_2(1-\alpha)^3\lambda_i(\Sigma_1)^3, \text{ for } i \in \{1, 2, \dots, n_1\}.$$

Proof. Since Σ_2 is (r_2, s_2) -co-regular and hence each row sum of the matrix $A_{\alpha}(\Sigma_2)$ equals $\alpha r_2 + (1 - \alpha)s_2$, the coronal of the $A_{\alpha}(\Sigma_2)$ -matrix is $\chi_{A_{\alpha}(\Sigma_2)}(x - 2r_1\alpha) = \frac{n_2}{x - 2r_1\alpha - r_2\alpha - (1 - \alpha)s_2}$. For brevity, we put $\beta = 2r_1\alpha + r_2\alpha + (1 - \alpha)s_2$ and using the value of $\chi_{A_{\alpha}(\Sigma_2)}(x - 2r_1\alpha)$ in Theorem 3, we have

$$\begin{split} x^2 - \left(\alpha r_1(n_2+1) + \alpha(n_2+2) + 2(1-\alpha)^2 \chi_{A_\alpha(\Sigma_2)}(x-2\alpha r_1)\lambda_i(\Sigma_1)^2 + (1-\alpha)\lambda_i(\Sigma_1)\right) x \\ + \left(\alpha(n_2+2) + (1-\alpha)\lambda_i(\Sigma_1) + (1-\alpha)^2 \chi_{A_\alpha(\Sigma_2)}(x-2\alpha r_1)\lambda_i(\Sigma_1)^2\right) \left(\alpha r_1(n_2+1) + (1-\alpha)^2 \chi_{A_\alpha(\Sigma_2)}(x-2\alpha r_1)\lambda_i(\Sigma_1)^2\right) - \left((1-\alpha)\lambda_i(\Sigma_1) + (1-\alpha)^2 \chi_{A_\alpha(\Sigma_2)}(x-2\alpha r_1)\lambda_i(\Sigma_1)^2\right)^2 \\ = x^2 - \left(\alpha r_1(n_2+1) + \alpha(n_2+2) + 2(1-\alpha)^2 \frac{n_2}{x-\beta}\lambda_i(\Sigma_1)^2 + (1-\alpha)\lambda_i(\Sigma_1)\right) x \\ + \left(\alpha(n_2+2) + (1-\alpha)\lambda_i(\Sigma_1) + (1-\alpha)^2 \frac{n_2}{x-\beta}\lambda_i(\Sigma_1)^2\right) \left(\alpha r_1(n_2+1) + (1-\alpha)^2 \frac{n_2}{x-\beta}\lambda_i(\Sigma_1)^2\right) \\ - \left((1-\alpha)\lambda_i(\Sigma_1) + (1-\alpha)^2 \frac{n_2}{x-\beta}\lambda_i(\Sigma_1)^2\right)^2 \\ = \frac{1}{(x-\beta)^2} \left(x^2(1-\beta)^2 - \left(\alpha r_1(n_2+1) + \alpha(n_2+2) + (1-\alpha)\lambda_i(\Sigma_1)\right)(x-\beta)^2 x \\ - 2n_2(1-\alpha)^2\lambda_i(\Sigma_1)^2(x-\beta)x + \alpha r_1(n_2+1)\left(\alpha(n_2+2) + (1-\alpha)\lambda_i(\Sigma_1)\right)(x-\beta)^2 + n_2(1-\alpha)^2 \right) \\ \cdot \lambda_i(\Sigma_1)^2 \left(\alpha(n_2+2) + (1-\alpha)\lambda_i(\Sigma_1)\right)(x-\beta) + \alpha r_1n_2(n_2+1)(1-\alpha)^2\lambda_i(\Sigma_1)^2(x-\beta) + n_2^2 \\ \cdot \left(1-\alpha\right)^4\lambda_i(\Sigma_1)^4 - \left(1-\alpha\right)^2\lambda_i(\Sigma_1)^2(x-\beta)^2 - n_2^2(1-\alpha)^4\lambda_i(\Sigma_1)^4 - 2n_2(1-\alpha)^3\lambda_i(\Sigma_1)^3(x-\beta)\right) \\ = \frac{1}{x-\beta} \left(x^2(1-\beta) - \left(\alpha r_1(n_2+1) + \alpha(n_2+2) + (1-\alpha)\lambda_i(\Sigma_1)\right)(x^2-\beta x) - 2n_2(1-\alpha)^2\lambda_i(\Sigma_1)^2 \right) \\ \cdot x + \alpha r_1(n_2+1)\left(\alpha(n_2+2) + (1-\alpha)\lambda_i(\Sigma_1)\right)(x-\beta) + n_2(1-\alpha)^2\lambda_i(\Sigma_1)^2\left(\alpha(n_2+2) + (1-\alpha)\lambda_i(\Sigma_1)\right) \\ - \frac{1}{x-\beta} \left(x^3 - \left(\beta + \alpha r_1(n_2+1) + \alpha(n_2+2) + (1-\alpha)\lambda_i(\Sigma_1)\right)x^2 - \beta n_2(1-\alpha)^3\lambda_i(\Sigma_1)^3\right) \\ = \frac{1}{x-\beta} \left(x^3 - \left(\beta + \alpha r_1(n_2+1) + \alpha(n_2+2) + (1-\alpha)\lambda_i(\Sigma_1)\right)x^2 + \left(\beta (\alpha r_1(n_2+1) + \alpha(n_2+2) + (1-\alpha)\lambda_i(\Sigma_1)\right)x^2 - \beta n_2(1-\alpha)^3\lambda_i(\Sigma_1)^3\right) \\ - \frac{1}{x-\beta} \left(x^3 - \left(\beta + \alpha r_1(n_2+1) + \alpha(n_2+2) + (1-\alpha)\lambda_i(\Sigma_1)\right)x^2 + \left(\beta (\alpha r_1(n_2+1) + \alpha(n_2+2) + (1-\alpha)\lambda_i(\Sigma_1)\right)x^2 - \beta n_2(1-\alpha)^3\lambda_i(\Sigma_1)^3\right) \\ - \frac{1}{x-\beta} \left(x^3 - \left(\beta + \alpha r_1(n_2+1) + \alpha(n_2+2) + (1-\alpha)\lambda_i(\Sigma_1)\right)x^2 + \left(\beta (\alpha r_1(n_2+1) + \alpha(n_2+2) + (1-\alpha)\lambda_i(\Sigma_1)\right)x^2 - \beta n_2(1-\alpha)^3\lambda_i(\Sigma_1)^3\right) \\ - \frac{1}{x-\beta} \left(x^3 - \left(\beta + \alpha r_1(n_2+1) + \alpha(n_2+2) + (1-\alpha)\lambda_i(\Sigma_1)\right)x^2 - \left(\beta (\alpha r_1(n_2+1) + \alpha(n_2+2) + (1-\alpha)\lambda_i(\Sigma_1)\right$$

Also

$$\prod_{i=1}^{n_2} \left(x - 2\alpha r_1 - \lambda_i (A_\alpha(\Sigma_2)) \right)^{n_1} = (x - \beta)^{n_1} \prod_{\substack{i=1\\i \neq k}}^{n_2} \left(x - 2\alpha r_1 - \lambda_i (A_\alpha(\Sigma_2)) \right)^{n_1}.$$
 (3.4)

In view of equalities (3.3) and (3.4), the result follows.

Now in the following corollary, we obtain the A_{α} -eigenvalues of $S_1(\Sigma_1)\dot{\vee}\Sigma_2$, where $\Sigma_2 = K_{p,q}^-$.

Corollary 2. Suppose that under the assumptions of Theorem 3, $\Sigma_2 = K_{p,q}^-$, a complete bipartite signed graph with all negative signature. The A_{α} -spectrum of $S_1(\Sigma_1)\dot{\vee}\Sigma_2$ consists of

- (i) $\alpha(2r_1+p)$ with multiplicity $n_1(q-1)$,
- (ii) $\alpha(2r_1+q)$ with multiplicity $n_1(p-1)$ and
- (iii) the four roots of the equation $P_i(x) = 0$ for each $i \in \{1, 2, ..., n_1\}$, where $P_i(x)$ is given by (3.3) with $\chi_{A_{\alpha}(\Sigma_2)}(x 2\alpha r_1) = \frac{(p+q)(x-2\alpha r_1) \alpha(p^2+q^2) 2(1-\alpha)pq}{(x-2\alpha r_1)^2 \alpha(p+q)(x-2\alpha r_1) + (2\alpha-1)pq}$.

Proof. The A_{α} -matrix of $K_{p,q}^-$ is given by

$$A_{\alpha}(K_{p,q}^{-}) = \begin{pmatrix} \alpha q I_{p} & -(1-\alpha)J_{p\times q} \\ -(1-\alpha)J_{q\times p} & \alpha p I_{q} \end{pmatrix},$$

where $J_{p\times q}$ is a matrix of all ones. Let

$$X = \begin{pmatrix} \left(y - \alpha p - (1 - \alpha)q\right)I_p & O_{p \times q} \\ O_{q \times p} & \left(y - \alpha q - (1 - \alpha)p\right)I_q \end{pmatrix}.$$

We have

$$(yI_{p+q} - A_{\alpha}(K_{p,q}^{-}))X\mathbf{J}_{\mathbf{p}+\mathbf{q}} = \begin{pmatrix} (y - \alpha q)I_{p} & (1 - \alpha)J_{p\times q} \\ (1 - \alpha)J_{q\times p} & (y - \alpha p)I_{q} \end{pmatrix} \begin{pmatrix} (y - \alpha p - (1 - \alpha)q)\mathbf{j}_{\mathbf{p}} \\ (y - \alpha q - (1 - \alpha)p)\mathbf{j}_{\mathbf{q}} \end{pmatrix}$$
$$= \begin{pmatrix} (y^{2} - \alpha(p+q)y + (2\alpha - 1)pq)\mathbf{j}_{\mathbf{p}} \\ (y^{2} - \alpha(p+q)y + (2\alpha - 1)pq)\mathbf{j}_{\mathbf{q}} \end{pmatrix}$$
$$= (y^{2} - \alpha(p+q)y + (2\alpha - 1)pq)\mathbf{J}_{\mathbf{p}+\mathbf{q}},$$

implying that $(yI_{p+q} - A_{\alpha}(K_{p,q}^{-}))^{-1}\mathbf{J}_{\mathbf{p}+\mathbf{q}} = \frac{X\mathbf{J}_{\mathbf{p}+\mathbf{q}}}{y^{2}-\alpha(p+q)y+(2\alpha-1)pq}$. Hence, the coronal of the $A_{\alpha}(K_{p,q}^{-})$ -matrix is given by

$$\chi_{A_{\alpha}(\Sigma_{2})}(y) = \mathbf{J}_{\mathbf{p}+\mathbf{q}}^{\mathsf{T}} \left(yI_{p+q} - A_{\alpha}(K_{p,q}^{-}) \right)^{-1} \mathbf{J}_{\mathbf{p}+\mathbf{q}}
= \frac{\mathbf{J}_{\mathbf{p}+\mathbf{q}}^{\mathsf{T}} X \mathbf{J}_{\mathbf{p}+\mathbf{q}}}{y^{2} - \alpha(p+q)y + (2\alpha - 1)pq}
= \frac{(p+q)y - \alpha(p^{2} + q^{2}) - 2(1-\alpha)pq}{y^{2} - \alpha(p+q)y + (2\alpha - 1)pq}.$$
(3.5)

Further, the A_{α} -characteristic polynomial of $K_{p,q}^-$ is given by

$$\phi_{K_{p,q}^{-}}(y) = \det \begin{pmatrix} (y - \alpha q)I_{p} & (1 - \alpha)J_{p \times q} \\ (1 - \alpha)J_{q \times p} & (y - \alpha p)I_{q} \end{pmatrix}$$

$$= \det \left((y - \alpha q)I_{p} \right) \det \left((y - \alpha p)I_{q} - (1 - \alpha)J_{q \times p} \frac{1}{y - \alpha q} (1 - \alpha)J_{p \times q} \right)$$

$$= (y - \alpha q)^{p} \det \left((y - \alpha p)I_{q} - \frac{p(1 - \alpha)^{2}}{y - \alpha q} J_{q \times q} \right)$$

$$= (y - \alpha p)^{q-1} (y - \alpha q)^{p-1} (y^{2} - \alpha (p+q)y + (2\alpha - 1)pq). \tag{3.6}$$

Using (3.5) and (3.6) in Theorem 3, the result follows.

Finally, to conclude this subsection, we provide a construction of new pairs of A_{α} -cospectral signed graphs.

Remark 2. Let Σ_1 and Σ_1' be two cospectral r-regular signed graphs, and Σ_2 be any arbitrary signed graph. Then the signed graphs $S_1(\Sigma_1)\dot{\vee}\Sigma_2$ and $S_1(\Sigma_1')\dot{\vee}\Sigma_2$ are A_{α} -cospectral for all $\alpha \in [0,1]$.

Let Σ_1 be r-regular signed graph, Σ_2 and Σ_2' be two A_{α} -cospectral signed graphs with $\chi_{A_{\alpha}(\Sigma_2)}(x-2\alpha r)=\chi_{A_{\alpha}(\Sigma_2')}(x-2\alpha r)$ for all $\alpha\in[0,1]$. Then the signed graphs $S_1(\Sigma_1)\dot{\vee}\Sigma_2$ and $S_1(\Sigma_1)\dot{\vee}\Sigma_2'$ are A_{α} -cospectral.

3.2. A_{α} -spectrum of the splitting-S vertex neighbourhood corona

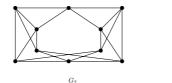
We use the vertex labelling fixed at the beginning of the subsection 3.1. The degree of the vertices of $S_1(\Sigma_1)\overline{\vee}\Sigma_2$ are

$$\begin{split} d_{S_1(\Sigma_1)\nabla\Sigma_2}(v_i) &= (n_2+2)d_{\Sigma_1}(v_i), & \text{for } i=1,2,\ldots,n_1, \\ d_{S_1(\Sigma_1)\nabla\Sigma_2}(u_i) &= d_{\Sigma_1}(v_i), & \text{for } i=1,2,\ldots,n_1 \text{ and} \\ d_{S_1(\Sigma_1)\nabla\Sigma_2}(w_j^i) &= d_{\Sigma_1}(v_i) + d_{\Sigma_2}(w_j), & \text{for } i=1,2,\ldots,n_1, 1 \leq j \leq n_2. \end{split}$$

We compute the A_{α} -characteristic polynomial of $S_1(\Sigma_1)\nabla\Sigma_2$, but with less details in the proof.

Theorem 4. Let Σ_1 be the r_1 -regular signed graph with n_1 vertices and eigenvalues $\lambda_1(\Sigma_1), \lambda_2(\Sigma_1), \ldots, \lambda_{n_1}(\Sigma_1)$, and Σ_2 be the signed graph with n_2 vertices having A_{α} -eigenvalues $\lambda_1(A_{\alpha}(\Sigma_2)), \lambda_2(A_{\alpha}(\Sigma_2)), \ldots, \lambda_{n_2}(A_{\alpha}(\Sigma_2))$. Let $\chi_{A_{\alpha}(\Sigma_2)}(x)$ be the $A_{\alpha}(\Sigma_2)$ -coronal of Σ_2 . Then, for each $\alpha \in [0,1]$, the A_{α} -characteristic polynomial of $S_1(\Sigma_1)\nabla \Sigma_2$ is

$$\phi_{S_1(\Sigma_1)\nabla\Sigma_2}(x) = \prod_{i=1}^{n_1} \left((x - \alpha r_1) \left(x - \alpha r_1 (n_2 + 2) - (1 - \alpha) \lambda_i(\Sigma_1) - (1 - \alpha)^2 \lambda_i(\Sigma_1)^2 \right) \cdot \chi_{A_{\alpha}(\Sigma_2)}(x - \alpha r_1) - (1 - \alpha)^2 \lambda_i(\Sigma_1)^2 \right) \prod_{i=1}^{n_2} \left(x - \alpha r_1 - \lambda_i(A_{\alpha}(\Sigma_2)) \right)^{n_1}.$$



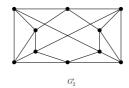


Figure 3. G_2 and G'_2 are cospectral 4-regular graphs.

Proof. With respect to the partition (3.1), the A_{α} -matrix of $S_1(\Sigma_1)\nabla\Sigma_2$ can be written as

$$A_{\alpha}(S_1(\Sigma_1) \overline{\vee} \Sigma_2) = \begin{pmatrix} \alpha r_1(n_2+2) I_{n_1} + (1-\alpha) A(\Sigma_1) & (1-\alpha) A(\Sigma_1) & (1-\alpha) A(\Sigma_1) \otimes \mathbf{j}_{\mathbf{n_2}}^\mathsf{T} \\ (1-\alpha) A(\Sigma_1) & \alpha r_1 I_{n_1} & O_{n_1 \times n_1} \otimes \mathbf{j}_{\mathbf{n_2}}^\mathsf{T} \\ (1-\alpha) A(\Sigma_1) \otimes \mathbf{j}_{\mathbf{n_2}} & O_{n_1 \times n_1} \otimes \mathbf{j}_{\mathbf{n_2}} & I_{n_1} \otimes (\alpha r_1 I_{n_2} + A_{\alpha}(\Sigma_2)) \end{pmatrix}.$$

From this we obtain

$$\phi_{S_1(\Sigma_1)\nabla\Sigma_2}(x) = \det\left(xI_{2n_1+n_1n_2} - A_{\alpha}(SP_1(\Sigma_1)\nabla\Sigma_2)\right)$$

= \det\left(I_{n_1}\otimes\left((x - \alpha r_1)I_{n_2} - A_{\alpha}(\Sigma_2)\right)\right)\det(M), (3.7)

where

$$\begin{split} \det(M) &= \det \begin{pmatrix} (x - \alpha r_1(n_2 + 2))I_{n_1} - (1 - \alpha)A(\Sigma_1) - (1 - \alpha)^2 \chi_{A_{\alpha}(\Sigma_2)}(x - \alpha r_1)A(\Sigma_1)^2 & - (1 - \alpha)A(\Sigma_1) \\ & - (1 - \alpha)A(\Sigma_1) & (x - \alpha r_1)I_{n_1} \end{pmatrix} \\ &= (x - \alpha r_1)^{n_1} \det \left((x - \alpha r_1(n_2 + 2))I_{n_1} - (1 - \alpha)A(\Sigma_1) - (1 - \alpha)^2 \chi_{A_{\alpha}(\Sigma_2)}(x - \alpha r_1)A(\Sigma_1)^2 \\ &- \frac{(1 - \alpha)^2}{x - \alpha r_1}A(\Sigma_1)^2 \right) \\ &= \prod_{i=1}^{n_1} \left((x - \alpha r_1)(x - \alpha r_1(n_2 + 2) - (1 - \alpha)\lambda_i(\Sigma_1) - (1 - \alpha)^2 \lambda_i(\Sigma_1)^2 \chi_{A_{\alpha}(\Sigma_2)}(x - \alpha r_1) \right) \\ &- (1 - \alpha)^2 \lambda_i(\Sigma_1)^2 \right). \end{split}$$

Using the value of det(M) in equality (3.7), the result follows.

Corollary 3. Assume that under the assumptions of Theorem 4, Σ_2 is a co-regular signed graph with co-regularity pair (r_2, s_2) and $\lambda_k(A_{\alpha}(\Sigma_2)) = \alpha r_2 + (1 - \alpha)s_2$ for some fixed k $(1 \le k \le n_2)$. The A_{α} -spectrum of $S_1(\Sigma_1)\nabla\Sigma_2$ consists of

- (i) $\alpha r_1 + \lambda_i(A_\alpha(\Sigma_2))$ with multiplicity n_1 , for $i \in \{1, 2, \dots, k-1, k+1, \dots, n_2\}$ and
- (ii) the roots of $x^3 (\alpha r_1(n_2 + 2) + (1 \alpha)\lambda_i(\Sigma_1) + \alpha r_1 + \alpha(r_1 + r_2) + (1 \alpha)s_2)x^2 + ((\alpha r_1 + \alpha(r_1 + r_2) + (1 \alpha)s_2)(\alpha r_1(n_2 + 2) + (1 \alpha)\lambda_i(\Sigma_1)) + \alpha r_1(\alpha(r_1 + r_2) + (1 \alpha)s_2) n_2(1 \alpha)^2\lambda_i(\Sigma_1)^2 (1 \alpha)^2\lambda_i(\Sigma_1)^2)x \alpha r_1(\alpha(r_1 + r_2) + (1 \alpha)s_2)(\alpha r_1(n_2 + 2) + (1 \alpha)\lambda_i(\Sigma_1)) + \alpha r_1n_2(1 \alpha)^2\lambda_i(\Sigma_1)^2 + (\alpha(r_1 + r_2) + (1 \alpha)s_2)(1 \alpha)^2\lambda_i(\Sigma_1)^2,$ for $i \in \{1, 2, \dots, n_1\}$.

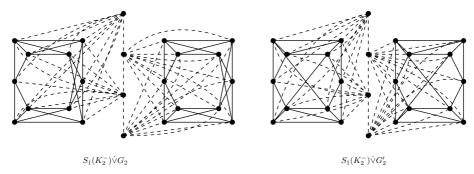


Figure 4. Pair of A_{α} -cospectral signed graphs $S_1(K_2^-)\dot{\vee}G_2$ and $S_1(K_2^-)\dot{\vee}G_2'$.

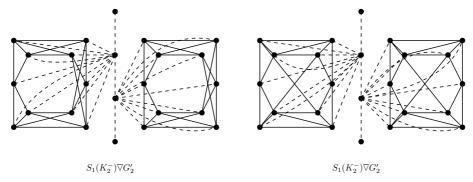


Figure 5. Pair of A_{α} -cospectral signed graphs $S_1(K_2^-)\overline{\vee}G_2$ and $S_1(K_2^-)\overline{\vee}G_2'$.

Proof. Given that Σ_2 is (r_2, s_2) -co-regular and hence $\chi_{A_{\alpha}(\Sigma_2)}(x - \alpha r_1) = \frac{n_2}{x - \alpha(r_1 + r_2) - (1 - \alpha)s_2}$. By plugging in the value of $\chi_{A_{\alpha}(\Sigma_2)}(x - \alpha r_1)$ in Theorem 4 and engaging in straightforward calculations yield the desired result.

Remark 3. Let Σ_1 and Σ_1' be two cospectral r-regular signed graphs, and Σ_2 be any arbitrary signed graph. Then the signed graphs $S_1(\Sigma_1)\nabla\Sigma_2$ and $S_1(\Sigma_1')\nabla\Sigma_2$ are A_{α} -cospectral for all $\alpha \in [0, 1]$.

Let Σ_1 be r-regular signed graph, Σ_2 and Σ_2' be two A_{α} -cospectral signed graphs with $\chi_{A_{\alpha}(\Sigma_2)}(x - \alpha r) = \chi_{A_{\alpha}(\Sigma_2')}(x - \alpha r)$ for all $\alpha \in [0, 1]$. Then the signed graphs $S_1(\Sigma_1) \nabla \Sigma_2$ and $S_1(\Sigma_1) \nabla \Sigma_2'$ are A_{α} -cospectral.

Example: Let $\Sigma_1 = K_2^-$, $\Sigma_2 = G_2$ and $\Sigma_2' = G_2'$, where G_2 and G_2' are the graphs in Figure 3. It is known from ([21], preposition 3) that G_2 and G_2' are a pair of cospectral 4-regular graphs. In view of Remark 2 and 3, the signed graphs

- (i) $S_1(K_2^-)\dot{\vee}G_2$ and $S_1(K_2^-)\dot{\vee}G_2'$ are A_α -cospectral shown in Figure 4 and
- (ii) $S_1(K_2^-) \overline{\vee} G_2$ and $S_1(K_2^-) \overline{\vee} G_2'$ are A_{α} -cospectral shown in Figure 5.

Acknowledgements: The research of the first author is supported by NBHM-DAE research project number NBHM/02011/20/2022.

Conflict of Interest: The authors declare that they have no conflict of interest.

Data Availability: Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

- [1] M. Basunia, I. Mahato, and M.R. Kannan, On the A_{α} -spectra of some join graphs, Bull. Malays. Math. Sci. Soc. 44 (2021), no. 6, 4269–4297. https://doi.org/10.1007/s40840-021-01166-z.
- [2] F. Belardo, M. Brunetti, and A. Ciampella, On the multiplicity of A_α(γ)-eigenvalue of signed graphs with pendant vertices, Discrete Math. 342 (2019), no. 8, 2223–2233. https://doi.org/10.1016/j.disc.2019.04.024.
- [3] D.M. Cvetković, M. Doob, and H. Sachs, Spectra of Graphs: Third Edition, Academic Press, 1995.
- [4] S. Hameed, K. Paul, and K.A. Germina, On co-regular signed graphs, Australas. J. Combin. 62 (2015), no. 1, 8–17.
- [5] S. Hamud and A. Berman, New constructions of nonregular cospectral graphs, Spec. Matrices 12 (2024), no. 1, Article ID: 20230109. https://doi.org/10.1515/spma-2023-0109.
- [6] S. Li and S. Wang, The A_{α} -spectrum of graph product, Electron. J. Linear Algebra **35** (2019), 473–481. https://doi.org/10.13001/1081-3810.3857.
- [7] H. Lin, J. Xue, and J. Shu, On the A_{α} -spectra of graphs, Linear Algebra Appl. **556** (2018), 210–219. https://doi.org/10.1016/j.laa.2018.07.003.
- [8] X. Liu and S. Liu, On the A_{α} -characteristic polynomial of a graph, Linear Algebra Appl. **546** (2018), 274–288. https://doi.org/10.1016/j.laa.2018.02.014.
- Z. Lu, X. Ma, and M. Zhang, Spectra of graph operations based on splitting graph,
 J. Appl. Anal. Comput. 13 (2023), no. 1, 133–155.
 https://doi.org/10.11948/20210446.
- [10] C. McLeman and E. McNicholas, Spectra of coronae, Linear Algebra Appl. 435 (2011), no. 5, 998–1007. https://doi.org/10.1016/j.laa.2011.02.007.
- [11] V. Nikiforov, Merging the A-and Q-spectral theories, Appl. Anal. Discrete Math. 11 (2017), no. 1, 81–107.

- [12] V. Nikiforov, G. Pastén, O. Rojo, and R.L. Soto, On the A_{α} -spectra of trees, Linear Algebra Appl. **520** (2017), 286–305. https://doi.org/10.1016/j.laa.2017.01.029.
- [13] V. Nikiforov and O. Rojo, A note on the positive semidefiniteness of $A_{\alpha}(g)$, Linear Algebra Appl. **519** (2017), 156–163. https://doi.org/10.1016/j.laa.2016.12.042.
- [14] G. Pastén, O. Rojo, and L. Medina, On the A_{α} -eigenvalues of signed graphs, Mathematics 9 (2021), no. 16, Article ID: 1990. https://doi.org/10.3390/math9161990.
- [15] S. Pirzada, An Introduction to Graph Theory, Universities Press, Orient Blackswan, Hyderabad, 2012.
- [16] M.A. Sahir and S.M.A. Nayeem, A_{α} -spectra of graphs obtained by two corona operations and a_{α} -cospectral graphs, Discrete Math. Algorithms Appl. 14 (2022), no. 2, Article ID: 2150112. https://doi.org/10.1142/S1793830921501123.
- [17] D. Sinha, P. Garg, and H. Saraswat, On the splitting signed graphs, J. Comb. Inf. Syst. Sci. 38 (2013), no. 1–4, Article ID: 103.
- [18] Z. Stanić, A decomposition of signed graphs with two eigenvalues, Filomat 34 (2020), no. 6, 1949–1957. https://doi.org/10.2298/FIL2006949S.
- [19] _____, On cospectral oriented graphs and cospectral signed graphs, Linear Multilinear Algebra **70** (2022), no. 19, 3689–3701. https://doi.org/10.1080/03081087.2020.1852153.
- [20] M.A. Tahir and X.D. Zhang, Coronae graphs and their α -eigenvalues, Bull. Malays. Math. Sci. Soc. **43** (2020), no. 4, 2911–2927. https://doi.org/10.1007/s40840-019-00845-2.
- [21] E.R. Van Dam and W.H. Haemers, Which graphs are determined by their spectrum?, Linear Algebra Appl. 373 (2003), 241–272. https://doi.org/10.1016/S0024-3795(03)00483-X.