تعداد نشریات | 5 |
تعداد شمارهها | 108 |
تعداد مقالات | 1,228 |
تعداد مشاهده مقاله | 1,147,432 |
تعداد دریافت فایل اصل مقاله | 1,006,633 |
Edge metric dimension of silicate networks | ||
Communications in Combinatorics and Optimization | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 30 تیر 1403 اصل مقاله (370.87 K) | ||
نوع مقاله: Short notes | ||
شناسه دیجیتال (DOI): 10.22049/cco.2024.29553.2052 | ||
نویسندگان | ||
Savari Prabhu؛ T Jenifer Janany* | ||
Department of Mathematics, Rajalakshmi Engineering College, Chennai 602105, India | ||
چکیده | ||
Metric dimension is an essential parameter in graph theory that aids in addressing issues pertaining to information retrieval, localization, network design, and chemistry through the identification of the least possible number of elements necessary to identify the vertices in a graph uniquely. A variant of metric dimension, called the edge metric dimension focuses on distinguishing the edges in a graph $G$, with a vertex subset. The minimum possible number of vertices in such a set is denoted as $\dim_E(G)$. This paper presents the precise edge metric dimension of silicate networks. | ||
کلیدواژهها | ||
Edge metric basis؛ Silicate؛ Twins؛ Tetrahedron | ||
مراجع | ||
[1] S. Abbas, Z. Raza, N. Siddiqui, F. Khan, and T. Whangbo, Edge metric dimension of honeycomb and hexagonal networks for IoT, Comput. Mater. Contin. 71 (2022), no. 2, 2683–2695.
[2] A. Ahmad, S. Husain, M. Azeem, K. Elahi, and M.K. Siddiqui, Computation of edge resolvability of benzenoid tripod structure, J. Math. 2021 (2021), no. 1, Article ID: 9336540. https://doi.org/10.1155/2021/9336540 [3] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihal’ak, and L.S. Ram, Network discovery and verification, IEEE J. Sel. Areas Commun. 24 (2006), no. 12, 2168–2181. https://doi.org/10.1109/JSAC.2006.884015 [4] G. Chartrand, L. Eroh, M.A. Johnson, and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000), no. 1-3, 99–113. https://doi.org/10.1016/S0166-218X(00)00198-0 [5] F. Harary and R.A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976), 191–195.
[6] S. Hayat and M. Imran, Computation of topological indices of certain networks, Appl. Math. Comput. 240 (2014), 213–228. https://doi.org/10.1016/j.amc.2014.04.091 [7] M. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, J. Biopharm. Stat. 3 (1993), no. 2, 203–236. https://doi.org/10.1080/10543409308835060 [8] A. Kelenc, N. Tratnik, and I.G. Yero, Uniquely identifying the edges of a graph: The edge metric dimension, Discrete Appl. Math. 251 (2018), 204–220. https://doi.org/10.1016/j.dam.2018.05.052 [9] S. Khuller, B. Raghavachari, and A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70 (1996), no. 3, 217–229. https://doi.org/10.1016/0166-218X(95)00106-2 [10] S. Klavžar and S.S. Zemljič, On distances in Sierpiński graphs: Almost-extreme vertices and metric dimension, Appl. Anal. Discrete Math. 7 (2013), no. 1, 72–82. https://doi.org/10.2298/AADM130109001K [11] S. Klavžar and M. Tavakoli, Edge metric dimensions via hierarchical product and integer linear programming, Optim. Lett. 15 (2021), 1993–2003.
[12] M. Knor, S. Majstorović, A.T.M. Toshi, R. Škrekovski, and I.G. Yero, Graphs with the edge metric dimension smaller than the metric dimension, Appl. Math. Comput. 401 (2021), Article ID: 126076. https://doi.org/10.1016/j.amc.2021.126076 [13] M. Knor, R. Škrekovski, and I.G. Yero, A note on the metric and edge metric dimensions of 2-connected graphs, Discrete Appl. Math. 319 (2022), 454–460. https://doi.org/10.1016/j.dam.2021.02.020 [14] J.B. Liu, S. Wang, C. Wang, and S. Hayat, Further results on computation of topological indices of certain networks, IET Control Theory Appl. 11 (2017), no. 13, 2065–2071. https://doi.org/10.1049/iet-cta.2016.1237 [15] P. Manuel, R. Bharati, and I. Rajasingh, On minimum metric dimension of honeycomb networks, J. Discrete Algorithms 6 (2008), no. 1, 20–27. https://doi.org/10.1016/j.jda.2006.09.002 [16] P.D. Manuel, M.I. Abd-El-Barr, I. Rajasingh, and B. Rajan, An efficient representation of benes networks and its applications, J. Discrete Algorithms 6 (2008), no. 1, 11–19. https://doi.org/10.1016/j.jda.2006.08.003 [17] P.D. Manuel and I. Rajasingh, Minimum metric dimension of silicate networks, Ars Combin. 98 (2011), 501–510.
[18] I. Peterin and I.G. Yero, Edge metric dimension of some graph operations, Bull. Malays. Math. Sci. Soc. 43 (2020), no. 3, 2465–2477. https://doi.org/10.1007/s40840-019-00816-7 [19] S. Prabhu, T. Flora, and M. Arulperumjothi, On independent resolving number of TiO2[m, n] nanotubes, J. Intell. Fuzzy Syst. 35 (2018), no. 6, 6421–6425. https://doi.org/10.3233/JIFS-181314 [20] S. Prabhu, V. Manimozhi, M. Arulperumjothi, and S. Klavžar, Twin vertices in fault-tolerant metric sets and fault-tolerant metric dimension of multistage interconnection networks, Appl. Math. Comput. 420 (2022), Article ID: 126897. https://doi.org/10.1016/j.amc.2021.126897 [21] S. Prabhu, D. Sagaya Rani Jeba, M. Arulperumjothi, and S. Klavžar, Metric dimension of irregular convex triangular networks, AKCE Int. J. Graphs Comb. (2023), In press. https://doi.org/10.1080/09728600.2023.2280799 [22] B. Rajan, I. Rajasingh, J.A. Cynthia, and P. Manuel, Metric dimension of directed graphs, Int. J. Comput. Math. 91 (2014), no. 7, 1397–1406. https://doi.org/10.1080/00207160.2013.844335 [23] P.J. Slater, Leaves of trees, Congr. Numer. 14 (1975), 549–559.
[24] S. Stephen, B. Rajan, J. Ryan, C. Grigorious, and A. William, Power domination in certain chemical structures, J. Discrete Algorithms 33 (2015), 10–18. https://doi.org/10.1016/j.jda.2014.12.003 [25] D.G.L. Wang, M.M.Y. Wang, and S. Zhang, Determining the edge metric dimension of the generalized Petersen graph $P(n, 3)$, J. Comb. Optim. 43 (2022), no. 2, 460–496. https://doi.org/10.1007/s10878-021-00780-8 [26] Y. Zhang and S. Gao, On the edge metric dimension of convex polytopes and its related graphs, J. Comb. Optim. 39 (2020), no. 2, 334–350. https://doi.org/10.1007/s10878-019-00472-4 [27] E. Zhu, A. Taranenko, Z. Shao, and J. Xu, On graphs with the maximum edge metric dimension, Discrete Appl. Math. 257 (2019), 317–324. https://doi.org/10.1016/j.dam.2018.08.031 [28] N. Zubrilina, On the edge dimension of a graph, Discrete Math. 341 (2018), no. 7, 2083–2088. https://doi.org/10.1016/j.disc.2018.04.010 [29] N. Zubrilina, Asymptotic behavior of the edge metric dimension of the random graph, Discuss. Math. Graph Theory 41 (2021), no. 2, 589–599. https://doi.org/10.7151/dmgt.2210 | ||
آمار تعداد مشاهده مقاله: 78 تعداد دریافت فایل اصل مقاله: 214 |