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Abstract: A kernel N of a digraph D is an independent set of vertices that is
absorbent (for every vertex u ∈ V (D) \ N , there is a vertex v ∈ N such that (u, v) ∈
A(D)). Let D be a digraph such that every proper induced subdigraph has a kernel.
If D has a kernel, then D is a kernel perfect digraph (KP-digraph); otherwise, D is a

critical kernel imperfect digraph (CKI-digraph). A digraph with the property P is a

digraph such that whenever a vertex reaches two other vertices through asymmetrical
arcs, then these two vertices have the same out-neighborhood. In particular, digraphs

whose asymmetrical part is a disjoint union of cycles have the property P . In this

work, KP-digraphs with the property P are characterized. As a consequence, KP-
digraphs whose asymmetrical part is a Hamiltonian cycle are also characterized. For

digraphs with a Hamiltonian cycle γ as their asymmetrical part and whose diagonals are

symmetrical of length 2, two algorithms are presented; the first one determines whether
a digraph is a KP-digraph or a CKI-digraph, and the second constructs the kernel of

the original digraph if it is a KP-digraph. As a consequence, a characterization of all
CKI-digraphs whose asymmetrical part is a Hamiltonian cycle and whose diagonals are
symmetrical of length 2 is shown.

Keywords: kernel, kernel perfect digraph, circulant digraph, kernel imperfect di-
graph.

AMS Subject classification: 05C20, 05C69

1. Introduction

In this work, we will consider finite digraphs with neither multiple arcs nor loops. For

general concepts, we refer the reader to [3, 4]. Let D be a digraph and (x, y) be an

arc of D, we write x→D y. We say that (x, y) is symmetrical if (y, x) is an arc of D

∗ Corresponding Author



2 Some new families of KP-digraphs

and it is denoted by x ↔D y, otherwise we say that (x, y) is asymmetrical, denoted

by x 7→D y. In cases where it is not necessary to specify the digraph in which we are

working, the subscript will be omitted. The Asym(D) is the spanning subdigraph of

D such that the arcs of Asym(D) are the asymmetrical arcs of D, and it is called the

asymmetrical part of D.

Throughout this work, we only consider directed walks, directed paths, and directed

cycles. The asymmetrical directed cycle with order n will be denoted by
−→
C n. Let

W = (v0, v1, . . . , vn) be a walk of a digraph D; we will denote by (vi,W, vj) the walk

(vi, vi+1, . . . , vj) contained in W . If W1 is a walk from u to v and W2 is a walk

from v to w, then the union or the concatenation of W1 with W2 will be denoted

by W1 ∪W2. If for every two different vertices u and v of a digraph D, there are a

path from u to v and a path from v to u, then we say that D is strongly connected or

strong. The family of Hamiltonian digraphs is highly studied, where one of the most

famous problems is the directed traveling salesman problem (DTSP) [20], but there

are different applications, for example in connectivity [15] and genomics [5].

Consider Zm the cyclic group of integers modulo m, with m ≥ 2. Let J be a

nonempty subset of Zm\{0}. The digraph
−→
Cm(J) is defined by V (

−→
Cm(J)) = Zm and

A(
−→
Cm(J)) = {(i, j) : i, j ∈ Zm, j− i ∈ J}, and it is called is circulant (or rotational)

digraph. The family of circulant digraphs has been extensively studied due to their

applications, in particular, sufficient conditions for the existence of Hamiltonian cycles

can be found in [22]. In addition to the fact that circulant digraphs are a special case

of Cayley digraphs, which are used to represent algebraic groups [9, 18]. A directed

n-antihole is the digraph
−→
An such that

−→
An =

−→
C n(J) where J = {1, . . . , n− 2}, with

n ≥ 3. Observe that
−→
A 3 =

−→
C 3. The family of directed n-antihole, denoted by A, is

a special case of circulant digraphs.

Let D be a digraph and γ = (x0, x1, . . . , xn−1, x0) be a cycle of D. A diagonal of

γ is an arc in A(D) \ A(γ) whose ending vertices belong to V (γ). If a diagonal of

γ is a symmetrical arc of D, then we say that the diagonal is symmetrical. The

length of a diagonal (xi, xj) is |j − i|, operations are taken modulo n. We say that a

diagonal (xi, xj) crosses the diagonal (xs, xk) if and only if i ∈ {s+ 1, . . . , k− 1} and

j ∈ {k + 1, . . . , s− 1}, or i ∈ {k + 1, . . . , s− 1} and j ∈ {s+ 1, . . . , k − 1}, operations

are taken modulo n.

Let D be a digraph and S be a subset of V (D). We say that S is absorbent if for

every vertex u ∈ V (D)\S there is a vertex v ∈ S such that (u, v) ∈ A(D), and S is an

independent set of D if for any pair of different vertices of S there is no arc between

them. A subset N of vertices of D is a kernel of D if and only if it is both absorbent

and independent. In [19], the concept of kernel was introduced by von Neumann and

Morgenstern in the study of winning positions in 2-person games. Due to the multiple

applications in different areas, kernels in digraphs have been studied from different

contexts. For example, in logic, applications to counterexamples to the 0-1 laws in

fragments of monadic second-order logic can be found in [16, 17].

Regarding computational complexity, Chvátal proved that recognizing digraphs that

have a kernel is an NP-complete problem [8]. In addition, in [10], Fraekel proved that
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the kernel problem remains NP-complete even for planar digraphs D with degree

constraints δ(x) ≤ 3, δ+(x) ≤ 2 and δ−(x) ≤ 2, for all vertices x ∈ V (D), and in

[13], Hell and Hernández-Cruz showed that the problem remains an NP-complete

when the underlying graph is 3-colorable. Therefore, determining the existence or

non-existence of a kernel in special classes of digraphs has been a very fruitful field

of study, where there are still many interesting open problems. However, most of

the results prove the existence of the kernel in a non-constructive way. Despite the

above, it is known that kernel problem is polynomial time solvable for acyclic, quasi-

transitive, and locally semicomplete digraphs [2, 13, 14]. Moreover, in [21], Szwarcfiter

and Chaty proved that counting the number of distinct kernels of a digraph with no

odd cycles is ]P-complete, even if the length of the longest cycle of the digraph is 2.

In 1980, Duchet conjectured that for each connected digraph without a kernel, which is

not an odd cycle, there is an arc that can be removed and the obtained digraph remains

without a kernel [7]. But Apartsin, Ferapontova and Gurvich found a counterexample

to this conjecture, they proved that the circulant digraph
−→
C 43(1, 7, 8) has no kernel

and after removing any arc in this digraph a kernel will appear. Moreover, they also

proved that
−→
C n(1, 7, 8) has a kernel if and only if n ≡ 0 (mod 3) or n ≡ 0 (mod 29)

[1]. Later, in [3], the authors proposed the problem of characterizing the circulant

digraphs with kernel. This interesting problem remains open.

A semikernel of D is an independent set S such that if (x, y) ∈ A(D) with x ∈ S,

then there is w ∈ S such that (y, w) ∈ A(D), note that w can be x. Observe that

every kernel is a semikernel but not every semikernel is a kernel.

Let D be a digraph such that every proper induced subdigraph has a kernel. If D has

a kernel, then we say that D is a kernel perfect digraph or a KP-digraph, otherwise,

we say that D is a critical kernel imperfect digraph or a CKI-digraph. By definition,

CKI-digraphs are considered minimal obstructions for a digraph to have a kernel, they

have been studied by different authors. In [6] it is proved that every CKI-digraph

is strongly connected. Even more, Galeana-Sánchez and Neumann-Lara proved that

the asymmetrical part of a CKI-digraph is also strongly connected [11]; in the same

work, they proved the following result.

Theorem 1. [11] If D is not a KP-digraph, then D contains an induced CKI-subdigraph.

Notice that both asymmetrical odd cycles and directed n-antiholes, with n ≥ 3,

are CKI-digraphs, and even cycles are KP-digraphs. By Theorem 1, for every KP-

digraph (CKI-digraph) D, the following properties hold, D has no proper induced

CKI-subdigraph, and D has no proper induced subdigraph isomorphic to an odd

cycle or a directed n-antihole, with n ≥ 3.

In this work, we will focus on digraphs that satisfy the condition where, whenever a

vertex reaches two others through asymmetrical arcs, then these two vertices have the

same out-neighborhood in the digraph. The digraphs with this property will be said

to have the property P . In particular, digraphs whose asymmetrical part is a Hamil-

tonian cycle have the property P . As previously mentioned, Hamiltonian digraphs,
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circulant digraphs, and kernels in digraphs have a large number of applications, so

the characterization of the KP-digraphs whose asymmetrical part is a Hamiltonian

cycle is of great importance. For example, one of these digraphs can model a route of

places, in which the kernel is a set of places that can be visited from anywhere outside

the set, but between two places in the kernel, they cannot be reached from one to

another. Moreover, although not all CKI-digraphs have a Hamiltonian cycle as their

asymmetrical part, the most intuitive ones, such as directed odd cycles and directed

anti-holes, do. In [12], it was shown that there are CKI-digraphs whose asymmetrical

part is not a Hamiltonian cycle, however, the construction shown is based on the

directed odd cycles and directed n-antiholes.

The rest of the paper is organized as follows. Section 2 is devoted to digraphs with

property P , which includes an operation that preserves the existence or non-existence

of the property P and the existence or non-existence of a kernel, the characterization

of the digraphs with the property P that have a kernel, whose asymmetrical part is

strong, and the characterization of the KP-digraphs with property P . In Section 3 a

characterization of KP-digraphs with a Hamiltonian cycle as their asymmetrical part

and some consequences are provided. Section 4 is devoted to providing a construction

that allows us to contract some subpaths of the asymmetrical cycle to obtain a smaller

order digraph that preserves the existence or non-existence of a kernel. Section 5 fo-

cuses on the digraphs whose asymmetrical part is a Hamiltonian cycle and whose

diagonals are symmetrical of length 2; through a construction that provides two al-

gorithms, the first one determines whether the digraph is KP or CKI, and the second

reconstructs the kernel for the KP-digraphs. Finally in Section 6 some consequences

concerning circulant digraphs and digraphs with the property P whose asymmetric

part is a disjoint union digraphs, are shown.

2. Property P and KP-digraphs

Let D be a digraph. We say that D has the property P if and only if for every

x ∈ V (D), we have that if x 7→ y and x 7→ w, then N+(y) \ {w} = N+(w) \ {y}.
Note that if D is a digraph such that |N+

Asym(D)(x)| ≤ 1, for every x ∈ V (D), then

D has the property P . It follows that digraphs whose asymmetrical part is a disjoint

union of cycles have the property P . For example, digraphs with a Hamiltonian cycle

as their asymmetrical part have the property P .

Let X be a subset of V (D). We say that X is a strong clique of D if and only if

x ↔D y for every x, y ∈ X. Let D be a digraph and let v be a vertex of D. The

digraph SDv (CDv) is the digraph obtained from D by blowing up the vertex v into

an independent set (a strong clique); that is replace the vertex v by an independent set

(a strong clique) X such that N+
SDv

(x) = N+
D (v) and N−SDv

(x) = N−D (v) (N+
CDv

(x) =

N+
D (v) and N−CDv

(x) = N−D (v)), for every x ∈ X. (see Figure 1). By definition, D

is an induced subdigraph of SDv, moreover, the proof of the following results are

straightforward.
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Figure 1. Digraph D with property P and SDv0

Lemma 1. Let D be a digraph, and let v be a vertex of D. If SDv is the digraph obtained
from D by blowing up the vertex v into an independent set, then D has the property P if and
only if SDv has the property P .

Lemma 2. Let D be a digraph, and let u be a vertex of D. If CDu is the digraph obtained
from D by blowing up the vertex u into a strong clique, then D has the property P if and
only if CDu has the property P .

As we already mentioned, a digraph with a Hamiltonian cycle as its asymmetrical

part, has the property P . By Lemmas 1 and 2, it follows that SDv (CDv) has the

property P , for every v ∈ V (D). However, if the asymmetrical part of a digraph D

is a Hamiltonian digraph, it does not imply that SDv is a Hamiltonian digraph. (see

Figure 1). Hence, there are an infinite number of digraphs with the property P whose

asymmetrical part is strong but are not Hamiltonian. Despite this, the following

result shows that SDv preserves the existence or non-existence of a kernel of D.

Lemma 3. Let D be a digraph, and let v be a vertex of D. If SDv is the digraph obtained
from D by blowing up the vertex v into an independent set, then D has a kernel if and only
if SDv has a kernel.

Proof. Let D be a digraph, let v be a vertex of D, and let SDv be the digraph

obtained from D by blowing up the vertex v into an independent set X. First,

suppose that N is a kernel of D. We have two possibilities.
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Case 1. v ∈ N .

Consider N ′ = (N \ {v}) ∪X. Observe that N \ {v} and X are independent sets in

SDv; moreover, there is no arc between any vertex of X and any vertex of N in SDv,

otherwise, there is an arc between v and some vertex of N in D, which is impossible.

On the other hand, since N is absorbent in D, we have that N ′ is absorbent in SDv.

Hence, N ′ is a kernel of SDv.

Case 2. v /∈ N .

Note that N is also an independent set in SDv, moreover, since N+
SDv

(x) = N+
D (v),

for every x ∈ X, it follows that N is an absorbent set in SDv. Hence, N is a kernel

of SDv.

Therefore, SDv has a kernel. Conversely, let N̂ be a kernel of SDv. It is straightfor-

ward to prove that N̂ is a kernel of D if N̂ ∩X = ∅, otherwise N̂ ∪ {v} is a kernel of

D.

Analogously to Lemma 3, we have the following result.

Lemma 4. Let D be a digraph, and let u be a vertex of D. If CDu is the digraph obtained
from D by blowing up the vertex u into a strong clique, then D has a kernel if and only if
CDu has a kernel.

Proof. Let D be a digraph, let u be a vertex of D, and let CDu be the digraph

obtained from D by blowing up the vertex u into a strong clique X. First, suppose

that N ′ is a kernel of CDu. We have two cases.

Case 1. There is z ∈ N ′ ∩X.

We will prove that N = (N ′ \{z})∪{u} is a kernel of D. Let x, y ∈ N . Since N ′ \{z}
is also an independent set of D, it follows that if x and y are not u, then there is no

arc between x and y in D. Now, suppose that x = u and y ∈ N ′ \ {z}. Observe that

there is no arc between x and y in D, otherwise, there is an arc between z and y in

CDu which is impossible. Thus N is an independent set in D. Let x ∈ V (D) \N . It

follows that x ∈ V (D) \N ′. Since N ′ is a kernel of CDu, there is w ∈ N ′ such that

(x,w) ∈ A(CDu). If w 6= z, then w ∈ N and (x,w) ∈ A(D). Otherwise, w = z, it

implies that (x, u) ∈ A(D). Hence, N is an absorbent set and a kernel of D.

Case 2. N ′ ∩X = ∅.
Note that N ′ is also an independent set in D, moreover, by definition of CDu, we

have that N ′ is an absorbent set in D. Hence, N ′ is a kernel of D.

Therefore, D has a kernel. Conversely, let N be a kernel of D. It is straightforward

to prove that if u /∈ N , then N is a kernel of CDu, otherwise N ∪ {z} is a kernel of

CDu, with z ∈ X.

The following results show that any arbitrary sequence of blow-ups into independent

sets or into strong cliques, preserves whether property P holds or not, and the exis-

tence or non-existence of a kernel of D, respectively. Moreover, both results are an

immediate consequence of recursively applying Lemmas 1 and 2, and Lemmas 3 and

4, respectively.
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Theorem 2. Let D be a digraph. If H is obtained from D after applying an arbitrary
sequence blow-ups into independent sets or into strong cliques, then D has the property P if
and only if H has the property P .

Theorem 3. Let D be a digraph. If H is obtained from D after applying an arbitrary
sequence blow-ups into independent sets or into strong cliques, then D has a kernel if and
only if H has a kernel.

The following result characterizes the digraphs, with a strong asymmetrical part,

which has a kernel.

Theorem 4. Let D be a digraph with the property P , with order n ≥ 4. If Asym(D) is
strong, then D has a kernel if and only if D contains an even cycle (v0, v1, . . . , v2k−1, v0) of
length at least 4 such that:

1. for each i in {0, 2, 4, . . . , 2(k − 1)}, (vi, vi+1) is asymmetrical in D.

2. {v0, v2, v4, . . . , v2(k−1)} is an independent set in D.

Proof. Let D be a digraph as in the hypothesis. First, suppose that D has a kernel,

N . Since Asym(D) is strong, for every x ∈ V (D) there is y ∈ V (D) such that x 7→ y.

Consider v0 a vertex in N , it follows that there is v1 in V (D) \N , such that v0 7→ v1.

Since N is a kernel, there is a vertex v2 in D such that v1 → v2, observe that v2 6= v0.

For v2, there is v3 ∈ V (D) such that v2 7→ v3, note that since N is independent,

v3 ∈ V (D) \ N , moreover, v3 6= v1. It follows that, there is v4 ∈ N such that

v3 → v4, note that v4 6= v2. If v4 = v0, then (v0, v1, v2, v3, v0) is the desired even cycle,

otherwise, there is v5 ∈ V (D)\N such that v4 7→ v5; note that v5 6= v3, and if v5 = v1,

then (v2, v3, v4, v1, v2) is the desired cycle. Recursively, we can continue this procedure

until finding the first repeating vertex vk. If k is even, then v2r = vk with 2r < k.

Consider the cycle C = (v2r, v2r+1, . . . , vk−1, vk = v2r). Otherwise, v2s+1 = vk with

2s + 1 < k, and we consider the cycle C = (v2s+2, v2s+3, . . . , vk = v2s+1, v2s+2).

It follows that C is an even cycle, which alternates vertices of N with vertices in

V (D) \ N , hence the set of vertices with an even label is a subset of N , thus it is

an independent set in D. Moreover, by construction (vi, vi+1) is asymmetrical in D,

with i even.

Conversely, suppose that D contains an even cycle (v0, v1, . . . , v2k−1, v0) such

that (vi, vi+1) is asymmetrical in D, for each i ∈ {0, 2, . . . , 2(k − 1)}, and

{v0, v2, . . . , v2(k−1)} is an independent set in D. We claim that S1 =

{v0, v2, v4, . . . , v2(k−1)} is a semikernel of D. By hypothesis, S1 is an independent

set. Let vi ∈ S1 such that (vi, y) ∈ A(D). Assume that vi 7→ y, otherwise vi ↔ y and

vi is the vertex sought. On the other hand, if y = vi+1, then (vi+1, vi+2) ∈ A(D) with

vi+2 ∈ S1 (subscripts modulo 2k). Otherwise, y 6= vi+1, by hypothesis vi 7→ vi+1 and

vi 7→ y, it follows that N+(vi+1) = N+(y). Thus (y, vi+2) ∈ A(D) with vi+2 ∈ S1

(subscripts modulo 2k). Hence, S1 is a semikernel of D.
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Let A1 = V (D) \ (S1 ∪ N−(S1)). If A1 = ∅, then S1 is a kernel of D. Suppose

that A1 6= ∅. Since Asym(D) is strong, there is x1 ∈ A1 such that x1 7→ y for some

y ∈ S1 ∪N−(S1), moreover, by definition of A1, we have that y ∈ N−(S1). We claim

that if there is w ∈ V (D) such that x1 7→ w, then w ∈ N−(S1). Let w ∈ V (D) such

that x1 7→ w, by hypothesis, N−(w) = N−(y), it follows that there is v ∈ S1 such

that w → v.

Consider S2 = S1∪{x1}. We claim that S2 is a semikernel of D. Observe that S1 and

{x1} are independent sets of D, moreover, x1 ∈ A1 and S1 is a semikernel of D. It

follows that S2 is an independent set of D. Since S1 is a semikernel of D, it is enough

to prove that if x1 → z, then there is s ∈ S2 such that z → s. Let z ∈ V (D) \S2 such

that x1 → z. If x1 ↔ z, then s = x1, otherwise, we have that z ∈ N−(S1), thus there

is s ∈ S1 ⊆ S2 such that z → s. Hence, S2 is a semikernel of D.

Let A2 = V (D) \ (S2 ∪ N−(S2)). If A2 = ∅, then S2 is a kernel of D. Suppose

that A2 6= ∅. Since Asym(D) is strong, there is x2 ∈ A2 such that x2 7→ y for

some y ∈ S2 ∪ N−(S2), moreover, by definition of A2, we have that y ∈ N−(S2).

We claim that if x2 7→ w, then w ∈ N−(S2). Let w ∈ V (D) such that x2 7→ w,

by hypothesis, N−(w) = N−(y), it follows that there is v ∈ S2 such that w → v.

Consider S3 = S2 ∪ {x2}, analogously to S2, we have that S3 is a semikernel of D.

Let A3 = V (D) \ (S3 ∪ N−(S3)). If A3 = ∅, then S3 is a kernel of D. Otherwise,

we continue the procedure until find a semikernel Sk of D such that Ak = ∅. By

construction, Sk is a kernel of D. Therefore, D has a kernel.

Theorem 4 characterizes the digraphs with the property P , whose asymmetrical part

is strong, with a kernel. However, if one of the proper induced subdigraphs, with

at least two vertices, of D, whose asymmetrical part is strong, does not satisfy the

property of Theorem 4, then D is not a KP-digraph. For example, the digraph D, in

Figure 1 has a kernel {v0, v2, x2, x5}, but D is not a KP-digraph since D[{x2, x3, x4}]
is an asymmetrical odd cycle, which is a CKI-digraph. Hence, the following result

characterizes the KP-digraphs with the property P .

Theorem 5. If D is a digraph with the property P , with order n ≥ 4, then D is a
KP-digraph if and only if for every induced subdigraph H of D with at least two vertices and
a strong asymmetrical part, contains an even cycle (v0, v1, . . . , v2k−1, v0) of length at least 4
such that:

1. for each i in {0, 2, 4, . . . , 2(k − 1)}, (vi, vi+1) is asymmetrical in D.

2. {v0, v2, v4, . . . , v2(k−1)} is an independent set in D.

Proof. Let D be a digraph as in the hypothesis. First, suppose that D is a KP-

digraph. Let H be an induced subdigraph H of D with a strong asymmetrical part.

Since D is a KP-digraph, D has no proper induced subdigraph isomorphic to an

asymmetrical odd cycle. It follows that H has no proper induced subdigraph isomor-

phic to an asymmetrical odd cycle. Moreover, since Asym(H) is strong and it is not

an asymmetrical odd cycle, we have that n ≥ 4. In addition, for every x ∈ V (H)
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if x 7→H y and x 7→H w, then N+
H (y) = N+

H (w). By Theorem 4, we have that H

contains an even cycle with the desired properties.

Conversely, suppose that for every induced subdigraph H of D with a strong asym-

metrical part, H contains an even cycle (v0, v1, . . . , v2k−1, v0) of length at least 4

such that for each i in {0, 2, 4, . . . , 2(k − 1)}, (vi, vi+1) is asymmetrical in D, and

{v0, v2, v4, . . . , v2(k−1)} is an independent set in D. We will prove that D is a KP-

digraph. Let D1 be an induced subdigraph of D. Note that, for every x ∈ V (D1)

if x 7→D1
y and x 7→D1

w, then N+
D1

(y) = N+
D1

(w). If Asym(D1) is strong, then,

by Theorem 4, we have that D1 has a kernel. Assume that Asym(D1) is not strong.

Proceeding by contradiction, suppose that D1 has no kernel. By Theorem 1, D1 con-

tains an induced CKI-digraph H. It follows that Asym(H) is strong, moreover, for

every x ∈ V (H) if x 7→H y and x 7→H w, then N+
H (y) = N+

H (w); by hypothesis, H

contains an even cycle (v0, v1, . . . , v2k−1, v0) of length at least 4 such that for each i in

{0, 2, 4, . . . , 2(k−1)}, (vi, vi+1) is asymmetrical in D, and {v0, v2, v4, . . . , v2(k−1)} is an

independent set in D. Hence, by Theorem 4, H has a kernel, which is a contradiction.

We can conclude that D1 has a kernel. Therefore, D is a KP-digraph.

3. Digraphs whose asymmetrical part is a Hamiltonian cycle

In this section, KP-digraphs with a Hamiltonian cycle as their asymmetrical part are

characterized, and some of their consequences are shown.

Let D be a digraph whose Asym(D) is an asymmetrical Hamiltonian cycle γ =

(x0, x1, . . . , xn−1, x0). As we already mentioned, D has property P . On the other

hand, it is important to note that if H is a proper induced subdigraph of D, with

at least two vertices, then the asymmetrical part of every induced subdigraph of H

is not strong. It follows that H does not contain any induced CKI-subdigraph. By

Theorem 1, H is a KP-digraph. We can conclude that, if D has a kernel, then D is a

KP-digraph, otherwise, D is a CKI-digraph. Therefore, we have the following result.

Theorem 6. If D is a digraph whose Asym(D) is a Hamiltonian cycle, then D is a
KP-digraph or D is a CKI-digraph.

From now on, we consider that every digraph D is such that Asym(D) is an asymmet-

rical Hamiltonian cycle γ = (x0, x1, . . . , xn−1, x0). Note that, every arc not in A(γ)

is a symmetrical diagonal of γ. Even more, by Theorem 6, if D has a kernel, then

D is a KP-digraph, otherwise D is a CKI-digraph. Therefore, the results obtained

in this work are based on determining the existence or non-existence of a kernel in

considered digraphs. Combining this with Theorems 4 and 5, we have the following

characterization of the KP-digraphs with a Hamiltonian cycle as their asymmetrical

part.
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Theorem 7. Let D be a digraph. If Asym(D) is a Hamiltonian cycle, then D is a
KP-digraph if and only if D contains an even cycle (v0, v1, . . . , v2k−1, v0) of length at least 4
such that:

1. for each i in {0, 2, 4, . . . , 2(k − 1)}, (vi, vi+1) is asymmetrical in D.

2. {v0, v2, v4, . . . , v2(k−1)} is an independent set in D.

Corollary 1. Let D be a digraph such that Asym(D) is a Hamiltonian cycle γ. If the
minimum length of a diagonal of γ is odd, then D is a KP-digraph.

Proof. Let γ = (x0, x1, . . . , xn−1, x0) be the asymmetrical Hamiltonian cycle of

D. Suppose, without loss of generality, that (x0, xi) is a diagonal of γ with min-

imum length and its length is odd; it follows that x0 ↔D xi. Consider C =

(x0, x1, . . . , xi, x0). Note that C is an even cycle of D such that (xj , xj+1) is asymmet-

rical for each j ∈ {0, 1, . . . , i− 1}. Moreover, since every diagonal of γ is symmetrical

and (x0, xi) is a diagonal of γ with minimum length, we have that {x0, x2, . . . , xi−1}
is an independent set of D. Hence, the hypothesis of Theorem 7 holds. Therefore, D

is a KP-digraph.

As a consequence of Corollary 1, we have that if D is a CKI-digraph with a Hamilto-

nian cycle γ as Asym(D), then the minimum length of a diagonal of γ is even.

Corollary 2. Let
−→
C n(1,±s1,±s2, . . . ,±sk) be a circulant digraph, with n ≥ 6, such that

s1 < sj and si ≤
⌊
n
2

⌋
for every i, j ∈ {1, . . . , k}. If s1 is odd, then

−→
C n(1,±s1,±s2, . . . ,±sk)

is a KP-digraph.

Consider
−→
C n(1,±s1,±s2, . . . ,±sk) the circulant digraph, with n ≥ 6. From Corol-

lary 2, if n is even and every si is odd, then
−→
C n(1,±s1,±s2, . . . ,±sk) is a KP-

digraph. In particular, for every k ≥ 3,
−→
C 2k(1,±s) is a KP-digraph if s is odd.

In the other case, if n is odd, every si is odd and si ≤
⌊
n
2

⌋
, then the circu-

lant digraph
−→
C 2n+1(1,±s1,±s2, . . . ,±sk) is a KP-digraph. In particular, for every

k ≥ 3, if s is odd and s ≤ k, then
−→
C 2k+1(1,±s) is a KP-digraph. Observe that

−→
C 5(1,±3) ∼=

−→
C 5(1,±2) ∼=

−→
A 5, which is a CKI-digraph. From above, we can conclude

that for every n ≥ 6,
−→
C n(1,±3) is a KP-digraph and the unique

−→
C n(1,±3) which is

a CKI-digraph is
−→
A 5.

The following results show a way to construct a cycle where the hypothesis of the The-

orem 7 holds, thus obtaining sufficient conditions for a digraph whose asymmetrical

part is a Hamiltonian cycle to be a KP-digraph.

Corollary 3. Let D be a digraph with order n such that Asym(D) is a Hamiltonian cycle
γ, and let s be an integer greater than 1. If n ≡ 0 (mod s+ 1), for every i ∈ {0, . . . , n− 1}
the arc (xi, xi+s) is a symmetrical diagonal of γ and the length of any other symmetrical
diagonal of γ is not congruent with 0 modulo s+ 1, then D is a KP-digraph
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Proof. Let D be a digraph with order n, with γ = (x0, x1, . . . , xn−1, x0) a Hamil-

tonian cycle as its asymmetrical part, and let s be an integer greater than 1. Since

n ≡ 0 (mod s + 1), we have that n = (s + 1)j for some integer j > 1. Consider the

even cycle

C = (x0, x1, xs+1, xs+1+1, x2(s+1), x2(s+1)+1, . . . x(j−1)(s+1), x(j−1)(s+1)+1, x0).

Note that C fulfills the hypotheses of Theorem 7, because (xr(s+1), xr(s+1)+1) is asym-

metrical in D, |r(s+ 1)− t(s+ 1)| = l(s+ 1) and any other symmetrical diagonal of γ

is not congruent with 0 modulo s+ 1, with l ∈ Z and for every r, t ∈ {0, 1, . . . , j− 1}.
It follows that D is a KP-digraph.

In particular, when D is a circulant digraph and satisfies the hypotheses of Corollary

3 we have the following result.

Corollary 4. Let 1 < s1, s2, . . . , sk, n be integers such that si ≤ n
2
. If there is i ∈

{1, . . . , k} such that n ≡ 0 (mod si + 1) and sj 6≡ 0 (mod si + 1) for every j ∈ {1, . . . , k},
then

−→
C n(1,±s1,±s2, . . . ,±sk) is a KP-digraph.

Note that, by Corollary 2,
−→
C 7(1,±3) is a KP-digraph but the hypotheses of Corollary

4 do not hold.

The following result is not a characterization; however, it is a sufficient condition that

is very useful to verify if a digraph is a KP-digraph.

Theorem 8. Let D be a digraph such that Asym(D) is a Hamiltonian cycle γ. If γ has
a diagonal a such that no other diagonal crosses a, then D is a KP-digraph.

Proof. Let γ = (x0, x1, . . . , xn−1, x0) be the asymmetrical Hamiltonian cycle of D

and let a be a diagonal of γ such that no other diagonal crosses a. Suppose, without

loss of generality, that a = (x0, xi); it follows that x0 ↔D xi. Let D1 be the digraph

D− x0. It follows that D1 has a kernel, N1. If there is xj ∈ N1 such that x0 →D xj ,

then N1 is a kernel of D. Assume that N+(x0) ∩ N1 = ∅. On the other hand, if

N−(x0)∩N1 = ∅, then N1∪{x0} is a kernel of D. Hence, suppose that N−(x0)∩N1 6=
∅; moreover, since N−(x0) \N+(x0) = {xn−1}, we have that N−(x0)∩N1 = {xn−1}.
Consider V2 the set {xj ∈ V (D) : (xj , x0) /∈ A(D) and j ∈ {i, . . . , n − 1}}. Let D2

be the subdigraph of D induced by V2, and N2 be a kernel of D2. Let N ′1 be the set

N1 ∩{xr ∈ V (D) : r ∈ {0, . . . , i}}; we will prove that N = N2 ∪N ′1 ∪{x0} is a kernel

of D. For the independence of N , we note that N ′1, N2 and {x0} are independent

sets; moreover, there is neither arc from {x0} to some vertex in N ′1 nor from N ′1 to

{x0}. In addition, by definition of V2, there is neither arc from {x0} to some vertex

in N2 nor from N2 to {x0}; since no other diagonal in γ crosses a, there is neither arc

from N2 to N ′1 nor from N ′1 to N2. Hence N is independent in D.
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Now, let xs ∈ V (D) \ N . If xs ∈ N−(x0), then xs →D x0; otherwise xs /∈ N−(x0)

and s ∈ {1, . . . , i − 1} or s ∈ {i, . . . , n − 1}. In case that s ∈ {1, . . . , i − 1}, then

by definition of N1 there is w ∈ N1 such that xs →D w. Even more, since no other

diagonal of γ crosses a, we have that w ∈ N ′1. In case that s ∈ {i, . . . , n−1}, it follows

that xs ∈ V2 and there is w ∈ N2 such that xs →D w. Hence N is an absorbent set

and a kernel of D. Therefore, D is a KP-digraph.

Corollary 5. If D is a CKI-digraph such that Asym(D) is a Hamiltonian cycle γ, then
for every diagonal a of γ there is a diagonal e such that e crosses a.

4. Contraction of induced asymmetrical paths

In this section, we provide a construction that allows us to contract some subpaths

of the asymmetrical cycle to obtain a smaller order digraph where the existence or

non-existence of a kernel is preserved.

Construction 1. Let D be a digraph whose asymmetrical part is a Hamiltonian cycle
γ = (x0, . . . , xn−1, x0). Suppose that C = (x0, x1, . . . , xk), with k ≥ 3, is such that δ+(x0) >
1, δ−(x0) > 1, δ+(xk) > 1, δ−(xk) > 1, δ+(xi) = δ−(xi) = 1 for every i ∈ {1, . . . , k−1}, and

there is no arc between x0 and xk. Consider D̂ the digraph obtained from D the following
modifications.

1. If k is odd, then:

(a) Delete V (C) and the arcs of D with at least one ending vertex in C from D.

(b) Add two new vertices x̂0 and x̂1 and add the arcs (xn−1, x̂0), (x̂0, x̂1) and
(x̂1, xk+1).

(c) For each i ∈ {k+ 1, k+ 2, . . . , n− 1}, if xi ↔D x0, then add the arcs (xi, x̂0) and
(x̂0, xi).

(d) For each i ∈ {k+ 1, k+ 2, . . . , n− 1}, if xi ↔D xk, then add the arcs (xi, x̂1) and
(x̂1, xi).

2. If k is even, then:

(a) Delete V (C) and the arcs of D with at least one ending vertex in C from D.

(b) Add three new vertices x̂0, x̂1 and x̂2 and add the arcs (xn−1, x̂0), (x̂0, x̂1),
(x̂1, x̂2) and (x̂2, xk+1).

(c) For each i ∈ {k+ 1, k+ 2, . . . , n− 1}, if xi ↔D x0, then add the arcs (xi, x̂0) and
(x̂0, xi).

(d) For each i ∈ {k+ 1, k+ 2, . . . , n− 1}, if xi ↔D xk, then add the arcs (xi, x̂2) and
(x̂2, xi).

Theorem 9. Let D be the digraph whose asymmetrical part is a Hamiltonian cycle. If
D̂ is the digraph obtained from D after applying Construction 1, then D is a KP-digraph if
and only if D̂ is a KP-digraph.
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Proof. Let D be a digraph, and let C be as in the hypothesis of Construction 1.

Consider D̂ the digraph obtained from D after applying Construction 1. Observe that

the asymmetrical part of D̂ is a Hamiltonian cycle. Suppose that D is a KP-digraph.

We will prove that D̂ is a KP-digraph. Note that it is enough to prove that D̂ has a

kernel. Let N be a kernel of D. We have two cases.

Case 1. k is odd.

By Construction 1, we have three possibilities and their proofs are straightforward.

If x0 ∈ N , then N̂ = (N ∩ V (D̂)) ∪ {x̂0} is a kernel of D̂; if xk ∈ N , then N̂ =

(N ∩V (D̂))∪{x̂1} is a kernel of D̂; and if x0 and xk are not in N , then N̂ = N ∩V (D̂)

is a kernel of D̂.

Case 2. k is even.

By Construction 1, we have three possibilities and their proofs are straightforward.

If x0 ∈ N , then N̂ = (N ∩ V (D̂)) ∪ {x̂0, x̂2} is a kernel of D̂; if x0 /∈ N and xk ∈ N ,

then N̂ = (N ∩ V (D̂)) ∪ {x̂2} is a kernel of D̂; and if x0 and xk are not in N , then

N̂ = (N ∩ V (D̂)) ∪ {x̂1} is a kernel of D̂.

Conversely, we suppose that D̂ is a KP-digraph. To prove that D is a KP-digraph, it

is enough to prove that D has a kernel. Let N̂ be a kernel of D̂. We have two cases.

Case 1. k is odd.

By Construction 1, we have three possibilities and their proofs are straightforward.

If x̂0 ∈ N̂ , then (N̂ ∩ V (D)) ∪ {x0, x2, . . . , xk−1} is a kernel of D; if x̂1 ∈ N̂ , then

(N̂ ∩ V (D)) ∪ {x1, x3, . . . , xk} is a kernel of D; and if x̂0 and x̂1 are not in N̂ , then

(N̂ ∩ V (D)) ∪ {x2, x4, . . . , xk−1} is a kernel of D.

Case 2. k is even.

By Construction 1, we have three possibilities and their proofs are straightforward. If

x̂1 ∈ N̂ , then (N̂ ∩V (D))∪{x1, x3, . . . , xk−1} is a kernel of D; if x̂1 /∈ N̂ and x̂0 ∈ N̂ ,

then (N̂ ∩ V (D)) ∪ {x0, x2, . . . , xk} is a kernel of D; and if x̂0 and x̂1 are not in N̂ ,

then (N̂ ∩ V (D)) ∪ {x2, x4, . . . , xk} is a kernel of D.

Observe that if D is a digraph such that C = (x0, x1, . . . , xk) is such that δ+(x0) > 1,

δ−(x0) > 1, δ+(xk) > 1, δ−(xk) > 1, δ+(xi) = δ−(xi) = 1 for every i ∈ {1, . . . , k−1},
with k ≥ 3, but there is an arc between x0 and xk, then x0 ↔D xk. Even more, by

Theorem 8, D is a KP-digraph.

Note that if Construction 1 is applied recursively on a digraph D with a Hamiltonian

cycle as its asymmetrical part, then we obtain a digraph with smaller order D′, which

have no two consecutive vertices whose in-degree and out-degree are 1. Moreover, the

problem of determining whether D has a kernel or not, is equivalent to the problem

of determining whether D′ has a kernel or not. Hence, from now on, we will suppose

that for every digraph D with a Hamiltonian cycle as their asymmetrical part, there

are no two consecutive vertices whose in-degree and out-degree are 1.
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5. Symmetrical diagonals of length 2

In this section, we consider the digraphs D whose asymmetrical part is a Hamiltonian

cycle γ = (x0, x1, . . . , xn−1, x0) and if xi ↔D xj , then j = i+ 2. In this sense, we say

that if there is an arc in D which is not in γ, then is a symmetrical diagonal of γ of

length two.

Theorem 10. If n is a positive integer, then
−→
C n(1,±2) is a KP-digraph if and only if

n ≡ 0 (mod 3).

Proof. First, suppose that
−→
C n(1,±2) is a KP-digraph and n = 3k + r for some

r ∈ {0, 1, 2}. We will prove that r = 0. Let K be a kernel of D. By the symmetry

of
−→
C n(1,±2), we suppose, without loss of generality, that 0 ∈ K. It follows that

n − 2, n − 1, 1 and 2 are not elements of K. Since N+(1) = {n − 1, 2, 3}, we have

that 3 ∈ K; this implies that 4, 5 /∈ K, moreover, 6 has to be an element of K and

7, 8 /∈ K. Continuing in a similar way, we have that i ∈ K if i ≡ 0 (mod 3), otherwise

i /∈ K, that is K = {0, 3, . . . , 3k}. Observe that if r 6= 0, then there is an arc from 3k

to 0, which is impossible because K is independent. Therefore, r = 0.

Conversely, if n ≡ 0 (mod 3), then the result follows from Corollary 4.

Let D be a digraph with a Hamiltonian cycle γ = (x0, x1, . . . , xn−1, x0) as its

asymmetrical part such that every diagonal of γ is symmetrical of length 2. Let

σ = (xi0 , xi1 , . . . , xir ) be a subpath of γ. We say that σ is a complete chain of 2-

diagonals, of length r if and only if xij ↔D xij+2
, for every j ∈ {0, . . . , r − 2}. See

Figure 2. Analogously, we say that σ is an alternating chain of 2-diagonals of length

r if and only if xij ↔D xij+2 , for every j ∈ {0, 2, . . . , r − 2}, xik ↔Dc xik+2
, for every

k ∈ {1, 3, . . . , r − 3}, xi0−1 ↔Dc xi1 , and xir−1
↔Dc xir+1. See Figure 2. Observe

that if σ is a complete chain of 2-diagonals of length 2, then σ is an alternating chain

of 2-diagonals. We say that a complete chain of 2-diagonals (alternating chain of

2-diagonals) is maximal if there is no complete chain of 2-diagonals (alternating chain

of 2-diagonals) in which it is properly contained.

Figure 2. Complete chain of 2 diagonals and alternating chain of 2-diagonals
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Lemma 5. Let D be a digraph such that Asym(D) is a Hamiltonian cycle γ, and every
diagonal of γ is a symmetrical diagonal of length two. If every complete chain of 2-diagonals
of D has length 2 and D has at least one alternating chain of 2-diagonals, then D is a
KP-digraph.

Proof. Let C1, . . . , Ck be the maximal alternating chains of 2-diagonals of D, ac-

cording to the order in which they appear in γ. For each i ∈ {2, . . . , k}, sup-

pose that Ci = (x0i , x1i , . . . , xri), and without loss of generality, assume that

C1 = (x0, x1, . . . , xr1). For each i ∈ {1, . . . , k}, let Pi be the subpath (xri , γ, x0i+1
) of

γ, and let li be the length of Pi. Since every arc not in γ is a symmetrical diagonal

of γ of length two, the definition of Ci and by Theorem 9, we have that li is 1 or 2.

Moreover, γ = C1 ∪ P1 ∪ C2 ∪ · · · ∪ Ck ∪ Pk and l(γ) = r1 + l1 + · · ·+ rk + lk.

Let N be a subset of vertices of D such that for each i ∈ {1, . . . , k}, N∩(V (Ci)∪V (Pi))

is equal to {x1i , x3i , . . . , x(ri)−1} ∪ {x(ri)+1 = x(0i+1)−1} if li = 2; or {xri} if li = 1

and ri = 2; or {x1i , x3i , . . . , x(ri)−3} ∪ {xri} if li = 1 and ri ≥ 4. The proof that N is

a kernel of D is straightforward.

Observe that Lemma 5 is a direct consequence of Theorem 8, however, the presented

proof explicitly exhibits the kernel. The following construction allows us to contract

the maximal complete chain of 2-diagonals of length r > 2 in D to obtain a digraph

D′ where the existence or non-existence of a kernel is preserved.

Construction 2. Let D be a digraph whose asymmetrical part is a Hamiltonian cycle
γ = (x0, . . . , xn−1, x0), and let σ be a maximal complete chain of 2-diagonals of length
r ≥ 3. Suppose, without loss of generality, that σ = (x0, x1, . . . , xr). Construct the digraph
D′, obtained from D after the following modifications.

1. If r ≡ 0 (mod 3), then:

(a) Delete V (σ) and the arcs of D with at least one ending vertex in σ from D.

(b) Add a new vertex xσ0 and add the arcs (xn−1, xσ0) and (xσ0 , xr+1).

(c) If xn−2 ↔D x0, then add the arcs (xn−2, xσ0) and (xσ0 , xn−2).

(d) If xr ↔D xr+2, then add the arcs (xσ0 , xr+2) and (xr+2, xσ0).

2. If r ≡ 1 (mod 3), then:

(a) Delete V (σ) and the arcs of D with at least one ending vertex in σ from D.

(b) Add two new vertices xσ0 and xσ1 , and add the arcs (xn−1, xσ0), (xσ0 , xσ1) and
(xσ1 , xr+1).

(c) If xn−2 ↔D x0, then add the arcs (xn−2, xσ0) and (xσ0 , xn−2).

(d) If xr ↔D xr+2, then add the arcs (xσ1 , xr+2) and (xr+2, xσ1).

3. If r ≡ 2 (mod 3), then:

(a) Delete V (σ) and the arcs of D with at least one ending vertex in σ from D.

(b) Add three new vertices xσ0 , xσ1 and xσ2 and add the arcs (xn−1, xσ0), (xσ0 , xσ1),
(xσ1 , xσ2), (xσ0 , xσ2), (xσ2 , xσ0) and (xσ2 , xr+1).
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(c) If xn−2 ↔D x0, then add the arcs (xn−2, xσ0) and (xσ0 , xn−2).

(d) If xr ↔D xr+2, then add the arcs (xσ2 , xr+2) and (xr+2, xσ2).

Lemma 6. Let D be a digraph whose asymmetrical part is a Hamiltonian cycle γ =
(x0, . . . , xn−1, x0), and let σ = (x0, x1, . . . , xr) be a maximal complete chain of 2-diagonals,
of length r ≤ n − 1, of D. If D has a cycle C = (v0, v1, . . . , v2k−1, v0) of length at least 4,
for each i ∈ {0, 2, . . . , 2(k − 1)} the arc (vi, vi+1) is asymmetrical in D, {v0, v2, . . . , v2(k−1)}
is an independent set of D and V (C) ∩ V (σ) 6= ∅, then x0 is a vertex of V (C) ∩ V (σ) and
one of the following statement hold.

1. If x0 ∈ V (C) and its subscript in C is even, then V (C) ∩ V (σ) = {xi : i ≡ 0 (mod 3)
or i ≡ 1 (mod 3) and 0 ≤ i ≤ r}; moreover, xi has subscript even in C if i ≡ 0 (mod
3), otherwise xi has subscript odd in C.

2. If x0 ∈ V (C) and its subscript in C is odd, then

(a) V (C) ∩ V (σ) = {x0} ∪ {xi : i ≡ 1 (mod 3) or i ≡ 2 (mod 3) and 0 ≤ i ≤ r};
moreover, xi has subscript even in C if i ≡ 1 (mod 3), otherwise xi has subscript
odd in C.

(b) V (C) ∩ V (σ) = {xi : i ≡ 0 (mod 3) or i ≡ 2 (mod 3) and 0 ≤ i ≤ r}; moreover,
xi has subscript even in C if i ≡ 2 (mod 3), otherwise xi has subscript odd in C.

Proof. Let D, γ, σ and C be as in the hypotheses of Lemma 6. By hypothesis,

V (C) ∩ V (σ) 6= ∅; we will prove that x0 ∈ V (C). Let xj be the first vertex of σ

in C; proceeding by contradiction suppose that xj 6= x0. Observe that N−(xj) ⊆
{xj−2, xj−1, xj+2}. By choice of xj , we have that xj−2 and xj−1 are not vertices of

C, it follows that the predecessor of xj in C is xj+2. Since xj ↔D xj+2, we have

that xj+2 has odd subscript in C, in consequence, xj has even subscript in C and

xj+1 is the successor of xj in C. Observe that N+(xj+1) ⊆ {xj−1, xj+2, xj+3}; by

choice of xj , we have that xj−1 is not a vertex of C. In addition, if xj+2 is the

successor of xj+1 in C, then C = (xj+2, xj , xj+1, xj+2) which is impossible because

C has even length. Thus xj+3 is the successor of xj+1 in C and xj+4 is the successor

of xj+3 in C. On the other hand, we have that N−(xj+2) = {xj , xj+1, xj+4}, the

successor of xj+2 in C is xj , the successor of xj in C is xj+1 and the successor of

xj+1 in C is xj+3. It follows that, the predecessor of xj+2 in C is xj+4. Hence,

C = (xj+2, xj , xj+1, xj+3, xj+4, xj+2) which is a contradiction to the length of C.

Therefore, x0 ∈ V (C) ∩ V (σ).

First, we suppose that x0 has even subscript in C. We will prove that V (C)∩V (σ) =

{xi : i ≡ 0 (mod 3) or i ≡ 1 (mod 3) and 0 ≤ i ≤ r}. Since x0 ∈ V (C) and

its subscript in C is even, we suppose, without loss of generality, that v0 = x0.

By definition of C, we have that x1 = v1, moreover, since N+(x1) = {x2, x3} and

x0 ↔D x2, it follows that x3 = v2 and x4 = v3. Similarly, since N+(x4) = {x2, x5, x6},
x0 ↔D x2 and x3 ↔D x5, it follows that x6 = v4 and x7 = v5. Continuing with this

procedure, we have that xi ∈ V (C) with i ≡ 0 (mod 3) or i ≡ 1 (mod 3), for every

0 ≤ i ≤ r}; even more, if i ≡ 0 (mod 3) then xi has subscript even in C, otherwise

xi has subscript odd in C. It is important to note that, by construction, xj is not a
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successor of any vertex in C, with j ≡ 2 (mod 3) and 2 ≤ j ≤ r, hence xj is not a

vertex of C. Therefore, V (C) ∩ V (σ) = {xi : i ≡ 0 (mod 3) or i ≡ 1 (mod 3) and

0 ≤ i ≤ r}.
Now, we suppose that x0 ∈ V (C) and its subscript in C is odd. Suppose, without

loss of generality, that x0 = v1. Since (v0, v1) is asymmetrical, xn−1 = v0. Note

that N+(x0) ⊆ {xn−2, x1, x2}. If xn−2 = v2, then xn−1 = v3; even more, C =

(xn−1, x0, xn−2, xn−1), which is impossible because the length of C is even. Hence,

we have two cases.

Case 1. x1 = v2.

Thus x2 = v3. Note that N+(x2) = {x0, x3, x4} but x0 = v1 and x1 ↔D x3, this

implies that x4 = v4 and x5 = v5. Since N+(x5) = {x3, x6, x7} and x4 ↔D x6, we

have that v6 = x3 or v6 = x6. If v6 = x3, then x4 = v7, which is impossible because

x4 = v4. Hence, v6 = x6 and v7 = x7. Continuing with this procedure, we have

that x0 ∈ V (C) and xi ∈ V (C) with i ≡ 1 (mod 3) or i ≡ 2 (mod 3), for every

1 ≤ i ≤ r; even more, if i ≡ 1 (mod 3) then xi has subscript even in C, otherwise xi
has subscript odd in C.

Case 2. x2 = v2.

Thus x3 = v3. Since N+(x3) = {x1, x4, x5} and x2 ↔D x4, we have that v4 = x1
or v4 = x5. If v4 = x1, then v5 = x2, which is impossible because x2 = v2. Hence,

v4 = x5 and v5 = x6. Since N+(x6) = {x4, x7, x8}, x2 ↔D x4 and x5 ↔D x7, it

follows that v6 = x8 and v7 = x9. With this procedure, we have that xi ∈ V (C) with

i ≡ 0 (mod 3) or i ≡ 0 (mod 3), for every 1 ≤ i ≤ r; even more, if i ≡ 2 (mod 3) then

xi has subscript even in C, otherwise xi has subscript odd in C.

Lemma 7. Let D be a digraph whose asymmetrical part is a Hamiltonian cycle γ =
(x0, . . . , xn−1, x0), and let σ be a complete chain of 2-diagonals of length r ≤ n− 1. If D′ is
the digraph obtained from D after applying Construction 2, then D is a KP-digraph if and
only if D′ is a KP-digraph.

Proof. Let D be a digraph, let σ be a complete chain of 2-diagonals of length

r ≤ n− 1, and let D′ be the digraph obtained from D after Construction 2. Suppose,

without loss of generality, that σ = (x0, x1, . . . , xr).

First, suppose that D is a KP-digraph. We will prove that D′ is a KP-digraph. By

Theorem 7, D has an even cycle C = (v0, v1, . . . , v2k−1, v0) such that (vi, vi+1) is

asymmetrical in D, for every i ∈ {0, 2, . . . , 2(k − 1)}, and S = {v0, v2, . . . , v2(k−1)} is

independent in D. Moreover, there is a kernel N of D such that N = S ∪ S1, where

S1 is a kernel of D[V (D) \ (S ∪ N−(S))]. Note that, if V (C) ∩ V (σ) = ∅, then C

is a cycle in D′, with the same properties. Hence, D′ is a KP-digraph; even more,

N ′ = S ∪ S′1 is a kernel of D′, where S′1 is a kernel of D′[V (D′) \ (S ∪N−(S))]. Now

assume that V (C) ∩ V (σ) 6= ∅. By Lemma 6, x0 is a vertex of C and we have three

possibilities.

If r ≡ 0 (mod 3), then consider the following cases.
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Case 1. x0 has even subscript in C.

By Lemma 6, V (C) ∩ V (σ) = {xi : i ≡ 0 (mod 3) or i ≡ 1 (mod 3) and 0 ≤ i ≤ r};
moreover, xi has subscript even in C if i ≡ 0 (mod 3), otherwise xi has subscript odd

in C. It follows that (v, x0, x1, x3, x4, . . . , xr, xr+1) and (xr+1, C, v) are two subpaths

of C with even length, where v is the predecessor of x0 in C. By Construction 2, we

have that C ′ = (xσ0
, xr+1) ∪ (xr+1, C, v) ∪ (v, xσ0

) is a cycle of D′ with even length.

For the convenience of the proof, we rewrite C ′ as follows C ′ = (w0, w1, . . . , w2l−1, w0)

such that, wi has even subscript in C if and only if wi has even subscript in C ′. By

Construction 2 and by the properties of C, (wi, wi+1) is asymmetrical in D′, for every

i ∈ {0, 2, . . . , 2(l − 1)}; even more, since {v0, v2, . . . , v2(l−1)} is independent in D and

by Construction 2, we have that {w0, w2, . . . , w2(l−1)} is an independent set in D′.

By Theorem 7, D′ is a KP-digraph.

Case 2. x0 has odd subscript in C.

By Lemma 6 we have two subcases:

Case 2.1. V (C)∩V (σ) = {x0}∪{xi : i ≡ 1 (mod 3) or i ≡ 2 (mod 3) and 0 ≤ i ≤ r}
such that xi has subscript even in C if i ≡ 1 (mod 3), otherwise xi has subscript odd

in C. In particular, xr−2 has even subscript in C and xr−1 has odd subscript in

C. In addition, xr−3 and xr are not vertices of C. Since N+(xr−1) = {xr−3, xr}, it

follows that xr−1 has no successor in C, which is impossible. Therefore, this subcase

is impossible.

Case 2.2. V (C)∩V (σ) = {xi : i ≡ 0 (mod 3) or i ≡ 2 (mod 3) and 0 ≤ i ≤ r} such

that xi has subscript even in C if i ≡ 2 (mod 3), otherwise xi has subscript odd in C.

Since x0 has odd subscript in C, we have that xn−1 is the predecessor of x0 in C. It

follows that (v, C, xn−1) and (xn−1, x0, x2, x3, x5, x6, . . . , xk−1, xk, v) are two subpaths

of C with even length, where v is the successor vertex of xk in C. By Construction

2, C ′ = (xn−1, xσ0
, v) ∪ (v, C, xn−1) is an even cycle of D′. For the convenience, we

rewrite C ′ as follows C ′ = (w0, w1, . . . , w2l−1, w0) such that, wi has even subscript in

C if and only if wi has even subscript in C. By Construction 2 and by the properties

of C, (wi, wi+1) is asymmetrical in D′, for every i ∈ {0, 2, . . . , 2(l − 1)}; even more,

since {v0, v2, . . . , v2(l−1)} is independent in D and by Construction 2, we have that

{w0, w2, . . . , w2(l−1)} is an independent set in D′. By Theorem 7, D′ is a KP-digraph.

It is important to note that if V (C) ∩ V (σ) 6= ∅, then we exhibit an even cycle

C ′ = (w0, w1, . . . , w2l−1, w0) in D′ such that N ′ = S′ ∪ S′1 is a kernel of D′, where

S′ = {w0, w2, . . . , w2(l−1)} and S′1 is a kernel of D′[V (D′) \ (S′ ∪N−(S′))].

The case r ≡ 1 (mod 3) is similar to the case r ≡ 0 (mod 3). By Lemma 6, the even

cycle of D′ is (xσ0 , xσ1 , vl)∪(vl, C, v2k−1) if x0 has even subscript in C, where vl is the

successor vertex of xr in C. Otherwise, the even cycle of D′ is (xn−1, xσ0
, xσ1

, xr+1)∪
(xr+1, C, xn−1).

Also, the case r ≡ 2 (mod 3) is similar to the case r ≡ 0 (mod 3). In this case, x0 has

odd subscript in C and, by Lemma 6, the even cycle of D′ is (xn−1, xσ0
, xσ2

, xr+1) ∪
(xr+1, C, xn−1) or (xn−1, xσ0

, xσ1
, xσ2

, vl) ∪ (vl, C, xn−1), where vl is the successor

vertex of xr in C.

For the converse, suppose that D′ is a KP-digraph. We will prove that D is a KP-
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digraph. By Theorem 7, there is an even cycle C ′ = (w0, w1, . . . , w2k−1, w0) such

that (wi, wi+1) is asymmetrical in D′, for every i ∈ {0, 2, . . . , 2(k − 1)}, and S′ =

{w0, w2, . . . , w2(k−1)} is independent in D′. Moreover, N ′ = S′ ∪S′1 is a kernel of D′,

where S′1 is a kernel of D′[V (D′) \ (S′ ∪N−(S′))]. Observe that if V (σ)∩ V (C ′) = ∅,
then C ′ is a cycle in D with the same properties. Hence, D is a KP-digraph. Now

assume that V (σ) ∩ V (C ′) 6= ∅, and by Lemma 6, we have three possibilities.

When r ≡ 0 (mod 3), we can assume that xσ0 ∈ V (C ′). We have the following cases.

Case 1. xσ0
has even subscript in C ′.

Suppose, without loss of generality, that w0 = xσ0
; it follows that w1 = xr+1. Con-

sider

C = (x0, x1, x3, x4, . . . , xr−3, xr−1, xr, xr+1) ∪ (w1, C
′, w2k−1) ∪ (w2k−1, x0).

Since (w2k−1, xσ0
) and (xσ0

, xr+1) are arcs of D′, by Construction 2, (w2k−1, x0)

and (xr, xr+1) are arcs of D. It follows that C is a cycle of D. Note that the

length of (x0, x1, x3, x4, . . . , xr−3, xr−2, xr, xr+1) is odd and the length of (xr+1 =

w1, C
′, w2k−1) ∪ (w2k−1, x0) is odd, it implies that C has even length. By the choice

of C ′, we have that (wi, wi+1) is asymmetrical in D, for every i ∈ {2, . . . , 2(k − 1)}
and by Construction 2 and the structure of D, (xj , xj+1) is asymmetrical in D, for

every j ≡ 0 (mod 3) with 0 ≤ j ≤ r. On the other hand, since S′ is independent in

D′, by Construction 2 and the structure of D, we have that S = {x0, x3, . . . , xr} ∪
{w2, w4, . . . , w2(k−1)} is independent in D. By Theorem 7, D is a KP-digraph.

Case 2. xσ0
has odd subscript in C ′.

Suppose, without loss of generality, that w1 = xσ0
; it follows that w0 = xn−1. Note

that w2 6= xn−2, otherwise C ′ = (xn−1, xσ0
, xn−2, xn−1) which is impossible. It

follows that w2 = xr+1, or w2 = xr+2. Consider

C = (xn−1, x0, x2, x3, x5, x6, . . . , xr−1, xr, w2) ∪ (w2, C
′, w0 = xn−1).

Since (xn−1, xσ0) and (xσ0 , w2) are arcs of D′, by Construction 2, (xn−1, x0) and

(xr, w2) are arcs of D. It follows that C is a cycle of D. Note that both

(xn−1, x0, x2, x3, x5, x6, . . . , xr−1, xr, w2) and (w2, C
′, w0) have even length, it implies

that C has even length. By the choice of C ′, we have that (wi, wi+1) is asymmetri-

cal in D, for every i ∈ {2, . . . , 2(k − 1)}; by Construction 2 and the structure of D,

(xj , xj+1) is asymmetrical in D, for every j ≡ 2 (mod 3) with 2 ≤ j ≤ r. Even more,

since S′ is independent in D′, by Construction 2 and the structure of D, we have that

S = {x0, x3, . . . , xr} ∪ {w2, w4, . . . , w2(k−1)} is independent in D. By Theorem 7, D

is a KP-digraph.

The case r ≡ 1 (mod 3) is similar to the case r ≡ 0 (mod 3). By Lemma 6,

(x0, x1, x3, x4, . . . , xr−4, xr−3, xr−1, xr, w2)∪ (w2, C
′, w2k−1)∪ (w2k−1, x0) is the even

cycle of D, if xσ0
has even subscript in C. Otherwise, the even cycle of D is

(xn−1, x0, x1, x2, x4, x5, . . . , xr−3, xr−2, xr, xr+1) ∪ (xr+1, C
′, xn−1).
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Also, the case r ≡ 2 (mod 3) is similar to the case r ≡ 0 (mod 3). In this

case, xσ0 has odd subscript in C ′ and, by Lemma 6, the even cycle of D′

has two possibilities: (xn−1, x0, x2, x3, . . . , xr−3, xr−2, xr, xr+1) ∪ (xr+1, C
′, xn−1) or

(xn−1, x0, x1, x2, . . . , xr−1, xr, w2) ∪ (w2, C, xn−1)

Theorem 11. If D is a digraph, then there is a digraph D̂ where every complete chain
of 2-diagonals has length 2, such that D has a kernel if and only if D̂ has a kernel.

The digraph D̂ sought in the proof of Theorem 11 is obtained from D by recursively

applying Construction 2. It is important to note that if D̂ has at least one maximal

complete chain of 2-diagonals, then, by Theorem 8, D̂ has a kernel, and by Theorem

11, D has a kernel. Hence D is a KP-digraph. In the other case, if D̂ has no maximal

complete chain of 2-diagonals, then D̂ is an asymmetrical cycle. If D̂ is an even cycle,

then D̂ has a kernel, and by Theorem 11, D has a kernel. Thus, D is a KP-digraph.

But if D̂ is an odd cycle, then D̂ has no kernel and, by Theorem 11, D has no kernel

and D is a CKI-digraph. Therefore, we have the following result.

Theorem 12. Let D be a digraph with a Hamiltonian cycle as its asymmetrical part. If
D̂ is a digraph obtained from D after replacing every maximal complete chain of 2-diagonals
as in Construction 2, then D is a CKI-digraph if and only if D̂ is an asymmetrical odd cycle.

From Construction 2, Theorem 11 and Lemmas 5 and 7, we obtain 2 algorithms. The

first has a digraph D with a Hamiltonian cycle γ as its asymmetrical part, where

any other arc of D is a symmetrical diagonal of γ of length two, as input. The algo-

rithm finds the maximal complete chains of 2-diagonals of length greater than 2 and

contracts them using Construction 2, preserving the vertex labels of the contractions

performed. By contracting all the maximal complete chains of 2-diagonals of length

greater than 2, then three possible results are obtained. In case of obtaining an odd

cycle, the output of the algorithm says that D is a CKI-digraph, otherwise D is a

KP-digraph.

The second algorithm takes the labels obtained in each step and the digraph D̂ ob-

tained from the first algorithm as input. In case that D̂ is not an odd cycle, then D̂

is an even cycle, or every complete chain of 2-diagonals of D̂ has length 2, and has

at least one alternating chain of 2-diagonals. By Lemma 5, in both cases there is a

kernel that is easy to find. The algorithm takes a kernel of D̂ and constructs a kernel

in the digraph obtained in the previous step of the first algorithm; continuing this

procedure recursively, we obtain a kernel of D.

To conclude, by Theorem 12, there exists an infinite family of CKI-digraphs whose

asymmetrical part is a Hamiltonian cycle and every symmetrical diagonal has length

2. Furthermore, all of these digraphs can be obtained by replacing vertices or arcs with

a complete chain of 2-diagonals of length congruent with 0 or 1 modulo 3, respectively.
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6. Consequences and conclusions

In this section, some consequences of Theorems 5 and 7 are provided.

Corollary 6. If n ≥ 8, then
−→
C n(1,±2,±3) is a KP-digraph if and only if n ≡ 0 (mod

4).

Proof. First, suppose that
−→
C n(1,±2,±3) is a KP-dgiraph and n = 4k + r with

r ∈ {0, 1, 2, 3} and k ≥ 2. Let N be a kernel of
−→
C n(1,±2,±3). Suppose, without

loss of generality, that 0 ∈ N . It follows that 1, 2, 3, n − 1, n − 2, n − 3 are not in

N . Since N+(1) = {2, 3, 4, n − 1, n − 2}, 4 ∈ N , it implies that 5, 6, 7 are not in N .

Since N+(5) = {6, 7, 8, 3, 2}, it follows that 8 ∈ N . Continuing with this procedure,

we have that 4j ∈ N for every j ∈ {0, 1, . . . , k}. Observe that if r 6= 0, then (4k, 0) is

an arc of
−→
C n(1,±2,±3), which is impossible. Therefore r = 0.

Now, suppose that n = 4k. Notice that (0, 1, 4, 5, . . . , 4(k − 1), 4(k − 1) + 1, 0) is an

even cycle where the hypotheses of Theorem 7 are fulfilled.

Corollary 7. If n ≥ 8, then
−→
C n(1,±2,±4) is a KP-digraph.

Proof. Note that (0, 1, 3, 4, 0) is an even cycle where the hypotheses of Theorem 7

are fulfilled.

Corollary 8. Let n ≥ 8 be an integer. If n ≡ 0 (mod 3) or n ≡ 0 (mod 4), then
−→
C n(1,±2,±5) is a KP-digraph.

Proof. First, suppose that n ≡ 0 (mod 3). It follows that n = 3k for some k ≥ 3.

We have two cases.

Case 1. k = 2r.

Hence, n = 6r. Note that (0, 1, 6, 7, 12, 13, . . . , 6(r−1), 6(r−1)+1, 0) is an even cycle

of
−→
C n(1,±2,±5) where the hypotheses of Theorem 7 are fulfilled.

Case 2. k = 2r + 1.

Hence, n = 6r + 3. Note that (0, 1, 6, 7, . . . , 6r, 6r + 1, 0) is an even cycle of
−→
C n(1,±2,±5) where the hypotheses of Theorem 7 are fulfilled. Thus

−→
C n(1,±2,±5)

is a KP-digraph.

When n ≡ 0 (mod 4) it is enough to note that (0, 1, n−4, n−3, n−8, n−7, . . . , 4, 5, 0)

is an even cycle of
−→
C n(1,±2,±5) where the hypotheses of Theorem 7 are fulfilled.

Therefore,
−→
C n(1,±2,±5) is a KP-digraph.

Corollary 9. If n ≥ 12 is an integer, then
−→
C n(1,±4,±5) is a KP-digraph.
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Proof. Observe that (0, 1, 6, 7, 3, 4, 0) is an even cycle of
−→
C n(1,±4,±5) where the

hypotheses of Theorem 7 are fulfilled.

The following results are consequences of Theorem 5 and the results in the preceding

sections.

Corollary 10. Let D be a digraph. If Asym(D) is a disjoint union of asymmetrical

cycles
−→
C n1 , . . . ,

−→
C nk , then D is a KP-digraph if and only if D[V (

−→
C ni)] has a kernel, for

every i ∈ {1, . . . , k}.

Observe that the circulant digraph
−→
C jk(j), with k ≥ 3, is the disjoint union of k

asymmetrical cycles with order j. If γ1, . . . , γk are those cycles, then we have the

following result.

Corollary 11. Let D be a digraph. If Asym(D) is the circulant digraph
−→
C jk(j) with

k ≥ 3, then D is a KP-digraph if and only if D[V (γi)] has a kernel.

Proceeding similarly to Corollary 10, we have the following result.

Corollary 12. Let D be a digraph with property P , with n ≥ 4. If Asym(D) is the
disjoint union of digraphs D1, . . . , Dk, then D is a KP-digraph if and only if D[V (Di)] is a
KP-digraph.

From Corollary 12, we can conclude that if the asymmetrical part of a digraph D

with property P is the disjoint union of digraphs, then the problem of verifying

whether a digraph is a KP-digraph is equivalent to the problem of verifying that each

of the subdigraphs induced by the vertices forming the digraphs in the asymmetrical

part is a KP-digraph, instead of verifying each of the proper induced subdigraphs of

D. In particular, by Corollary 10, if the asymmetrical part is the disjoint union of

cycles, then it suffices to verify that each of the subdigraphs induced by the vertices

of each cycle forming the asymmetrical part has a kernel. For this purpose, the

results from this section and the preceding sections prove to be very helpful.
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[22] Q.F. Yang, R.E. Burkard, E. Çela, and G.J. Woeginger, Hamiltonian cycles in

circulant digraphs with two stripes, Discrete Math. 176 (1997), no. 1-3, 233–254.

https://doi.org/10.1016/S0012-365X(96)00298-1.


	Introduction
	Property P and KP-digraphs
	Digraphs whose asymmetrical part is a Hamiltonian cycle
	Contraction of induced asymmetrical paths
	Symmetrical diagonals of length 2
	Consequences and conclusions
	References

