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Abstract: Cohen et al. conjectured that for each oriented cycle C, there is a small-

est positive integer f(C) such that every f(C)-chromatic strong digraph contains a
subdivision of C. Let C be an oriented cycle on n vertices. For the class of Hamil-

tonian digraphs, El Joubbeh proved that f(C) ≤ 3n. In this paper, we improve El

Joubbeh’s result by showing that f(C) ≤ 2n for the class of Hamiltonian digraphs.
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1. Introduction

In this paper, graphs are finite and simple, that is they have no loop nor multiple

edges, while digraphs are oriented graphs. Let D be a digraph obtained by assigning

to each edge e = xy of G an orientation (x, y) or (y, x) but not both. G is called

the underlying graph of D. If e = xy is an edge of G, then we say that x and y are

neighbors of each other and that they are adjacent. The degree of a vertex x is the

number of its neighbors and it is denoted by dG(x). The neighborhood of a vertex x
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2 On subdivisions of oriented cycles in Hamiltonian digraphs

is the set of all its neighbors and it is denoted by NG(x). A path P = x1x2 . . . xn is

a graph on n vertices x1, x2, . . . , xn and whose edges are xixi+1, for 1 ≤ i < n. An

oriented path P = x1x2 . . . xn is an orientation of a path and it is a directed path

if its arcs are (xi, xi+1), for 1 ≤ i < n. A cycle C = x1x2 . . . xnx1 is a graph on n

vertices x1, x2, . . . , xn and whose edges are xixi+1, for 1 ≤ i < n and the edge xnx1.

An oriented cycle C = x1x2 . . . xn is an orientation of a cycle and it is a directed

cycle if its arcs are (xi, xi+1), for 1 ≤ i < n and (xn, x1). The length of a path

or a cycle is the number of its edges. The length of an oriented path or oriented

cycle is the number of its arcs. A block of a cycle C is a maximal directed path

in C. Note that the number of blocks of a non-directed oriented cycle C is always

even. Let k1, k
′
1, . . . , kt, k

′
t be the lengths of the blocks of an oriented cycle (which is

non-directed) C, where 2t is the number of blocks of C. If the first block is of length

k1 and it is forward then we write C = C+(k1, k
′
1, . . . , kt, k

′
t), otherwise we write C =

C−(k1, k
′
1, . . . , kt, k

′
t). Note that C+(k1, k

′
1, . . . , kt, k

′
t) = C−(k′1, k2, . . . , kt, k

′
t, k1) and

C−(k1, k
′
1, . . . , kt, k

′
t) = C+(k′1, k2, . . . , kt, k

′
t, k1). A Hamiltonian path (resp. cycle)

is a path (resp. cycle) passing through all the vertices of a graph G. A Hamiltonian

directed path is a directed path passing through all the vertices of a digraph D.

A Hamiltonian directed cycle is a directed cycle passing through all the vertices of

a digraph D. A digraph is Hamiltonian if it has a Hamiltonian directed cycle. A

digraph D is strongly connected (or strong) if for any two vertices x and y of D, there

is a directed path in D from x to y. A subdivision D′ of a digraph D can be obtained

from D by replacing each arc (x, y) by a directed path from x to y, all these paths

being internally disjoint (note that D′ = D if all these paths are of length 1). If A is

a subset of the set of vertices of D, then D[A] denotes the subdigraph of D induced

by A. The chromatic number of a graph is the smallest integer n such that all the

vertices can be colored using n colors in a way that any two neighbor vertices receive

distinct colors. The chromatic number of a digraph D is that of its underlying graph

and is denoted by χ(D). We say that D is n-chromatic if its chromatic number is n.

A graph G is n-degenerate, if every subgraph of G has a vertex of degree at most

n. It is well known that every n-degenerate graph has chromatic number at most n+1.

A classical result of Gallai and Roy is the following:

Theorem 1. (Roy-Galli [11]) Every digraph with chromatic number at least n+1 contains
a directed path of length at least n.

Now, the following question arises: Which digraphs are subdigraphs of all digraphs

with large chromatic number?

Due to the famous theorem of Erdös [8] that asserts the existence of graphs with

arbitrarily large chromatic number and arbitrarily large girth, we have that for every

digraph H containing an oriented cycle C of length n, there is a digraph D with

arbitrarily large chromatic number and girth greater than n. So H can not be a
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subdigraph of D. Thus, the only possibly candidates to generalize Theorem 1 are

oriented trees. Burr [4] proved that every (n− 1)2-chromatic digraph contains every

oriented tree of order n and conjectured that every every 2n − 2-chromatic digraph

contains a copy of any oriented tree T on n vertices [4]. The best known result

about Burr’s conjecture is obtained by Addario-Berry et al. [1] who proved that

every (n2

2 −
n
2 + 1)-chromatic digraph contains a copy of any oriented tree T on n

vertices. In the special case when T is an oriented path on n vertices and t blocks

with t ≤
√

n−1
2 + 1, recently Ghazal and El Joubbeh [7] reached a better bound.

However, the following celebrated theorem of Bondy shows that the story does not

stop here.

Theorem 2. (Bondy [3]) Every strongly connected digraph of chromatic number at least
n contains a directed cycle of length at least n.

A directed cycle of length at least n can be viewed as a subdivision of the directed

cycle of length exactly n. Now the following question arises:

For a given non-directed cycle C, can we find a number f(C) such that every digraph

D with χ(D) ≥ f(C) contains a subdivision of C? The answer is again negative due

to the following result proved by Cohen et al. in 2018.

Theorem 3. ( [5]) For any positive integers b and n, there is an acyclic digraph D with
χ(D) > n and every oriented cycle of D has at least b blocks.

However, for strong digraphs, Cohen et al. conjectured that the answer of the above

question is positive.

Conjecture 1. (Cohen et al. [5]) For every oriented cycle C, there is a constant f(C)
such that every strong digraph with chromatic number at least f(C), contains a subdivision
of C.

If C = C(k, l) is a cycle with two blocks Cohen et al. [5] proved that f(C) is

O((k + l)4) and this bound was improved by Kim et al. [9] to O((k + l)2). Recently,

Ghazal et al. [10] proved that if D is a digraph (not necessarily strong) that has a

Hamiltonian directed path and χ(D) > 3.max{k, l}, then D contains a subdivision

of C(k, l).

Let D be a digraph. A set of vertices S of D is called a stable set if for any x, y ∈ S,

neither (x, y) nor (y, x) is an arc of D. The stability of D, denoted by α(D), is the

maximum size of a stable set in D, that is α(D) =max{|S|; S is a stable set of D}.
The following theorem shows that the vertices of a strong digraph can be covered by

the vertices of at most α(D) directed cycles.
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Theorem 4. (Bessy et al. [2]) The vertex set of every strong digraph D is the union of
the vertex sets of at most α(D) directed cycles of D.

The above theorem, motivates us to study Cohen’s conjecture restricted to Hamilto-

nian digraphs, because the subdigraph induced by the vertices of each of the above

directed cycles is Hamiltonian. Note that Hamiltonian digraphs are particular cases

of strong digraph. For Hamiltonian digraphs and for any oriented cycle, El Joubbeh

obtained the following bound.

Theorem 5. (El Joubbeh [6]) Every 3n-chromatic Hamiltonian digraph contains a sub-
division of any oriented cycle on n vertices.

The previous theorem, shows that f(C) ≤ 3n for the class of Hamiltonian digraph,

where n is the number of vertices of C. In this paper, we improve this bound and

show that f(C) ≤ 2n for the class of Hamiltonian digraph.

2. Main Results

Suppose that L = x0x1x2 . . . xN is a linear ordering of the vertices of a graph G. The

interval [xi, xj ] = {xs; i ≤ s ≤ j} and [xi, xj [= {xs; i ≤ s < j}. Let e = xlxm and

e′ = xpxq be two edges of G and let k be a positive integer. We say that e and e′ are

secant edges of G with respect to L if l < p < m < q. In addition, if p− l, m− p and

q−m are all at least k, then we say that they are k-secant edges of G with respect to L.

Ghazal et al. [10] proved that graphs with no secant edges with respect to a linear

order has a bounded chromatic number.

Lemma 1. ([10]) If G has no secant edges with respect to some linear ordering of G,
then χ(G) ≤ 3.

Proof. Suppose that G has no secant edges with respect to some linear ordering L

of G. We will prove that G is 2-degenerate and thus χ(G) ≤ 3. Let H be a subgraph

of G and let L′ = x1x2 . . . xN be the restriction of L to the vertices of H. Note that

H has no secant edges with respect to L′. We will find a vertex v of H such that

dH(v) ≤ 2. If H has no edge xixj with j − i > 1, then NH(x1) ⊆ {x2} and hence

dH(x1) ≤ 1 ≤ 2. In this case, we take v = x1. Otherwise, let xixj be an edge of H

with j − i > 1 such that j − i is minimum. Since H has no secant edges with respect

to L′, then NH(xi+1) ⊆ {xi, xi+2}. Whence d(xi+1) ≤ 2 and we can take v = xi+1,

in this case.

However, for graphs without k-secant edges, we have the following lemma:
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Lemma 2. If G has no k-secant edges with respect to some linear ordering of G, then
χ(G) ≤ 3k.

Proof. Suppose that G has no k-secant edges with respect to some linear ordering

L = x0x1x2 . . . xN of G. For each 0 ≤ i ≤ k− 1, let Gi be the subgraph of G induced

by the set Vi = {xi+sk; s ≥ 0} and let Li be the restriction of L to Vi. If Gi has

secant edges with respect to Li, then these secant edges are k-secant edges of G with

respect to L, which is a contradiction. So, each Gi has no secant edges and thus

χ(Gi) ≤ 3. Note that the Vi’s form a partition of the vertex set of G and therefore,

χ(G) ≤
∑k−1

i=0 χ(Gi) ≤
∑k−1

i=0 3 = 3k.

Corollary 1. If G is a graph with χ(G) ≥ 3k+1, then G has k-secant edges with respect
to any linear ordering of G.

Proof. Immediate consequence of Lemma 2.

Theorem 6. If D is a Hamiltonian digraph such that χ(D) ≥
∑t

i=1(ki + 3k′i), then D
contains a subdivision of C+(k1, k

′
1, . . . , kt, k

′
t).

Proof. Suppose that D is a Hamiltonian digraph such that χ(D) ≥
∑t

i=1(ki + 3k′i).

Suppose that C = 0, 1, 2, . . . , N, 0 is a Hamiltonian directed cycle of D. We consider

the linear ordering L = 0, 1, 2, . . . , N of the vertices of D.

Set b1 = 0 and define D1 = D[b1, b1 + k1 − 1[. Note that the length of the path

C[b1, b1 + k1 − 1[ is k1 − 1 and the chromatic number of D1 is at most k1 − 1.

Let b2 be maximum such that D′1 := D[b1 + k1 − 1, b2[ has no k′1-secant edges. Note

that b2 exists, since the chromatic number of graphs without k′1-secant edges is at

most 3k′1 and since the chromatic number of D is large enough. By maximality of b2,

the digraph D[b1 + k1 − 1, b2] has k′1-secant edges, say e1 = u1v1 and e′1 = u′1v
′
1 with

u1 < u′1 < v1 < v′1. Thus v′1 = b2. Since D′1 has no k′1-secant edges, then χ(D′1) ≤ 3k′1.

Let D2 = D[b2, b2 + k2[ and let b3 be maximum such that D′2 = D[b2 + k2, b3[ has no

k′2-secant edges. Note that b3 exists, since the chromatic number of graphs without

k′2-secant edges is at most 3k′2 and since the chromatic number of D is large enough.

By maximality of b3, the digraph D[b1 + k2, b3] has k′2-secant edges, say e2 = u2v2
and e′2 = u′2v

′
2 with u2 < u′2 < v2 < v′2. Thus v′2 = b3. Since D′2 has no k′2-secant

edges, then χ(D′2) ≤ 3k′2.

Let 3 ≤ i ≤ t and suppose that Di−1 = D[bi−1, bi−1 + ki−1[, bi and D′i−1 = D[bi−1 +

ki−1, bi[ are found as in the above. We define Di = D[bi, bi + ki[ and let bi+1 be

maximum such that D′i = D[bi + ki, bi+1[ has no k′i-secant edges. Note that bi+1

exists, since the chromatic number of graphs without k′i-secant edges is at most 3k′i and
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since the chromatic number of D is large enough. By maximality of bi+1, the digraph

D[bi+ki, bi+1] has k′i-secant edges, say ei = uivi and e′i = u′iv
′
i with ui < u′i < vi < v′i.

Thus v′i = bi+1. Since D′i has no k′i-secant edges, then χ(D′i) ≤ 3k′i.

Note that for all 1 ≤ i ≤ t, χ(Di) ≤ ki and χ(D′i) ≤ 3k′i, except χ(D1) ≤ k1 − 1.

Thus χ(D) ≥
∑t

i=1(ki + 3k′i) >
∑t

i=1 χ(Di) +
∑t

i=1 χ(D′i).

To conclude, the arcs of (
⋃t

i=1 C[bi, ui] ∪ ei ∪C[u′i, vi] ∪ e′i)
⋃

(C[vt, N ] ∪ (N, 0)) form

a subdivision of C+(k1, k
′
1, . . . , kt, k

′
t).

Corollary 2. If D is a Hamiltonian digraph such that χ(D) ≥
∑t

i=1(ki + 3k′i),
then D contains a subdivision of any oriented cycle whose blocks are of respective lengths
k1, k

′
1, . . . , kt, k

′
t.

Proof. Suppose that D is a Hamiltonian digraph such that χ(D) ≥
∑i=t

i=1(ki + 3k′i)

and let C be any oriented cycle whose blocks are of respective lengths k1, k
′
1, . . . , kt, k

′
t.

Either C = C+(k1, k
′
1, . . . , kt, k

′
t) or C = C−(k1, k

′
1, . . . , kt, k

′
t). In the first case,

Theorem 6 shows that D contains a subdivision of C = C+(k1, k
′
1, . . . , kt, k

′
t). If C =

C−(k1, k
′
1, . . . , kt, k

′
t), then we consider the digraph D′ obtained from D by reversing

the orientation of each arc. Then D′ is Hamiltonian and χ(D′) = χ(D) ≥
∑t

i=1(ki +

3k′i). Thus by Theorem 6, D′ contains a subdivision of C = C+(k1, k
′
1, . . . , kt, k

′
t).

Therefore, D contains a subdivision of C = C−(k1, k
′
1, . . . , kt, k

′
t).

Corollary 3. If D is a Hamiltonian digraph such that χ(D) ≥
∑t

i=1(3ki + k′i),
then D contains a subdivision of any oriented cycle whose blocks are of respective lengths
k1, k

′
1, . . . , kt, k

′
t.

Proof. Enough to remark that C+(k1, k
′
1, . . . , kt, k

′
t) = C−(k′1, k2, . . . , kt, k

′
t, k1) and

C−(k1, k
′
1, . . . , kt, k

′
t) = C+(k′1, k2, . . . , kt, k

′
t, k1) and then apply Corollary 2.

Theorem 7. Every 2n-chromatic Hamiltonian digraph contains a subdivision of any
oriented cycle on n vertices.

Proof. Let C be any oriented cycle on n vertices. Let k1, k
′
1, . . . , kt, k

′
t be the lengths

of its blocks. Since
∑t

i=1(ki + k′i) = n, then either
∑t

i=1 ki ≤
n
2 or

∑t
i=1 k

′
i ≤ n

2 . Due

to Corollaries 2 and 3, we may assume without loss of generality that
∑t

i=1 k
′
i ≤ n

2 .

Therefore,
∑t

i=1(ki + 3k′i) =
∑t

i=1(ki + k′i) + 2
∑t

i=1 k
′
i = n+ 2

∑t
i=1 k

′
i ≤ n+ 2(n

2 ) =

2n = χ(D). Then by Corollary 2, the result follows.

Due to Theorem 4, we obtain the following result.

Corollary 4. Let C be a cycle on n vertices and let α be a positive number. Let D be a
strong digraph with α(D) ≤ α. If χ(D) ≥ 2αn, then D contains a subdivision of C.
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Proof. Let C, n, α and D be as in the statement of the theorem. By Theorem 4,

the vertex set of D is the union of the vertex sets of directed cycles C1, . . . , Ck of

D, with k ≤ α(D) ≤ α. Since χ(D) ≥ 2αn, then there is 1 ≤ j ≤ k such that the

subdigraph Dj , induced by the vertex set of Cj satisfies χ(Dj) ≥ 2n. To conclude,

we apply Theorem 7 to Dj and C.

Thus, for a given α > 0 and oriented cycle C on n vertices, we have proved that

f(C) ≤ 2αn for the strong digraphs with α(D) ≤ α.

Let h(n) be the smallest positive integer such that every Hamiltonian h(n)-chromatic

digraph contains a subdivision of any oriented cycle on n vertices. We have proved

that h(n) ≤ 2n. Since the digraph with vertices a, b and c and arcs (a, b), (b, c) and

(c, a) does not contain any subdivision of C+(2, 1), then we deduce that h(n) ≥ n+1.

Note that in the proof of Theorem 6, we had the secant edges ei = uivi and e′i = u′iv
′
i

with ui < u′i < vi < v′i. From the path C[ui, v
′
i], we have just used the portion

C[u′i, vi] in constructing our cycle and we needed that this portion should be of

length at least k′i. This was guaranteed by the fact that vi − u′i ≥ k′i. We have used

neither the portion C[ui, u
′
i], nor the portion C[vi, v

′
i], nor the fact that u′i − ui ≥ k′i

and v′i − vi ≥ k′i. So, we could have altered the definition of k-secant edges (without

effecting the construction of the cycle) as follows: Two edges e = xlxm and e′ = xpxq
of G are k-secant edges of G with respect to L if l < p, m− p ≥ k and m < q. Using

this new definition, the bound in Lemma 2 perhaps would decrease, and consequently

we could reach a better bound of h(n).
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