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Abstract: Inverse problem of topological indices deals with establishing whether

or not a given number is a topological index of some graph. In this paper, we study

the inverse topological index problem of some bond additive indices. In [3], it was
conjectured that every positive integer except finitely many can be the Mostar index

and edge Mostar index of some c−cyclic graph. We solve this conjecture for tricyclic

graphs. We also study the inverse Albertson index problem and inverse sigma index
problem for cacti and for cyclic graphs.
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1. Introduction

The graphs discussed in this study are simple, connected and non-directional. For

the basic graph theoretic terminologies and notations we refer [4, 8]. For a graph

G = (V,E), order and size are the cardinalities of the vertex set V and the edge set

E respectively. The number of edges incident to a vertex v in G is its degree and

is denoted as d(v). The vertex with degree one is called the pendant vertex. Let

G = (V,E) be a graph, then the Albertson irregularity index [9] is defined as

Alb(G) =
∑
uv∈E

|d(u)− d(v)|
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and the σ− irregularity [7] index is defined as

σ(G) =
∑
uv∈E

(d(u)− d(v))2.

Similarly, the total irregularity index and total σ irregularity index [5] are defined as

Irrt(G) =
1

2

∑
(u,v)∈V×V

|d(u)− d(v)|,

σt(G) =
1

2

∑
(u,v)∈V×V

(d(u)− d(v))2.

For each edge e = uv of a connected graph, let nu(e|G) denote the number of vertices

closer to the vertex u than v. Analogously, let mu(e|G) denote the number of edges

closer to the vertex u than v. Then the Mostar index [6] and the edge Mostar index

[2] are defined as

Mo(G) =
∑
uv∈E

|nu(e|G)− nv(e|G)|,

Moe(G) =
∑
uv∈E

|mu(e|G)−mv(e|G)|.

For each edge e = uv, let φ(e|G) and µ(e|G) denote the contribution of the edge

e = uv for the Mostar and edge Mostar index respectively. The inverse problem

of topological index is a realization problem which deals with establishing existence

or non-existence of a graph G with given integer p as its topological index. In a

previous study, Liju Alex et al. solved the inverse Mostar index problem [1] for trees

and unicyclic graphs. In another work, I. Gutman et al. solved the inverse Mostar

and edge Mostar index problem [3] for molecular graphs. They also conjectured that

except for finitely many integers, all other positive integers can be the Mostar index

of some c− cyclic graphs for every c ≥ 3. They also proposed a similar conjecture in

the case of edge Mostar index as well [3]. In this paper, we settle this conjecture for

the case of tricyclic graphs. Aysun Yuttras et al. [9] settled the inverse irregularity

index problem for trees and unicyclic graphs and similar version of this problem for

sigma index was studied by I. Gutman et al. [7]. Darko Dimitrov et al. [5] settled

this problem for c− cyclic graphs. In our work, we propose a alternate construction

for the solutions of the inverse irregularity index and inverse sigma index problem for

c− cyclic graphs. We also settle this problem for the cacti graphs. Additionally, we

also propose an alternate construction for the solution of the inverse problem of total

irregularity and total sigma irregularity index for c− cyclic graphs.
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Figure 1. Tricyclic Graphs described in Construction I

2. Inverse Problem of Mostar Index

In this section, we settle the inverse Mostar index problem and inverse edge Mostar

index problem for tricyclic graphs.

Construction I

Consider the graph K4 = G0, which is a tricyclic 3 regular graph. Choose

e = uv an edge in G0. Gp is constructed by replacing the edge uv by a path

u = v0, v1, . . . , vp+1 = v0. Clearly, Gp is a p+ 4 vertex tricyclic graph (see Figure 1).

Theorem 1. For every even positive integer n, there exists a tricyclic graph G with
Mostar index Mo(G) = n.

Proof. G0 is 3 regular tricyclic graph, since it is complete, for every edge e = uv,

φ(e|G0) = 0, therefore, Mo(G) = 0. Let e = uv be the edge which subdivided to form

the graph G1. Then the two subdivision edges of G1 have contribution φ(e|G) = 1

and all other edges has contribution zero. Thus, Mo(G1) = 2. In G2, the middle

edge (the edge which is at equal distance from u and v ) of the u− v path of length

3 has contribution 0 and all other edges of the path has contribution φ(e|G) = 1.

The rest of the edges of the graph contribute zero. Therefore, Mo(G2) = 2. Now,

continuing like this, when p is odd, the p+ 1 edges in the u− v path of Gp each have

contribution φ(e|Gp) = 1 and all the other edges have contribution zero. Therefore,

Mo(Gp) = p + 1. When p is even, the middle edge of the longest u − v path has

contribution zero. All the other p edges in the u − v path have contribution 1. The

rest of the edges have contribution zero. Therefore, Mo(Gp) = p. Therefore, for every

even number n, there exist an even order and odd order tricyclic graph Gn, Gn+1

respectively such that Mo(Gn) = Mo(Gn+1) = n.

Construction II

Let Gp, (where p is even) be the graph constructed as in Construction I. Attach a

pendant edge on one of the end vertex of the middle edge of the u − v path, call

the resultant graph as Gp,1 (See Figure 2 (a.)). Similarly, consider Gp, p is odd as
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Figure 2. The graphs (a.) Gp,1, (b.) Gp,2, (c.) Gp,3

in Construction I. Attach a pendant edge on the middle vertex (the vertex which is

at equal distance from both u and v) of the u − v path, call the resultant graph as

Gp,2 (See Figure 2 (b.)). Consider Gp, p odd of Construction I, let d be the distance

between the vertex u (or v) to the middle edge e of the u−v path. Let w be the vertex

at distance d − 1 from u. Attach a pendant vertex at w, and denote the resultant

graph by Gp,3 (See Figure 2 (c.)). If d = 1, attach the pendant edge at u or v.

Proposition 1. For positive integers p,

(a.) Mo(Gp,1) = p+ 6, p ≥ 2

(b.) Mo(Gp,2) = p+ 7, p ≥ 1

(c.) Mo(Gp,3) = p+ 11, p ≥ 2

Proof. The graph Gp,i, i = 1, 2, 3 has p+ 5 vertices and p+ 7 edges. Every pendant

edge e has the contribution φ(e|Gpi) = p+ 3. In Gp,1, Every edge in the longest u− v
path except the middle edge has contribution 0 and the middle edge has contribution

1. The two other edges incident at u, contributes 1 each and the rest of the edges

have contribution 0. Therefore, Mo(Gp,1) = p+ 3 + 3 = p+ 6. In the case of Gp,2, all

the edges of the u− v path must have contribution 0, the two other edges incident on

u (similarly in v) each contributes 1 to the Mostar index. The remaining edges have

contribution 0. Thus, Mo(Gp,2) = p + 3 + 4 = p + 7. In Gp,3, the middle edge, one

edge incident on the pendant edge and one edge incident on v of the longest u−v path

has contribution 1, 2, 1 respectively. The two other edges incident on v (similarly on

u) each has contribution 1 and all the other edges must have contribution 0. Thus,

Mo(Gp,3) = p+ 3 + 8 = p+ 11.

Using these constructions, we can solve the inverse Mostar index problem for tricyclic

graphs.
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Theorem 2. For every positive integer n ≥ 13, there exists a tricyclic graph G with
Mostar index Mo(G) = n.

Proof. By Theorem 1, every even integer can be the Mostar index of the tricyclic

graph Gp. Also, every even number greater than or equal to 10 can be attained by

the graph Gp,1 and Gp,2 as well. For odd integers, every odd number from 13 onwards

can be attained by the graph Gp,3.

We can also use some alternate constructions to settle the inverse Mostar index prob-

lem as well.

Construction III

Consider a cycle Cn−1(n is odd) with diametrically opposite vertices u and v. The

graph Hn,1 is the tricyclic graph obtained by attaching an edge between the neigh-

bours of u and connecting the neighbours of v by a path of length 2. In the cycle

Cn−1(n is odd), if we connect the neighbours of u by an edge and the neighbours of

v by an edge along with attaching a pendant edge at u or v. We denote the graph

obtained as Hn,2. Consider the cycle Cn−1 (n is odd) with diametrically opposite

vertices u and v. Connect the neighbours of u by an edge and the neighbours of v by

an edge and attach a pendant edge at any one of the neighbours of u or v and the re-

sulting graph is denoted by Hn,3. Consider the cycle Cn−3(n odd) with diametrically

opposite vertices u and v. The graph obtained by connecting the neighbours of u by

a path of length 2 and the neighbours of v by a path of length 2 along with a pendant

edge attached at one of the neighbouring vertex of u (or v) is denoted by Hn,4. In all

four graphs, the neighbours of u in the cycle are denoted by u′, u′′ and those of v are

denoted by v′ and v′′ (See Figure 3).

Figure 3. Graphs (a.) Hn,1 (b.) Hn,2 (c.) Hn,3 (d.) Hn,4
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Proposition 2. For the graphs Hn,1, Hn,2, Hn,3 and Hn,4,

(a.) Mo(Hn,1) = n+ 7.

(b.) Mo(Hn,2) = 4n− 13.

(c.) Mo(Hn,3) = 4n− 9.

(d.) Mo(Hn,4) = 2n+ 7.

Proof. (a.) Each edge in the u′ − v′ path and the u′′ − v′′ path has the contri-

bution φ(e|Hn,1) = 0. The edge e = uu′ and e = uu′′ each have contribution

φ(e|Hn,1) = n−1
2 . The four edges connecting the two paths of length 2 from v′

to v′′ each contributes φ(e|Hn,1) = 2. Therefore, Mo(G) = n− 1 + 8 = n− 7.

(b.) Each pendant edge contributes n − 2 to the Mostar index. Every edge in the

u′− v′ path and the u′′− v′′ path has the contribution φ(e|Hn,2) = 1. The edge

e = u′u′′ and e = v′v′′ each have contribution φ(e|Hn,2) = 0. The contribution

of the edges e = uu′ and e = uu′′ is φ(e|Hn,2) = n−5
2 . The edges e = vv′

and e = vv′′ have the contribution φ(e|Hn,2) = n−1
2 . Therefore, Mo(Hn,2) =

n− 2 + n− 1 + n− 5 + n− 5 = 4n− 13.

(c.) Each pendant edge contributes n − 2 to the Mostar index. Each edge in the

u′−v′ path and the u′′−v′′ path have the contribution φ(e|Hn,3) = 1. The edges

u′u′′ and v′v′′ contributes 1 to the Mostar index. Among the rest of the four

edges, two of them contribute φ(e|Hn,3) = n−1
2 and the other two contributes

φ(e|Hn,3) = n−3
2 . Therefore, Mo(G) = n−2+n−5+n−3+n−1+2 = 4n−9.

(d.) Each pendant edge contributes n − 2 to the Mostar index. Each edge in the

u′ − v′ path and the u′′ − v′′ path have the contribution φ(e|Hn,4) = 1. Among

the four edges in the path connecting u′−u′′ two edges incident on u′ contribute

3 each and the two other edges contributes 1 each. Similarly two edges incident

on v′ in the path connecting v′ − v′′ contributes 3 and the other two edges

contributes 1 each. Therefore, Mo(Hn,4) = n− 2 + n− 7 + 16 = 2n+ 7.

Theorem 3. For every positive integer n ≥ 25 there exists a tricyclic graph G such that
Mo(G) = n.

Proof. We divide the integers t into four different types.

Case 1. t is even.

We know Mo(Hn,1) = n+ 7 where n is odd. When t = 2k, k ≥ 3 choose n = t+ 1 =

2k + 1, therefore Mo(Hn,1) = n+ 7 = 2k + 1 + 7 = 2k + 8. Thus, every even integer

from 14 onwards will be attained by the tricyclic graph Hn,1.

Case 2. t = 8k + 7.

Choose the tricyclic graph Hn,2 of order n(odd). We know Mo(Hn,2) = 4n−13 where
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n is odd. Choose n = 2k+5, k ≥ 1, then Mo(Hn,2) = 4n−13 = 4(2k+5)−13 = 8k+7.

Thus, every odd integer of the form 8k + 7, k ≥ 1 will be attained by the tricyclic

graph Hn,2.

Case 3. t = 8k + 3.

We know Mo(Hn,3) = 4n − 9 where n is odd. Choose n = 2k + 3, k ≥ 2, then

Mo(Hn,3) = 4n − 9 = 4(2k + 3) − 9 = 8k + 3. Thus, every odd integer of the form

8k + 3, k ≥ 2 will be attained by the tricyclic graph Hn,3.

Case 4. t = 4k + 1.

We know Mo(Hn,4) = 2n + 7 where n is odd. Choose n = 2k − 3, k ≥ 6, then

Mo(Hn,4) = 2n + 7 = 2(2k − 3) + 7 = 4k + 1. Thus, every odd integer of the form

4k + 1, k ≥ 6 will be attained by the tricyclic graph Hn,4.

3. Inverse Problem of edge Mostar Index

In this section, we settle the edge Mostar index inverse problem for tricyclic graphs.

Construction IV

For every even number n ≥ 4, consider the cycle Cn−1 and let u and v be two vertices

of the cycle at a distance d(u, v) = n−2
2 . Connect the neighbours of u (u′,u′′) by an

edge and the neighbours of v (v′,v′′) by a path of length 2. We denote the graph as

Hn,5 (see Figure 4).

Figure 4. Graphs (a.) Hn,1 (b.) Hn,5

Proposition 3. For the graphs Hn,1, Hn,5

(a.) Moe(Hn,1) = n+ 7.
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(b.) Moe(Hn,5) = n+ 11.

Proof. (a.) Each edge in the u′ − v′ path and the u′′ − v′′ path has the contri-

bution µ(e|Hn,1) = 0. The edge e = uu′ and e = uu′′ each have contribution

µ(e|Hn,1) = n−1
2 . The four edges connecting the two paths of length 2 from v′

to v′′ each contributes µ(e|Hn,1) = 2. Therefore, Mo(Hn,1) = n−1+ 8 = n−7.

(b.) Each edge in the u′′ − v′′ path has the contribution µ(e|Hn,5) = 0, also every

edge in the u′ − v′ path except the edge incident on u′ has the contribution

µ(e|Hn,5) = 0. For the edge u′z in the u′ − v′ path, the contribution is 1. The

edge e = uu′ has contribution µ(e|Hn,5) = n
2 and the edge e = uu′′ contribute

µ(e|Hn,5) = n+2
2 to the edge Mostar index. The edge u′u′′ contribute 1 to

the edge Mostar index. Among the remaining four edges connecting the two

paths of length 2 from v′ to v′′, two edge incident on v′ contribute 1 each and

two edges incident on v′′ contribute µ(e|Hn,5) = 3. Therefore, Moe(Hn,5) =
n
2 + n+2

2 + 2 + 2 + 6 = n+ 11.

Using the construction defined above we will solve the inverse edge Mostar index

problems for tricyclic graphs.

Theorem 4. For every positive integer greater than n ≥ 19, there exists a tricyclic graph
G with Moe(G) = n.

Proof. For every even integer t = 2k, k ≥ 7, consider the graph Hn,1 of order

n = 2k− 7, k ≥ 7. We know, Moe(Hn,1) = n+ 7 = 2k− 7 + 7 = 2k. Therefore, every

even integer greater than 14 can be attained using the graph Hn,1. Now, in the case

of odd integers n = 2k+1, k ≥ 9, consider the graph Hn,5 of order n = 2k−10, k ≥ 9.

We know, Moe(Hn.5) = n+ 11 = 2k− 10 + 11 = 2k+ 1. Therefore, every odd integer

greater than 19 can attained by the graph Hn,5.

Remark 1. Theorem 4 does not imply that only positive integers greater than or equal
to 19 can be realized as the edge Mostar index of tricyclic graphs. On the other hand,there
are positive integers between 1 and 19 that are the edge Mostar index of tricyclic graphs,
and some corresponding graphs have been plotted in the Figure 5.
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Figure 5. In the pair (a, b), a denote the order of the graph and b denote edge Mostar index of the graph.

4. Inverse Problem of Albertson index and Sigma index

In this section, we provide an alternate construction for the inverse Albertson index

problem and inverse sigma index problem for c− cyclic graphs, c ≥ 2. In [7], I.

Gutman et al. studied the inverse sigma index problem for trees, unicyclic graphs,

bicyclic graphs and connected graphs. Darko Dimitrovet al. extended this study on

to the class of arbitrary c− cyclic graphs and settled the inverse problem for both the

irregularity indices [5]. Although they proved that for every even number n ≥ 4, there

exist infinitely many c− cyclic graph with sigma index σ(G) = n and Alb(G) = n.

Their construction does not give an infinitely many graphs for n = 2. In our study we

prove that for every even number n ≥ 2, there exist infinitely many c−cyclic graphs

c ≥ 3, such that σ(G) = n and Alb(G) = n. We also, settle the inverse problem for

cacti graphs. An edge e = uv of a graph G is called an (a, b) edge if d(u) = a and

d(v) = b (or vice versa) with a ≥ b.

Construction V

Consider the bicyclic graph G with two distinct cycles Ca and Cb connected by a

bridge e = uv. Subdivide the the edge e = uv and the resultant graph be denoted

by G′. Attach the path of length 2 (or p) on the new subdivision vertex, call the

resultant graph as G′′ (see Figure 6). Rename the graph G′′ as G and repeat this

process by taking a (3, 3) edge in the graph G, subdivide the edge, attach a path on

the new vertex.
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Figure 6. Graphs in Construction V.

Theorem 5. For every even number n = 2k, k ≥ 2, there exists infinitely many bicyclic
graph G with Alb(G) = n and σ(G) = n.

Proof. Consider the Construction V. In G, the two edges each incident on the bridge

uv contributes 1 each to the Albertson and sigma index and the rest of the edge

contribute 0. Since we can consider any cycles for Ca and Cb, there are infinitely

many bicyclic graphs with Alb(G) = 4 and σ(G) = 4. In G′ along with the original

edges, the two new edges formed by the subdivision contributes 1 each to both the

index, therefore Alb(G′) = 6 and σ(G′) = 6. Now when we attach a path at the new

subdivision vertex, the edge of the path incident at the new subdivision vertex and the

pendant edge contributes 1 each, the rest of the edges in the path have contribution

0. Also, the contribution of the two subdivided edges becomes zero. Therefore,

there exist infinitely many bicyclic graphs with Alb(G′) = 6 and σ(G′) = 6. Now,

when we repeat this process, one (3, 3) edge in G becomes two (3, 2) edges, and

consequently the total contribution will be increased by 2, thus Alb(G′) = Alb(G) + 2

and σ(G′) = σ(G) + 2. When we attach a path to the new subdivision vertex in

G′, both the (3, 2) subdivision edges becomes (3, 3) edges, and in the path there

will be one (3, 2) edge, one (2, 1) edge and several (2, 2) edges. Therefore, the total

contribution becomes zero. Thus, Alb(G′′) = Alb(G′) and σ(G′′) = σ(G′). Thus,

the repeated application of transformation gives, infinitely many bicyclic graphs with

Alb(G) = n = 2k and σ(G) = n = 2k, k ≥ 2.

Construction VI

Start with a cycle Cn with vertices v1, v2, . . . , vn, n ≥ 3. Take another cycle Cn with

vertices u1, u2, . . . , un. Join the vertices viui, i = 1, 2, . . . , n the resultant is a 3 regular

n + 1 cyclic graph denoted by G. Let G′ be the graph obtained by subdividing any
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Figure 7. Construction VI for Tricyclic Graphs.

Figure 8. Construction VI for c− cyclic Graphs, c ≥ 4.

(3.3) edge of the graph and G′′ be the graph obtained by attaching a path onto the

new subdivision vertex of G′ (see Figures 7 and 8). In the case of tricyclic graph,

start with the complete graph G = K4. Let G′ and G′′ be obtained as in the previous

case.

Theorem 6. For every even number n = 2k, k ≥ 2, there exists infinitely many c-cyclic
graph G with Alb(G) = n and σ(G) = n where c ≥ 3.

Proof. Consider the Construction VI. Since G is a regular graph Alb(G) = σ(G) = 0.

In G′, one (3, 3) edge becomes a two (3, 2) edge, and no change happens in the

remaining edges. Thus the total contribution is increased by 2. Therefore, Alb(G′) =

Alb(G) + 2 and σ(G′) = σ(G) + 2. In G′′, the two (3, 2) edges of G′ becomes (3, 3)

edges, resulting in a decrease of the total contribution by 2. But in the path there is a

(3, 2) edge and a (2, 1) edge and they two contribute 2 to the total sum. The rest of the

edges does not contribute anything. Thus, Alb(G′′) = Alb(G′) and σ(G′′) = σ(G′).



12 On the inverse problem of some bond additive indices

Since, we can add infinitely many distinct paths in each cases, there are infinitely

many c-cyclic graphs with Alb(G) = n = 2k and σ(G) = n = 2k, k ≥ 1.

Now we settle the inverse problem for irregularity indices on cacti graphs. From the

Construction I, we can have the following result.

Theorem 7. For every even number n = 2k, k ≥ 2, there exists infinitely many cacti
graph G with Alb(G) = n and σ(G) = n.

Proof. Since all the graphs constructed in Construction I are cacti graphs, we have

the result.

Next we restrict our class of graphs as cacti having fixed number of cycles. On this

class we have the following construction.

Construction VII

Start with a cycle C3 (Level 1) and attach two bridges on two different vertices of

the cycle C3 and attach C3 in each of the bridges(Level 2). Continuing like this on

each cycle C3, i.e, attach a bridge on each of the vertex of degree 2 in the cycle and

attach a C3 on each of these bridges. If we want a cacti with k (odd) distinct cycles,

continue this process will continue until we get k cycles in the graph. Now to get a

cacti with k+ 1 cycles, connect the k+ 1-th C3 on the first level C3 by a bridge on to

the vertex of degree 2 in the first C3(Level 0). Thus we get a cacti having k distinct

cycles, for each k. Let the graph be denoted by G. Take a (3, 3) edge in G, subdivide

the edge and let the resultant graph be denoted by G′. Take G′, attach a path on

to the new subdivision vertex, call the resultant graph as G′′. Continue this process

(See Figure 9).

Figure 9. Cacti’s in Construction VII

Theorem 8. (a.) For every even number n ≥ c+3,where c is odd and c ≥ 3, there exist
infinitely many cacti graph G with c− cycles such that Alb(G) = n and σ(G) = n.



L. Alex, et al. 13

(b.) For every even number n ≥ c+2,where c is even and c ≥ 4, there exist infinitely many
cacti graph G with c− cycles such that Alb(G) = n and σ(G) = n.

Proof. Consider the Construction VII. Let G be the cacti graph in the construction

with k cycles. When k is odd, there are two (3, 2) edges in Level 1 and k+1 other (3, 2)

pair edges in the graph. All the other edges are (3, 3) pair. Therefore, Alb(G) = k+3

and σ(G) = k + 3, k ≥ 3, k is odd. Let the graph be denoted as G, in G′ one (3, 3)

edge becomes two (3, 2) edge. All the other edges have the same contribution as G.

Thus, Alb(G′) = Alb(G) + 2 and σ(G′) = σ(G) + 2. Now in G′′, two subdivision (3, 2)

edge becomes (3, 3) edge and consequently the contribution is decreased by 2. But

in the new path attached, one new (3, 2) edge and one (2, 1) contributes a sum of

2. Therefore, Alb(G′′) = Alb(G′) and σ(G′′) = σ(G′). Therefore, there are infinitely

many cacti graph with k cycles having Alb(G) = 2m and σ(G) = 2m,m ≥ k+3
2 .

When k is even, there are two (3, 2) edges in Level 0 and k other (3, 2) pair edges

in the graph. All the other edges are (3, 3) pair. Therefore, Alb(G) = k + 2 and

σ(G) = k + 2, k ≥ 4, As in the previous argument, there are infinitely many cacti

graphs with k cycles having Alb(G) = 2m and σ(G) = 2m,m ≥ k+2
2 .

5. Inverse problem of total irregularity index

In this section, we settle the inverse total irregularity index problem for c− graphs,

c ≥ 3. In [5], Dimitrov et al. established that every even number greater than or equal

to 2(c− 1)i can be the σt irregularity index of some c− graphs. We give an alternate

construction to complete this work by proving that every even integer greater than

2(c − 1)i can be the σt irregularity index of some c− cyclic graph. A pair (u, v) of

vertices is called an (a, b) pair if the degree d(u) = a and d(v) = b or vice versa

(a ≥ b).

Figure 10. Construction VIII for tricyclic graphs.

Construction VIII

Start with a cycle Cn with vertices v1, v2, . . . , vn, n ≥ 3, take another cycle Cn with

vertices u1, u2, . . . , un. Join the vertices viui, i = 1, 2, . . . , n the resultant graph is a 3
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Figure 11. Construction VIII for c− cyclic graphs.

regular n+1 cyclic graph denoted by G. Let G′ be the graph obtained by subdividing

any (3.3) edge of the graph. Continue this subdivision on any other edge of the graph

(see Figures 10 and 11). In the case of tricyclic graph, start with a graph G = K4

and continue the subdivision process as before.

Theorem 9. For every even integer n ≥ 2(c−1)i, i = 1, 2, . . . , c ≥ 3, there exists c-cyclic
graph G with irrt(G) = n, σt(G) = n.

Proof. Let G be the c− cyclic graph constructed as in Construction VIII. G has

2(c−1) vertices of degree 3 and therefore irrt(G) = 0, σt(G) = 0. When we subdivide

an edge in G, we get 2(c − 1) pairs of (3, 2) vertices in graph. Therefore, irrt(G) =

2(c− 1), σt(G) = 2(c− 1). If we continue this process i times there will be 2(c− 1)i

pairs of (3, 2) vertices in the graph, therefore, irrt(G) = σt(G) = 2(c− 1)i.

Conclusion. In this study, we have explored ‘topological index inverse problems’

for cyclic graphs. There are several variant of these problems which are yet to be

solved. The ‘inverse Mostar and edge Mostar index problems’ for c− cyclic graphs,

c ≥ 4 is an open problem for further studies.
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