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Abstract: This paper considers a game version of the general position problem in
which a general position set is built through adversarial play. Two players in a graph,

Builder and Blocker, take it in turns to add a vertex to a set, such that the vertices of

this set are always in general position. The goal of Builder is to create a large general
position set, whilst the aim of Blocker is to frustrate Builder’s plans by making the

set as small as possible. The game finishes when no further vertices can be added

without creating three-in-a-line and the number of vertices in this set is the game
general position number. We determine this number for some common graph classes
and provide sharp bounds, in particular for the case of trees. We also discuss the effect

of changing the order of the players.

Keywords: general position set, games on graphs, trees, no-three-in-line, universal

line.
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1. Introduction

Given a special property of subsets of a graph, it is often of practical and theoretical

interest to ask for optimal sets with the desired property that are produced as a result

of adversarial play. For example, Martin Gardner suggested such an approach to the

well known chromatic number in [11] and this problem now has an extensive literature
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2 Builder-Blocker general position games

(see [2] for a survey). A positional game in which the first player tries to build a large

clique and the second player aims to frustrate the efforts of the first player was studied

in [10]. The domination game, in which one player, called Dominator, aims to build

a small dominating set, whilst the second player, Staller, tries to keep the set as large

as possible, was defined in [5] (see also the book [4]). Inspired by the latter game, in

this paper we study a game version of the general position problem.

The general position problem originated in the no-three-in-line puzzle of Dudeney [9]

and was generalised to the setting of graph theory in [7, 20]. A subset S of the vertex

set of a graphG is in general position if no shortest path ofG passes through more than

two vertices of S. The general position number gp(G) of G is the number of vertices in

a largest general position set. In the short period since this invariant was introduced,

it has already been very well researched, see for example [1, 14, 16, 19, 22, 25–27].

Additional research has also been carried out on edge general position sets [18, 21].

Building on another question of Gardner [12], the recent paper [8] dealt with the

smallest maximal general position sets of a graph, which represent the worst-case

output of a greedy search for general position sets; the number of vertices in such a

set is the lower general position number gp−(G).

The following general position game is introduced in [17]. Two players A and B

take it in turns to select free vertices of a graph G such that at any time the set

of selected vertices is in general position; the last player that can move wins (the

scenario in which the last player to move loses is considered in [6]). At the end of this

game the resulting general position set will be maximal. This suggests that positional

games may be a fruitful method of constructing maximal general position sets with

order intermediate between gp−(G) and gp(G). For example, if r1 ≥ · · · ≥ rt, then

gp(Kr1,...,rt) = max{r1, t}, gp−(Kr1,...,rt) = min{rt, t} and if t is odd and there is a

part in the partition with odd order, then the optimal play described in [17] produces

a maximal general position set of order t. However, as the players of this game are

not concerned with the length of their game, just in who moves last, optimal game

play can produce maximal general position sets of different orders. In order to give a

well-defined invariant associated with these adversarial games, we define the following

game.

Definition 1 (Builder-Blocker general position game). Builder and Blocker
take it in turns to choose an unmarked vertex of a graph G. If Builder moves first we speak
of a Builder general position game, otherwise of a Blocker general position game. For brevity
we will simply call the first game a B-game and the second a B’-game. At each stage the
set of marked vertices must be in general position. The game ends when no further vertices
can be selected. The goal of Builder is to produce a largest possible general position set,
whilst the aim of Blocker is to frustrate Builder by forcing them to build a general position
set containing as few vertices as possible.

Definition 2. The number of vertices in the general position set built by optimum play
in a B-game on a graph G is the Builder-game general position number (B-game general
position number) of G, which we will denote by gpg(G). The corresponding invariant for the
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B’-game is the Blocker-game general position number (B’-game general position number) of
G, which we will denote by gp′g(G).

The order of a graph G will be denoted by n(G). For a positive integer k, the set

{1, . . . , k} will be written [k]. The distance dG(u, v) between vertices u and v of a

graph G is the length of a shortest u, v-path in G. The largest value of dG(u, v) over

all pairs u, v ∈ V (G) is the diameter diam(G) of G. For 0 ≤ t ≤ diam(G), the set of

vertices at distance exactly t from u ∈ V (G) is N t(u); in particular, the neighbourhood

N(u) = N1(u) of u ∈ V (G) is the set {v ∈ V (G) : u ∼ v}. The degree of u ∈ V (G) is

degG(u) = |N(u)| and the largest degree in the graph is the maximum degree ∆(G).

A vertex u is a leaf of G if degG(u) = 1; the number of leaves of G will be written

`(G).

The rest of the paper is structured as follows. In Section 2 we give some useful bounds

on the game general position numbers and determine these numbers for several classes

of graphs, including the Kneser graphs K(n, 2). In Section 3 we explore graphs with

small game general position numbers, showing the connection with universal lines

and characterising graphs G with gp′g(G) = 2. The main message of Section 4 is

that the order of the players in the general position game is important, since both

gp′g(G)− gpg(G) and gpg(G)− gp′g(G) can be arbitrarily large. Finally, in Section 5,

we derive a sharp upper bound for trees in the B’-game and characterise the equality

case.

2. Bounds and exact values

In this section, we provide some bounds on the game general position numbers that

will prove useful in the remainder of the paper. We then discuss the results of the

B-game and the B’-game on some common graph classes, including complete multi-

partite graphs and Kneser graphs.

As both games, the B-game and the B’-game, result in a maximal general position

set, we have the trivial bounds

gp−(G) ≤ gpg(G) ≤ gp(G), (2.1)

gp−(G) ≤ gp′g(G) ≤ gp(G). (2.2)

The following lemma will be very useful in our investigations of the Builder-Blocker

general position game.

Lemma 1. Let G be a graph and let S be the set of vertices played in a B-game or
B’-game so far. Let S′ be the set of vertices that are playable as the next move of the game.
If S ∪ S′ is a general position set, then the game will finish precisely after all the vertices
from S′ have been played.
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Proof. If u is a vertex of V (G) \ (S ∪S′), then u cannot be chosen by either Builder

or Blocker in the current state of play; hence S∪{u} is not a general position set, i.e.,

there is a shortest path in G containing u and two vertices of S. This will obviously

remain true at any future stage of the game, so that the vertex u cannot be played at

any point in the game once the vertices of S have been chosen. On the other hand,

since S ∪ S′ is a general position set, playing the vertices from S′ one by one is legal

until all the vertices from S′ have been played.

If G is a graph and uv ∈ E(G), then let

Wuv = {w ∈ V (G) : dG(u,w) < dG(v, w)} ,
Wvu = {w ∈ V (G) : dG(v, w) < dG(u,w)} ,

uWv = {w ∈ V (G) : dG(u,w) = dG(v, w)} .

Note that u ∈ Wuv, v ∈ Wvu, and that V (G) is the disjoint union of Wuv, Wvu and

uWv. For an example of these sets consider the Petersen graph P in Fig. 1.

u v

Wuv Wvu

uWv

Figure 1. Sets Wuv, Wvu, and uWv in the Petersen graph

Theorem 1. If G is a graph with n(G) ≥ 2, then

2 ≤ gpg(G) ≤ 2 + max
u∈V (G)

min
v∈N(u)

|uWv| .

Proof. The lower bound is clear. Consider now the B-game played on G and assume

that Builder selected a vertex u as their first move. Suppose that Blocker replies by

playing a neighbour v of u. If w ∈ Wuv, then dG(w, v) = dG(w, u) + 1, and as

uv ∈ E(G), we infer that w, u, and v lie on a common shortest path. It follows that

in the rest of the game no vertex from Wuv will be selected. By the same argument,

no vertex from Wvu will be selected in the rest of the game; hence at most 2 + |uWv|
vertices will be selected. Thus if Builder starts by playing u, then Blocker has a
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strategy that limits the resulting general position set to at most 2 + minv∈N(u) |uWv|
vertices. As Builder is the first to play and wishes to maximise the number of vertices

selected, the upper bound follows.

Theorem 1 instantly implies the following useful corollary.

Corollary 1. If G is a graph with n(G) ≥ 2, then

2 ≤ gpg(G) ≤ 2 + max{|uWv| : uv ∈ E(G)} .

The upper bound of Corollary 1 (and thus also of Theorem 1) is sharp, as demon-

strated by complete graphs and the Petersen graph P . If uv is an edge of Kn, then

we have |uWv| = n − 2, so that the bound yields gpg(Kn) ≤ n. As for the Petersen

graph, Theorem 1 yields gpg(P ) ≤ 6, see Fig. 1 again. On the other hand, if Builder

first plays some vertex u, then either Blocker replies with a neighbour v of u, or

Blocker chooses a vertex v with dG(u, v) = 2, which case Builder can choose a vertex

of N(u) \N(v) on their next turn; in either case, Lemma 1 shows that the resulting

set contains six vertices and hence gpg(P ) = 6.

If G is a connected, bipartite graph, then uWv = ∅ for every edge uv of G, which

implies the following:

Corollary 2. If G is a connected, bipartite graph with n(G) ≥ 2, then gpg(G) = 2.

As we will see in Theorem 3, gp′g(G) can be arbitrary large even in the class of

bipartite graphs; hence Theorem 1 does not extend to the B’-game. However, we

can still obtain a useful bound for the following family of graphs: let G be the set of

graphs G such that for any vertices x, y ∈ V (G) with dG(x, y) ≥ 2, there exists an

edge yz, such that x is equidistant from y and z. This family G is quite large. For

instance, it contains C5, the Petersen graph, complete graphs, many circulants, and

wheels Wk, k ≥ 5.

Theorem 2. If G ∈ G, then

gp′g(G) ≤ 2 + max{|xWy| : xy ∈ E(G)} .

Proof. Consider the B’-game and let u and v be the first two moves of Blocker and

Builder, respectively. If uv ∈ E(G), then the same argument as given in the proof

of Theorem 1 gives gp′g(G) ≤ 2 + max{|xWy| : xy ∈ E(G)}. Assume hence that

dG(u, v) ≥ 2. By assumption, there exists a vertex w such that vw ∈ E(G) and

dG(u, v) = dG(u,w). It follows that w is a legal second move of Blocker. After these

three moves have been played, only vertices from vWw will be played in the rest of the

game. Since u ∈ vWw, we again have gp′g(G) ≤ 2 + max{|xWy| : xy ∈ E(G)}.
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The upper bound in Theorem 2 is attained by C5, the Petersen graph and complete

graphs.

To demonstrate that the class of graphs G can be large, consider the following. Let

G2 be the set of graphs G such that for any vertices x, y ∈ V (G) with dG(x, y) = 2

there exists an edge yz, such that x is equidistant from y and z. Recall that the

lexicographic product G ◦ H of graphs G and H is the graph with the vertex set

V (G)×V (H), vertices (g, h) and (g′, h′) being adjacent if either gg′ ∈ E(G) or g = g′

and hh′ ∈ E(H). Then we have:

Proposition 1. If G is a connected graph with n(G) ≥ 2 and H is a graph from G2, then
G ◦H ∈ G.

Proof. Let (g, h) and (g′, h′) be arbitrary vertices of G ◦ H with

dG◦H((g, h), (g′, h′)) ≥ 2. We distinguish two cases.

Assume first that g = g′. Then dG◦H((g, h), (g′, h′)) = 2 by the structure of the

lexicographic product. In the first subcase, assume that dH(h, h′) = 2. Since H ∈
G2, there exists a neighbour h′′ of h′ in H such that dH(h, h′′) = 2. Then also

dG◦H((g, h), (g, h′′)) = 2. In the second subcase, assume that dH(h, h′) ≥ 3. Now

let h′′ be a neighbour of h′ such that dH(h, h′′) = dH(h, h′) − 1. Then we have

dG◦H((g, h), (g, h′)) = 2 = dG◦H((g, h), (g, h′′)).

Assume second that g 6= g′. Let h′′ be an arbitrary neighbour of h in H. Then we

have dG◦H((g, h), (g′, h′)) = dG◦H((g, h), (g′, h′′)) and we are done.

Clearly, G ⊆ G2. Moreover, G is a proper subset of G2 as the generalised Petersen graph

P (10, 2) (alias the dodecahedral graph) demonstrates; for the definition of generalised

Petersen graphs see, for instance, [3, p. 20]. Indeed, since each pair of vertices of

P (10, 2) which is at distance 2 lies on a common (isometric) 5-cycle, we see that

P (10, 2) ∈ G2. On the other hand, if u and v are two antipodal vertices of P (10, 2),

then dP (10,2)(u, v) = 5, but for any neighbour w of v we have dP (10,2)(u,w) = 4. We

conclude that P (10, 2) /∈ G.

Trivially, gpg(Kn) = n for n ≥ 1. It is also straightforward to see that if n ≥ 6 is even,

then gpg(Cn) = 2 and gp′g(Cn) = 3, while if n is odd, then gpg(Cn) = gp′g(Cn) = 3.

Theorem 3. If t ≥ 2 and r1 ≥ · · · ≥ rt ≥ 2, then

gpg(Kr1,...,rt) = min{r1, t}

and

gp′g(Kr1,...,rt) = max{rt, t}.

Proof. Assume that Builder starts with the move a1 in a part X of order |X| = ri.

If Blocker can select their second vertex from X \ {a1}, then all subsequent vertices

chosen must lie in X, so that optimal play produces the maximal general position



S. Klavžar, et al. 7

set X. If Blocker chooses their first vertex in a part X ′ not equal to X, then each

subsequent vertex chosen must lie in a new part, so that the game produces a clique

with one vertex from each part, yielding a general position set of order t. Hence

Blocker can limit Builder to a general position set of order min{ri, t}. Hence it is in

Builder’s interests to choose their first vertex in a part of order r1. Thus the general

position set produced by optimal play has order min{r1, t}.
A similar argument shows that if Blocker’s first move in part X of order ri, then

Builder has the choice of either moving within X (resulting in a general position set

of order ri), or selecting a vertex in a new part X ′ 6= X, in which case the game

builds a clique of order t. Therefore the order of the general position set produced is

max{ri, t} and, in order to minimise this, Blocker must start in a partite set of order

rt.

The result for complete multipartite graphs allows us to prove a realisation result for

the game general position number versus the gp-number and lower gp-number as a

corollary.

Corollary 3. For any integers a, b, c with 2 ≤ c ≤ b ≤ a there exists a graph G with
gp(G) = a, gpg(G) = b and gp−(G) = c.

Proof. Recall that gp(Kr1,...,rt) = max{r1, t} and gp−(Kr1,...,rt) = min{rt, t} Hence

the result follows by applying Theorem 3 to a complete multipartite graph Kr1,...,rt

with r1 = a, t = b and rt = c.

We now determine the result of the general position game on Kneser graphs K(n, 2).

Recall that the vertices of this graph are the subsets of order two of [n] and two

subsets are adjacent if and only if they are disjoint sets. The general position number

of K(n, 2) was shown to be n − 1 for n ≥ 7 in [13] and the lower general position

number was determined in [8] as follows.

Theorem 4. [8, Theorem 13] The lower gp-number of the Kneser graph K(n, 2) is

gp−(K(n, 2)) =



3, if n = 3,

6, if n = 4,

4, if n = 5,⌊
n
2

⌋
, if 6 ≤ n ≤ 11,

6, if n ≥ 12.

It turns out that for n ≥ 12 the game general position numbers coincide with the

lower general position number.

Theorem 5. For n ≥ 4 we have gpg(K(n, 2)) = gp′g(K(n, 2)) = 6.
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Proof. We use the description of the maximal general position sets from Theorem 4.

We first consider the B-game played on K(n, 2) and assume without loss of generality

that Builder starts with the move a1 = {1, 2}. Assume further that Blocker’s first

move is a 2-subset disjoint from a1, say b1 = {3, 4}. If Builder’s next move is a

2-subset a2 of {1, 2, 3, 4}, then the general position set built during the game is the

set of six 2-subsets of [4]. Otherwise if a2 is disjoint with {1, 2, 3, 4} then Builder and

Blocker must build a clique of order
⌊
n
2

⌋
. Hence for n ≤ 11 Builder would choose a

2-subset of [4], for n ∈ {12, 13} Builder’s choice is arbitrary, and for n ≥ 14 Builder

can choose {5, 6}.
Suppose that Blocker’s first move is b1 = {1, 3}. If Builder picks a2 = {1, i} for some

4 ≤ i ≤ n, then Blocker can either pick a set b2 = {1, j}, j ∈ [n] \ {2, 3, i}, in which

case they build a general position set of order n−1, or else Blocker can pick a 2-subset

of {1, 2, 3, i}, in which case they produce a general position set of order six. Therefore

for 4 ≤ n ≤ 6 Blocker will choose the first option and for n ≥ 7 Blocker can choose

the second. If Builder’s second move a2 contains 2 or 3, then they will build a general

position set of order six. Hence if n ≥ 7 then either option for a2 will result in a

general position set of order six and for 4 ≤ n ≤ 6 Builder will choose a set containing

2 or 3, again leading to a general position set of order six.

In summary, if Blocker chooses b1 = {1, 3}, then the game gives a set of order six,

whereas if b1 = {3, 4}, then the game will give a general position set of order six for

4 ≤ n ≤ 11 and order
⌊
n
2

⌋
for n ≥ 12. Thus the best that Blocker can do is restrain

Builder to a general position set of order six.

A similar argument establishes the value of gp′g(K(n, 2)).

3. Graphs with small game general position numbers

Since gpg(G) ≥ 2 and gp′g(G) ≥ 2 hold for any non-trivial graph G, it is natural to

ask when equality can hold. We now proceed to answer this question.

Let M = (X, dM ) be an arbitrary metric space and x, y ∈ X. Then the line LM (x, y)

induced by x and y is the following set of points from M :

{z ∈ X : dM (x, y) = dM (x, z) + dM (z, y) or dM (x, y) = |dM (x, z)− dM (z, y)|} .

The line LM (x, y) is universal if it contains the whole set X. Considering a graph G as

a metric space, these definitions transfer directly to G, see [23]. We can now describe

the graphs G with gpg(G) = 2 by the following result which generalises Corollary 2.

Lemma 2. If G is a graph with n(G) ≥ 2, then gpg(G) = 2 if and only if each vertex of G
is contained in a pair that induces a universal line. In particular, if G is a vertex-transitive
graph with gp−(G) = 2, then gpg(G) = 2. Moreover, gp′g(G) = 2 if and only if there exists
a vertex u ∈ V (G) such that for any v ∈ V (G) \ {u} the pair {u, v} induces a universal line.

Proof. Assume that gpg(G) = 2. Let x be an arbitrary vertex of G and consider the

B-game in which Builder selects x as the first move. Since gpg(G) = 2, there exists a
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reply x′ of Blocker such that the game is over after this move. This means that the

line LG(x, x′) is universal. Conversely, assume that each vertex of G is contained in

a universal line. Consider the B-game and let x be the first optimal move of Builder.

By our assumption, there exists a vertex x′ such that the line LG(x, x′) is universal.

Then Blocker replies with the move x′ and the game is over.

Assume that G is vertex-transitive with gp−(G) = 2. Let {x, x′} be a maximal general

position set of G. Then the line LG(x, x′) is universal. If y is an arbitrary vertex of

G, let α be an automorphism of G with α(x) = y. Then the line LG(α(x), α(x′)) =

LG(y, α(x′)) is a universal line containing y. As above, gpg(G) = 2.

The observation for graphs with gp′g(G) = 2 follows similarly.

For example, cocktail-party graphs K2,...,2 are vertex-transitive with lower general

position number 2, hence gpg(K2,...,2) = 2.

We now turn our attention to graphs G with gp′g(G) = 2. To this end we introduce

the family of graphs H containing all graphs of order at least 2 that are constructed

in the following way. Let Gi, i ∈ [k], be a collection of k ≥ 0 complete bipartite

graphs Gi = K2,ni , ni ≥ 2, and in each graph Gi let the partite set with two vertices

be Xi = {ui, u′i} (if ni = 2, then obviously the choice is arbitrary). Then identify all

the vertices ui, i ∈ [k], into a single vertex u. Next, add a pendant path of arbitrary

length (possibly 0) to each of the vertices u′i. Finally, attach an arbitrary number

(possibly 0) of paths at u. An example of a graph belonging to the family H is shown

in Fig. 2.

u

Figure 2. A graph from the family H

Theorem 6. For any graph G, gp′g(G) = 2 if and only if G ∈ H.

Proof. Let G ∈ H and let u be the vertex of G as defined in the description of the

class H. It is then straightforward to check that for any vertex v 6= u, the pair {u, v}
induces a universal line, so by Lemma 2 we have gp′g(G) = 2 (i.e., if Blocker starts

with u, then whichever vertex Builder selects for their next vertex, the game is over).

Conversely, let G be a arbitrary graph with gp′g(G) = 2. Let u be Blocker’s first move

selected optimally. Suppose that there is a vertex v in N t(u) (1 ≤ t ≤ diam(G)− 1)

such that v has at least two neighbours w1, w2 in N t+1(u); then {u,w1, w2} is in

general position and Builder could guarantee a general position set of order at least
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three by choosing w1. Hence each vertex of N t(u) has at most one neighbour in

N t+1(u).

Suppose that G contains a cycle, but that u does not lie on any cycles. Let C be

a girth cycle of G, and P be a shortest path from u to C, terminating in a vertex

w ∈ V (C). Since a girth cycle in isometric, u together with the two neighbours of w

on C constitutes a general position set, so that if Builder plays a neighbour of w on

C, then Blocker is obliged to take a further move and gp′g(G) ≥ 3. Now suppose that

u lies on a cycle of G and let C be a shortest such cycle; as gp(Cn) = 3 unless n = 4,

if the length of C does not equal four, then Builder can choose a vertex v from C

such that {v} can be completed to a general position set of at least three vertices.

As u does not lie on a triangle, N(u) is independent. Let W be the set of vertices in

N2(u) that lie on a 4-cycle containing u. Since each vertex of N(u) has at most one

neighbour in N2(u), if w1, w2 ∈ W , then N(w1) ∩N(w2) ∩N(u) = ∅. Furthermore,

each set N t(u) is an independent set, since otherwise u would be contained in an

odd cycle and considering a shortest such cycle Builder would again be able to force

a general position set with at least three vertices. We also see that any vertex in

N t(u), where t ≥ 3, can have at most one neighbour in N t−1(u), for otherwise we

could consider a vertex with smallest possible t ≥ 3 and see that this would create an

isometric odd cycle through u.

From the above arguments we may conclude that any graph G with gp′g(G) = 2

belongs to H.

In fact, every graph G in the family H satisfies the first part of Lemma 2, i.e., for

every vertex u ∈ V (G) there is a vertex u′ such that {u, u′} induces a universal line;

therefore for each such graph we also have gpg(G) = 2.

Corollary 4. If gp′g(G) = 2, then gpg(G) = 2.

4. Who goes first?

In the domination game, it is known that changing the order of the players Domi-

nator and Staller can make a difference of at most one to the order of the resulting

dominating set [5, 15]. Moreover, from the bounds and exact values that we have

derived so far, it may appear that the general position set produced by the B-game

is no larger than that produced by the B’-game; in particular Corollary 4 shows that

this is true if either of the numbers gpg(G) or gp′g(G) equal two. However, it turns

out that the order of the players in the general position game is very important, as

gpg(G) − gp′g(G) and gp′g(G) − gpg(G) can both be arbitrarily large. This feature

thus strongly distinguishes general position games from domination games.

We start with the simple result, which characterises the pairs (a, b) with a ≤ b such

that there exists a graph G with gpg(G) = a and gp′g(G) = b.



S. Klavžar, et al. 11

Proposition 2. For any integers a, b such that 2 ≤ a ≤ b, there exists a graph G with
gpg(G) = a and gp′g(G) = b.

Proof. If a = b, then the complete graph suffices, so we can assume that a < b.

Then Theorem 3 shows that the complete a-partite graph with each part of size b will

suffice.

Now we show that the general position number for the B-game can be arbitrarily

larger than the general position number for the B’-game.

Theorem 7. The difference gpg(G)− gp′g(G) can be arbitrarily large.

Proof. Consider the graph G(r, s) formed by gluing together r copies of C4 and s

triangles along an edge. For 1 ≤ i ≤ r, we will label the vertices of the i-th copy of

C4 by x, y, xi, yi, where x ∼ xi, y ∼ yi, xi ∼ yi and x ∼ y and xy is the edge that is

identified in the r copies. Similarly, we will denote the unidentified vertex of the j-th

triangle by wj for 1 ≤ j ≤ s. Let X = {xi : 1 ≤ i ≤ r}, Y = {yi : 1 ≤ i ≤ r} and

W = {wj : 1 ≤ j ≤ s}. An example of this construction is shown in Fig. 3. We will

take r to be larger than s and assume s to be odd and at least three.

x6

x5

x4

x3

x2

x1

y6

y5

y4

y3

y2

y1

w1 w2 w3 w4 w5

x y

Figure 3. The graph G(6, 5)

We begin by classifying the maximal general position sets in G(r, s). Let S be such a

maximal general position set. If x, y ∈ S, then no xi and no yi can be in S and S can

contain at most one wj ; therefore S induces a triangle on vertices x, y, wj . Assume
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that x ∈ S, y /∈ S (the case y ∈ S, x /∈ S, is obviously symmetrical). The sets {x, xi}
are maximal general position sets, so we can assume that S ∩ X = ∅; then, noting

that S can contain at most one vertex of W , we must have S = {x,wj} ∪ Y for some

wj . Finally, we can assume that x, y 6∈ S. Suppose that for some 1 ≤ i ≤ r we have

xi, yi ∈ S; then S cannot contain any further vertices from X ∪ Y and we must have

S = {xi, yi} ∪W . Otherwise, S consists of one vertex from each set {xi, yi} along

with the vertices of W .

We conclude that each maximal general position set in G(r, s) has one of the following

types:

A : {x, xi} or {y, yi};
B : {x, y, wj};
C : {xi, yi} ∪W ;

D : {x,wj} ∪ Y or {y, wj} ∪X;

E : S consists of W together with one vertex from each set {xi, yi}.

These sets have orders A: 2; B: 3; C: s + 2; D: r + 2; and E: r + s. As r > s ≥ 3,

the desirability of these sets to Builder is given by E > D > C > B > A.

Let us first examine the B-game on G(r, s). If Builder’s first move is in {x, y}∪X∪Y ,

then Blocker can finish the game on their first move by completing the set to a maximal

general position set of Type A. Therefore we can assume that Builder starts at w1.

Blocker has a strategy to restrict Builder to a set of order at most r + 2 by now

choosing x as their first move, forcing a set of Type D or B. We show that Builder

can guarantee a set of order at least r + 2. If Blocker’s first move is in {x, y} (again,

assume this to be x), then Builder can reply with y1 to force a set of Type D, whereas

if Blocker’s first move is in X ∪ Y , say x1, then Builder can reply with y2 to force

a set of Type E. Suppose now that Blocker takes their first move in W ; now the

outcome is restricted to a set of Type either E or C. Now as s is odd, Builder can

force Blocker to move in X ∪Y by replying to each move of Blocker in W by choosing

another vertex of W ; by symmetry, we can suppose that Blocker eventually chooses

the vertex x1, at which point Builder can reply with y2, forcing a set of Type E. It

follows that if both players use optimal strategies, the outcome will be a set of Type

D with r + 2 vertices.

Now we examine the B’-game. If Blocker’s first move is in {x, y}, say x, then the

best Builder can hope for is a set of Type D, which they can force by choosing y1. If

Blocker’s first move is in X ∪ Y , say at x1, then Builder could force a set of Type E

by replying with y2.

We now show that if Blocker starts at a vertex of W , then they have a strategy to

limit Builder to a set of order s + 2, which Builder can achieve. Suppose then that

Blocker chooses vertex w1 as their first move. It would be a bad choice for Builder

to take either x or y as their first move, since Blocker could reply with the remaining

vertex of {x, y} and limit Builder to a set of Type B. However, Builder can achieve
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at least a set of Type C by taking vertex x1 as their first move. It can be seen that

Blocker can limit Builder to a set with at most s+ 2 vertices as follows. As s is odd,

if Blocker replies to any move of Builder in W by selecting another vertex of W , then

Builder is forced to take a move in {x, y}∪X∪Y ; a move in {x, y} is either impossible

for Builder (if at least two vertices of W have already been selected) or unwise as a

first move for Builder, as already discussed, so we can assume that Builder’s first

move outside of W is x1. Blocker replies to Builder’s move x1 with y2, which forces

a set of Type C with s+ 2 vertices. Therefore the best possible strategy for Blocker

gives a set of order s+ 2.

It follows that gpg(G(r, s)) = r + 2 and gp′g(G(r, s)) = s+ 2. As r can be arbitrarily

larger than s, this proves the result.

We remark that if we allow s = 1 then a simple argument along the lines of the above

proof shows that the graph G(r, 1) has gpg(G(r, 1)) = r + 2 and gp′g(G(r, 1)) = 3.

Notice that for all of the graphs constructed in Theorem 7 the number gp′g(G) is

odd. This raises the question: for which pairs (a, b) is there a graph with gpg(G) = a

and gp′g(G) = b? If there does exist such a graph, we will say that the pair (a, b) is

realisable. By Proposition 2 we know that (a, a+ r) is realisable for a ≥ 2 and r ≥ 0.

Trivially (1, 1) is realisable, but for a ≥ 2 the pairs (1, a) and (a, 1) are not realisable.

By Corollary 4 a pair (a, 2) is realisable if and only if a = 2. Finally, Theorem 7

shows that any pair (a + r, a) with a ≥ 3 and r ≥ 0 is realisable. It remains only to

settle the realisability of pairs (a, b) with a > b and b even. We now show that some

such pairs are realisable.

Theorem 8. The pairs (j + k + 1, j + 2) are realisable for j ≥ k ≥ 1.

Proof. We define the graph H(j, k) as follows, where j ≥ k ≥ 1. Take a clique of

order 2(j+k) and partition it into four sets, J1, J2, K1 and K2, where |J1| = |J2| = j

and |K1| = |K2| = k. Add three new vertices z, x1 and x2. Join xi to all vertices of

Ji ∪Ki for i = 1, 2 and finally join z to every vertex of J1 ∪ J2.

Consider the B’-game on H(j, k). Blocker has a strategy to limit Builder to a set of

at most j + 2 vertices. Blocker chooses z as their first move. Now if Builder takes

their next move in K1, Blocker replies with x1, and likewise if Builder’s first move is

in K2, Blocker replies with x2. If Builder’s first move is in J1, Blocker takes x2 as

their second move and if Builder moves in J2, Blocker chooses x1. Finally, if Builder

chooses x1 or x2, Blocker can end the game by choosing the remaining vertex in

{x1, x2}. Conversely, Builder can guarantee a set of order at least j + 2 by taking

their first move in J1 ∪ J2.

Now we deal with the B-game. When Builder goes first, they have a strategy to

construct a set of order at least 1 + j + k. Builder chooses a vertex of J1 as their

first move. If Blocker moves in {z} ∪ J1, Builder replies with a vertex in J2, which,

since the smallest maximal general position set containing J1 ∪ J2 is {z} ∪ J1 ∪ J2,

guarantees a set of order at least 2j + 1. If Blocker moves in J2, Builder replies with
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z. If Blocker moves in K1 ∪K2, Builder can guarantee that the whole clique of order

2(j + k) is selected by taking their second move in J2. Finally, if Blocker chooses

their first vertex in {x1, x2}, Builder replies with a vertex of K1 to guarantee at least

1 + j + k vertices in the resulting set. However, Blocker can limit Builder to at most

1 + j + k vertices, since if Builder moves in Ji ∪ Ki for i = 1, 2, Blocker can reply

with xi, whilst if Builder chooses an xi, i = 1, 2, for their first move, then Blocker

can choose a vertex of Ji for their first move and, finally, if Builder selects z for their

first move, then Blocker can restrict Builder to a set of most j+2 vertices by replying

with x1.

It follows that gpg(H(j, k)) = 1 + j + k and gp′g(H(j, k)) = j + 2.

We conclude this section with the following open problem.

Problem 1. Is every pair (a, b) with a > b > 2 and even b realisable?

5. The B’-game played on trees

In this section we have a closer look to the B’-game played on trees. (There is no

need to consider the B-game due to Corollary 2.) We first prove the following upper

bound and later, in Theorem 10 characterise the trees that attain the bound.

Theorem 9. If T is a tree, then gp′g(T ) ≤ `(T )−∆(T ) + 2.

Proof. Consider the B’-game played on T . We need to show that Blocker has a

strategy which guarantees that no matter how Builder plays, no more than `(T ) −
∆(T ) + 2 vertices will be selected during the game. The strategy of Blocker is to

start the game on a vertex b′1, where degT (b′1) = ∆(T ). Let Ti, i ∈ [∆(T )], be the

components of T − b′1 and assume without loss of generality that the first move b1
of Builder is in T1. Then all the remaining moves of both players in the rest of the

game lie in T1. Indeed, if some later move, say u, lies in Ti, i > 1, then b′1 lies in the

u, b1-geodesic.

Now let T ′1 be the subtree of T induced by V (T1)∪{b′1}. Clearly, each of the subtrees

Ti, i ≥ 2, contains at least one leaf of T . Note also that b′1 is a leaf of T ′1 but it is not

a leaf of T . It follows that `(T ′1) ≤ `(T ) − (∆(T ) − 1) + 1 (where “+1” comes from

the leaf b′1 of T ′1). Since our game is restricted to the vertices of T ′1, we thus have

gp′g(T ) ≤ gp(T ′1) = `(T ′1) ≤ `(T )− (∆(T )− 1) + 1 ,

where we have used the fact that for any tree the general position number equals the

number of its leaves [20, Corollary 3.7].

To characterise the graphs that attain the equality in Theorem 9, consider the follow-

ing trees. If k ≥ 2, and ti, i ∈ [k], are non-negative integers, then let Tt1,...,tk denote
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the tree obtained from the path of order k, to be called the central path of Tt1,...,tk ,

by respectively attaching t1, . . . , tk leaves to its consecutive vertices. In particular,

T0,...,0 ∼= Pk and T1,0,...,0,1 ∼= Pk+2.

Proposition 3. If k ≥ 2, t1 ≥ 1, and tk ≥ 1, then

gp′g(Tt1,...,tk ) = min
i∈[k]

max{
i−1∑
j=1

tj ,

k∑
j=i+1

tj}+ 1.

Proof. Let k ≥ 2, and set T = Tt1,...,tk for the rest of the proof. Let P be the central

path of T and let u1, . . . , uk be its consecutive vertices. Consider the B’-game and

let Blocker start by the move x. Based on the position of x in T , we consider the

following cases.

Case 1. x = ui, i ∈ [k].

If Builder replies with a vertex adjacent to ui, then the game is over. Hence we

consider the following two subcases.

Assume first that Builder starts with the move us, where us is not adjacent to ui.

In this subcase, every vertex played in the rest of the game is a leaf adjacent to an

internal vertex of the ui, us-path. Moreover, by Lemma 1 all these vertices will be

played. It follows that if s ≤ i− 2, the game lasts 2 +
∑i−1

j=s+1 tj moves. Since t1 ≥ 1,

the game thus lasts at most 1 +
∑i−1

j=1 tj moves. Similarly, if s ≥ i + 2, then the

game lasts 2 +
∑s−1

j=i+1 tj moves and because tk ≥ 1, the game thus lasts at most

1 +
∑k

j=i+1 tj moves.

Assume second that Builder starts with the move y, where y is a leaf adjacent to us,

where s 6= i. Then each of the moves in the rest of the game is not an internal vertex

of the x, y-path in T . If s < i, then each vertex in N [u`], where ` ≥ i, is on a common

shortest path with x and y. It follows that at most
∑i−1

j=1 tj + 1 moves will be played

by the end of the game when s < i. Similarly, if i < s, then at most
∑k

j=i+1 tj + 1

moves will be played.

Case 2. x is a leaf attached to ui, i ∈ [k].

In this case, Builder will not reply with the vertex ui, because in that case then game

would be over. So we consider the following subcases.

Assume first that Builder starts with the move us, where s 6= i. In this subcase, the

moves in the rest of the game can not lie on the ui, us-path in T . Assume that s < i.

Then in the rest of the game at most one vertex from the us+1, uk-path will be played.

Moreover, if such a vertex will be played, then the leaves attached to uk will not be

played, and we have assumed that there is at least one such leaf. It follows that the

game lasts at most
∑k

j=s+1 tj + 1 moves. By a parallel argument, the game lasts at

most
∑s−1

j=1 tj + 1 moves if s > i.

Assume second that Builder starts by selecting a leaf attached to us, where s ∈ [k].

In this subcase, by Lemma 1, all the leaves of T can be played in the rest of the game.

Hence at most
∑k

j=1 tj moves will be selected in the game.
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We have proved by now that the B’-game will last at most

gp′g(T ) = min
i∈[k]

max{
i−1∑
j=1

tj ,

k∑
j=i+1

tj}+ 1

moves.

Now let i ∈ [k] be selected such that max{
i−1∑
j=1

tj ,
k∑

j=i+1

tj} is minimised over all i.

Let Blocker start the game by playing ui. If
i−1∑
j=1

tj ≥
k∑

j=i+1

tj , then Builder replies by

playing an arbitrary leaf attached to u1. By Lemma 1, by the end of the game exactly

all the leaves attached to u1, . . . , ui−1 will be played, so that the game will last at

least
i−1∑
j=1

tj +1 moves. Similarly, if
i−1∑
j=1

tj <
k∑

j=i+1

tj , then Builder replies by playing an

arbitrary leaf attached to uk and then Lemma 1 implies that the game will last at least
k∑

j=i+1

tj + 1 moves. We conclude that the game lasts at least max{
i−1∑
j=1

tj ,
k∑

j=i+1

tj}+ 1

moves.

In view of Proposition 3 we now set

T ′ = {Tt1,...,tk : k ≥ 2, t1 ≥ 1, tk ≥
k−1∑
i=1

ti}

and state the following:

Proposition 4. If T ∈ T ′, then gp′g(T ) = `(T )−∆(T ) + 2.

Proof. Let u1, . . . , uk be the consecutive vertices of the Pk, to which t1, . . . , tk leaves

are respectively attached. By the definition of T ′ we have t1 ≥ 1 and tk ≥ 1.

Assume first that t2 = · · · = tk−1 = 0. If t1 = tk = 1, then T is a path and gp′g(T ) = 2

holds. If t1 = 1 and tk ≥ 2, then after Blocker first plays uk, the game is over after

an arbitrary first move of Builder. Hence gp′g(T ) = 2 in this case. Assume next that

t1 ≥ 2. Then degT (u1) = t1 + 1 ≥ 3 and degT (uk) = tk + 1 ≥ 3. Since `(T ) = t1 + tk
and tk ≥ t1, by Proposition 3,

gp′g(T ) = t1 + 1 = `(T )− tk + 1 = `(T )−∆(T ) + 2.

Assume second that ti ≥ 1 for some 2 ≤ i ≤ k − 1. If t1 = 1, then we can argue

similarly as above that uk is an optimal first move of Blocker which gives us the

required conclusion. Assume next that t1 ≥ 2. Hence uk is the vertex with maximum
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Figure 4. A tree from the family T

degree in T and by our assumption we have degT (uk) = tk + 1 ≥
∑k−1

j=1 tj + 1. By

Proposition 3 we have

gp′g(T ) = min
i∈[k]

max{
i−1∑
j=1

tj ,

k∑
j=i+1

tj}+ 1.

Because tk ≥
∑k−1

j=1 tj we infer that

min
i∈[k]

max{
i−1∑
j=1

tj ,

k∑
j=i+1

tj} =

k−1∑
j=1

tj .

Consequently,

gp′g(T ) =

k−1∑
j=1

tj + 1

= (`(T )− tk) + 1 = (`(T )− (∆(T )− 1)) + 1

= `(T )−∆(T ) + 2 ,

and we are done.

Now let T be the family of trees that contains all the stars K1,n, n ≥ 2, and all the

trees that can be obtained from some tree T ∈ T ′ by subdividing each of the edges

of T an arbitrary number of times. An example can be seen in Fig. 4 where the tree

from T is obtained from Tk,` ∈ T ′ by subdividing some of its edges.

We can now characterise the equality case in Theorem 9.

Theorem 10. Let T be a tree of order at least 3. Then gp′g(T ) = `(T )−∆(T ) + 2 if and
only if T ∈ T .
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Proof. Suppose first that T ∈ T . If T ∼= K1,n, then gp′g(T ) = 2 = `(T ) − n + 2.

Otherwise T is obtained from some tree T ′ ∈ T ′ by subdividing some of its edges. By

Proposition 4, gp′g(T ′) = `(T ′)−∆(T ′) + 2. Moreover, subdividing edges of T ′ does

not change the arguments of the proof of Proposition 4 applied to T , that is, we also

have gp′g(T ) = `(T )−∆(T ) + 2.

Conversely, assume that gp′g(T ) = `(T )−∆(T ) + 2 and consider the B’-game played

on T . Suppose that T contains k vertices of degree at least 3. If k = 0, then T is a

path of order at least 3 and its belongs to T . If k = 1, then T is a starlike tree and

it also belongs to T . The same conclusion holds if k = 2. Hence suppose in the rest

that k ≥ 3 and let u1, . . . , uk be the vertices of degree at least 3 in T .

Set ∆ = ∆(T ) and assume without loss of generality that degT (uk) = ∆. We first

claim that uk does not lie on the ui, uj-path in T , where i 6= k and j 6= k. Suppose this

is not the case. Let Blocker start the game by the vertex uk. For any ` ∈ [∆], let T ′`
be the components of T −uk, and let T` be the subtree of T induced by V (T ′`)∪{uk}.
Assume without loss of generality that Builder’s first move is in T1. Then all the

moves in the rest of the game lie in T1. Since uk lies on the ui, uj-path, at least one

of ui and uj does not belong to T1, say ui ∈ T2. As degT (ui) ≥ 3, we see that T2 has

at least two leaves of T . It follows that

`(T1) ≤ `(T )− [(∆− 2) + 1] = `(T )−∆(T ) + 1 .

Using (2.2) we get

gp′g(T ) ≤ gp′g(T1) ≤ `(T1) ≤ `(T )−∆(T ) + 1 .

This contradiction proves the claim.

By the just proved claim we may assume without loss of generality that the vertices

u1, . . . , uk−1 lie in T1. We next claim that for any two indices i, j 6= k, the vertices ui,

uj , and uk lie on a common path in T1 (where, clearly, uk is one of its endvertices).

Suppose on the contrary that this is not the case. Then as the second move, Blocker

can select one of ui and uj , say ui. Since degT (ui) ≥ 3, there are at least two leaves

of T1 different from uk which cannot be played in the rest of the game. It follows that

the game lasts at most `(T )− (∆− 1)− 2 + 2 = `(T )−∆ + 1 moves, a contradiction

to our assumption.

We have thus proved that for any two indices i, j 6= k, the vertices ui, uj , and uk lie

on a common path in T1. This in turn implies that all the vertices u1, . . . , uk lie on

a common path P in T , where uk is one of its endvertices and we may also assume

that u1 is the other endvertex of P . Hence, T contains the path P and some pendant

paths attached to the vertices u1, . . . , uk, where at least one pendant path is attached

to u1 and at least one to uk. Let ti be the number of pendant paths attached to

ui, i ∈ [k]. Hence T is obtained from Tt1,...,tk by subdividing some of its edges. To

complete our proof that T ∈ T , we thus need to show that tk ≥
∑k−1

i=1 ti.
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Suppose on the contrary that tk ≤
∑k−1

i=1 ti − 1. Since T is obtained from Tt1,...,tk by

subdividing some of its edges, we can argue as above that Proposition 3 applies to T ,

that is,

gp′g(T ) = min
j∈[k]

max{
j−1∑
i=1

ti,

k∑
i=j+1

ti}+ 1 .

Considering j = k−1, we get gp′g(T ) ≤ max{
k−2∑
i=1

ti, tk}+1. As we have assumed that

tk ≤
∑k−1

i=1 ti − 1, it follows that

tk + 1 ≤
k−1∑
i=1

ti = `(T )− tk = `(T )− (∆− 1) = `(T )−∆ + 1 . (5.1)

Since degT (uk−1) ≥ 3, then

k−2∑
i=1

ti + 1 = `(T )− tk − tk−1 + 1 = `(T )− (∆− 1)− tk−1 + 1

≤ `(T )− (∆− 1)− 1 + 1 = `(T )−∆ + 1 . (5.2)

By (5.1) and (5.2) we get max{
∑k−2

i=1 ti, tk}+ 1 ≤ `(T )−∆ + 1 which in turn implies

that gp′g(T ) ≤ `(T ) − ∆ + 1. This contradiction to our assumption implies that

tk ≥
∑k−1

i=1 ti and we conclude that T ∈ T .

Concluding remarks

In this paper we have introduced the Builder-Blocker general position games and

derived several of their properties. We conclude with some open problems that are

suggested by this research.

Firstly, we suggest studying the complexity of the decision version of Builder-Blocker

general position games. On the basis of the hardness of the avoidment game [6] we

make the following conjecture.

Conjecture 11. The decision version of the B- and B’-games are PSPACE-complete.

We know from Inequalities (2.1) and (2.2) that the game general position number of

a graph G lies between gp−(G) and gp(G). Is it possible to characterise the case in

which equality is achieved in any of these bounds? Or is this a hard problem?

Problem 2. Characterise graphs for which equality holds in the upper or lower bounds
in Inequalities (2.1) or (2.2).
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In Lemma 2 and in Theorem 6 we have characterised the family of graphs with

gpg(G) = 2 and the family of graphs with gp′g(G) = 2. The following problem

represents the next step in this direction.

Problem 3. Characterise graphs with gpg(G) = 3 or gp′g(G) = 3, or the family of graphs
with order n and gpg(G) = n− j or gp′g(G) = n− j for small j.

In Theorem 5 we determined gpg and gp′g for the Kneser graphs K(n, 2). This could

be developed further as follows.

Problem 4. Determine the invariants also for the Kneser graphs K(n, k), where k > 2,
and Johnson graphs J(n, k).

In Problem 1 we asked whether all pairs (a, b) with a, b ≥ 2 are realisable. For those

pairs (a, b) that we have already proven to be realisable, it would also be of interest

to find the smallest graphs with these parameters. We also suggest investigating

game versions of other position type problems, such as the monophonic position

problem [24].
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