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Abstract: A set S ⊆ V of vertices in a graph G = (V,E) is called a dominating set

if every vertex in V \S is adjacent to a vertex in S. The domination number γ(G) is the
minimum cardinality of a dominating set of G. The domination subdivision number

sdγ(G) is the minimum number of edges that must be subdivided (each edge in G can

be subdivided at most once) in order to increase the domination number. Sahul Hamid
defined a dominating set which intersects every maximum independent set in G to be an

independent transversal dominating set. The minimum cardinality of an independent

transversal dominating set is called the independent transversal domination number of
G and is denoted by γit(G). We extend the idea of domination subdivision number

to independent transversal domination. The independent transversal domination sub-
division number of a graph G denoted by sdγit (G) is the minimum number of edges

that must be subdivided (each edge in G can be subdivided at most once) in order to

increase the independent transversal domination number. In this paper we initiate a
study of this parameter with respect to trees.

Keywords: dominating set, independent set, independent transversal dominating set,
subdivision number.
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1. Introduction

By a graph G = (V,E), we mean a finite undirected graph with neither loops nor

multiple edges. For graph theoretic terminology we refer to the book by Chatrand

and Lesniak [3]. All graphs in this paper are assumed to be connected. A set S ⊆ V

∗ Corresponding Author



2 Independent transversal domination subdivision number of trees

of vertices in a graph G = (V,E) is called a dominating set if every vertex in V \S is

adjacent to a vertex in S and the domination number γ(G) is the minimum cardinality

of a dominating set of G. A dominating set S of G with |S| = γ(G) is called a γ-set

of G. A comprehensive introduction to domination in graphs, has been given in the

book by Haynes et al. [5]. A subset S of V is called an independent set of G if no

two vertices of S are adjacent in G. The maximum cardinality of an independent set

is called the independence number and is denoted by β(G). A maximum independent

set is called a β-set of G.

Sahul Hamid [4] introduced another basic domination parameter namely independent

transversal dominating set as follows. A dominating set S ⊆ V of a graph G is said to

be an independent transversal dominating set(ITDS) if S intersects every maximum

independent set of G. The minimum cardinality of an independent transversal dom-

inating set of G is called the independent transversal domination number of G and

is denoted by γit(G). An independent transversal dominating set S of G with |S| =

γit(G) is called a γit-set of G. One can observe that for any graph G, γ(G) ≤ γit(G).

More work in independent transversal domination has been done in [1, 6–8, 10]. In real

life scenarios, independent transversal dominating sets can give a solution to the facil-

ity location problem by identifying the minimum number of locations where facilities

or critical services can be placed to service a group of vertices. By utilizing indepen-

dent transversal dominating sets, one can strategically place monitoring devices to

ensure network security. In social networks, the independent transversal dominating

sets can represent influential individuals whose actions can impact a larger group,

aiding in targeted marketing or information dissemination strategies.

An edge uv ∈ E(G) is said to be subdivided if the edge uv is deleted, and a new

vertex x is added, along with two new edges ux and xv. The vertex x is called the

subdivision vertex. The domination subdivision number sdγ(G) is defined in [9], as

the minimum number of edges that must be subdivided (each edge in G can be

subdivided at most once) in order to increase the domination number. We extend

this idea of domination subdivision number to independent transversal domination.

We define the independent transversal domination subdivision number sdγit(G) as

the minimum number of edges that must be subdivided (each edge in G can be

subdivided at most once) in order to increase the independent transversal domination

number. In this paper we initiate a study of this parameter with respect to trees.

2. Notation

The degree of a vertex v in a graph G is the number of edges of G incident with v

and it is denoted by deg(v). A leaf is a vertex of degree one. An edge incident with

a leaf vertex is called a pendant edge. A support vertex is a vertex adjacent to a leaf

vertex. A support vertex is called a strong support if it is adjacent to at least two leaf

vertices and a support vertex is called a weak support if it is adjacent to exactly one

leaf. A path in a graph G, is an alternating sequence of vertices and edges beginning
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and ending with vertices, such that all the vertices are distinct. A path on n vertices

is denoted by Pn. A graph G is connected if every pair of vertices are joined by a

path. A connected acyclic graph is called a tree. The greatest distance between any

two vertices in a graph G is called the diameter of G and it is denoted by diam(G). A

diametral path of a graph is a shortest path between a pair of vertices whose length

is equal to the diameter of the graph.

In a graph G = (V,E), the open neighbourhood of a vertex v ∈ V is N(v) = {x ∈
V : vx ∈ E}, set of vertices adjacent to v. The closed neighbourhood is N [v] =

N(v) ∪ {v}. The private neighbourhood pn(v, S) of v ∈ S is defined by pn(v, S) =

N(v)−N(S−{v}). Equivalently, pn(v, S) = {u ∈ V : N(u)∩S = {v}}. Each vertex

in pn(v, S) is called a private neighbour of v. The external private neighbourhood

epn(v, S) of v with respect to S consist of those private neighbours of v in V − S.

Thus, epn(v, S) = pn(v, S) ∩ (V − S).

3. Bounds

We state below a theorem which has been proved in [4].

Theorem 1. [4] For any path Pn of order n, we have

γit(Pn) =


2, if n = 2, 3

3, if n = 6

dn
3
e, otherwise

Subdividing one or more edges of a path Pn will result in a graph which is again a

path. Further, the independent transversal domination number of P2 and P3 does not

change when its edges are subdivided. Hence, by Theorem 1, the following theorem

is immediate.

Theorem 2. For paths Pn, n ≥ 4,

sdγit(Pn) =


1 if n ≡ 0(mod 3), n 6= 6

2 if n ≡ 2(mod 3) , n = 4

3 if n ≡ 1(mod 3) , n 6= 4

4 if n = 6

We state below two theorems proved in [4, 9].

Theorem 3. [9] For any tree T of order n ≥ 3, sdγ(T ) ≤ 3

Theorem 4. [4] For any tree T , γit(T ) is either γ(T ) or γ(T ) + 1.
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All trees T considered in the rest of the paper are of order n ≥ 4. For convenience,

throughout the proofs of the following theorems we denote by T ′, the resulting graph

obtained by subdividing the edges in T in different contexts. First we prove that for

any tree T with γ(T ) = γit(T ), sdγit(T ) is bounded above by 3.

Theorem 5. For any tree T with γ(T ) = γit(T ), sdγit(T ) ≤ 3.

Proof. Let T ′ be a tree obtained from T by subdividing sdγ(T ) edges of T such that

γ(T ′) > γ(T ). Then γit(T
′) ≥ γ(T ′) > γ(T ) = γit(T ). Thus, γit(T

′) > γit(T ) and

hence, sdγit(T ) ≤ sdγ(T ). In view of Theorem 3, sdγit(T ) ≤ 3.

Next we prove that for any tree T with γit(T ) = γ(T ) + 1, sdγit(T ) is bounded above

by 4. We start with a simple lemma.

...

...
...

......
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Figure 1. Examples of trees with sdγit (T ) = 3

Lemma 1. If T = T4, then sdγit(T ) = 3.

Proof. Consider the graph T4 in Figure 1. Let x, a1, a2, . . . , ak, y1,y2,. . . ,yk,

z1, z2, . . . , zk, c1, c1, . . . , ck, be as labelled in Figure 1 and S={x,a1,a2,. . . ,

ak, c1, c1, . . . , ck} is a γ-set of T . Clearly γit(T ) = γ(T )+1. Now subdividing the edges

xa1 and xa2 will not increase the value of γ(T ). Without loss of generality let the edge

c1y1 be subdivided. Then, (S \ {c1}) ∪ {y1, z2} is an ITDS of T ′ as every maximum
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independent set of T ′ contains y1 or z2. Therefore, γit(T
′) = γ(T )+1 = γit(T ), which

implies that γit(T
′) = γit(T ). Hence, sdγit(T ) ≥ 2.

The following table (Table 1) gives the respective ITDS of the resulting graph and

the justification. We define wi, i = 1, 2 as earlier.

Table 1. Subdividing two edges

Edges subdivided ITDS Every maximum independent
set of T ′ contains

xa1 and a2b2 S ∪ {b2} b2

xa1 and a1b1 or a1b1 and a2b2 S ∪ {b1} b1

c1y1 and c1z2 (S \ {c1}) ∪ {w1, z2} z2

c1y1 and c2y2 or xy1 and xy2 S ∪ {x} x

a1b1 and xz1 (S \ {a1}) ∪ {b1, x} x or b1

Thus in all the cases, γit(T
′) ≤ γit(T ). Hence, sdγit(T ) ≥ 3.

Finally, if we subdivide two edges incident with c1 and an edge incident with c2, then

we see that γit(T
′) = γ(T ) + 2 > γ(T ) + 1 = γit(T ). Therefore, γit(T

′) > γit(T ).

Hence, sdγit(T ) ≤ 3 which implies that sdγit(T ) = 3.

Theorem 6. For any tree T with γit(T ) = γ(T ) + 1 of order n ≥ 4 , sdγit(T ) ≤ 4.

Proof. Let S be a γ-set of T such that S does not contain leaf vertices. We deal

with two cases.

Case 1. T has a strong support.

If there is a support say v adjacent to at least three leaf vertices, then subdividing

two pendant edges incident at v, we see that γ(T ′) = γ(T ) + 2. Then γit(T
′) ≥ γ(T ′)

> γ(T ) + 1 = γit(T ). Thus, sdγit(T ) ≤ 2. If there are two strong supports say u,v

adjacent to exactly two leaf vertices respectively, then subdividing a pendent edge

incident at u and v respectively we see that γ(T ′) = γ(T )+2. Thus, γit(T
′) > γit(T ).

Hence, sdγit(T ) ≤ 2.

1T

1u 2u
1a1v

2a
ka

1b
2b

kb

1u 2u 1a 2a
ka

2b1b
kb

(a) (b)

u v u v

Figure 2. Examples of trees with sdγit (T ) = 1
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Suppose that there is exactly one strong support say u adjacent to exactly two leaf

vertices. Let diam(T ) = 3 or 4. If diam(T ) = 3, then T = T2. If diam(T ) = 4,

then T = T1(a) or T1(b) or T3. If T = T1(a), then (S \ {a1, v}) ∪ {b1, v1} is an

ITDS of T , where v, v1,, u, u1, u2, a1, a2, . . . , ak, b1, . . . , bk are as labelled in Figure 2.

Hence, γit(T ) = γ(T ). If T = T1(b), then (S \ {a1}) ∪ {b1} is an ITDS of T , where

u, u1, u2, v, a1, . . . , ak, b1, . . . , bk are as labelled in Figure 2. Hence, γit(T ) = γ(T ).

Thus, sdγit(T ) ≤ 3. If T = T2 or T3, then subdividing a pendant edge incident at u

and the two edges incident at a weak support, we see that γ(T ′) = γ(T ) + 2. Hence,

γit(T
′) > γ(T ). Thus, sdγit(T ) ≤ 3.

Let diam(T ) ≥ 5. Let P = (v1, v2, . . . , vk−1, vk) be a diametral path in T where

k = diam(T ) + 1. Without loss of generality let vk−1 6= u. Suppose that vk−2 is a

weak support. If |epn(vk−2, S)| = 1, then (S \ {vk−2, vk−1}) ∪ {vk, z}, where z is the

leaf vertex adjacent to vk−2 is an ITDS of T . Hence, γit(T ) = γ(T ), which is not

the case. If |epn(vk−2, S)| = 2, then subdividing two pendant edges one incident at

u and the other incident at vk−2, we see that γ(T ′) = γ(T ) + 2. Thus, γit(T
′) ≥

γ(T ′) = γ(T ) + 2 > γ(T ) + 1 = γit(T ). Therefore, sdγit(T ) ≤ 2. Suppose that vk−2
is not a weak support and deg(vk−2) ≥ 3. If vk−2 /∈ S, then (S \ {vk−1})∪ {vk} is an

ITDS of T . Thus, γit(T ) = γ(T ), which is not the case. If vk−2 ∈ S, then clearly

|epn(vk−2, S)| = 1 and vk−3 ∈ epn(vk−2, S). Now (S \ {vk−2, vk−1}) ∪ {vk−3, vk}
is an ITDS of T . Hence, γit(T ) = γ(T ), which is not the case. If deg(vk−2) = 2

and vk−3 ∈ S, then (S \ {vk−1}) ∪ {vk} is an ITDS of T . Hence, γit(T ) = γ(T ),

which is not the case. If deg(vk−2) = 2 and vk−3 /∈ S, then |epn(vk−1, S)| = 2 and

vk−2 ∈ epn(vk−1, S). Now subdividing a pendant edge incident at u and the edge

vk−1vk, we see that γ(T ′) = γ(T ) + 2. As discussed earlier, sdγit(T ) ≤ 2.

Case 2. T has no strong support.

If diam(T ) = 3, then T = P4. If diam(T ) = 4, then T is a star Kn, n ≥ 2, with at

least two edges subdivided and for the said graphs, γit(T ) = γ(T ), which is not the

case.

Let P = (v1, v2, v3, . . . , vk), where k = diam(T ) + 1 be a diametral path in T . Now

consider the following subcases.

Subcase 2.1. diam(T ) = 5.

Suppose that v3 is a support. Clearly v2, v3 ∈ S and (S \ {v3, v2}) ∪ {v1, x}, where

x is the leaf vertex adjacent to v3 is an ITDS of T . Hence, γit(T ) = γ(T ), which

is not the case. A similar discussion holds when v4 is a support. Suppose that v3
and v4 are not supports. If deg(v3) ≥ 3 and deg(v4) = 2, then subdividing the edges

v1v2, v2v3, v3v4 and v4v5, we see that γit(T
′) ≥ γ(T ′) = γ(T )+2 > γ(T )+1 = γit(T ).

Therefore, sdγit(T ) ≤ 4. If deg(v3),deg(v4) ≥ 3, then (S \ {v2, v5}) ∪ {v1, v6} is an

ITDS of T . Hence, γit(T
′) = γ(T ), which is not the case. If deg(v3) = 2 = deg(v4),

then T = P6 and by Theorem 2, sdγit(P6) = 4.

Subcase 2.2. diam(T ) = 6.

Suppose that v3 is a support and deg(v3) ≥ 4. Let y be the leaf neighbour of v3.

If |epn(v3, S)| = 2, then subdividing the edges v3y, v3v4, v4v5 and v5v6, we see that

γit(T
′) ≥ γ(T ′) > γ(T ) + 2 > γ(T ) + 1 = γit(T ). Therefore, sdγit(T ) ≤ 4. If
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|epn(v3, S)| = 1, then (S \ {v3, v2}) ∪ {v1, y} is an ITDS of T which implies that

γit(T ) = γ(T ). A similar discussion holds when v5 is a support. Suppose that v3 is

not a support. If deg(v3) ≥ 3, then (S \ {v2})∪ {v1} is an ITDS of T , which implies

that γit(T ) = γ(T ). A similar discussion holds if v5 is not a support and deg(v5) ≥ 3.

Suppose that deg(v3) = deg(v5) = 2. If v4 is a support, then (S \ {v2}) ∪ {v1} is an

ITDS of T which implies that γit(T ) = γ(T ). If v4 is not a support and deg(v4) = 2,

then T = P7 and sdγit(P7) = 3. Suppose that v4 is not a support and deg(v4) ≥ 3.

If v4 is adjacent to a support, then T = T4. By Lemma 1, sdγit(T ) = 3. If v4 is not

adjacent to a support, then choose S such that v4 ∈ S. Then (S \ {v2}) ∪ {v1} is an

ITDS of T which implies that γit(T ) = γ(T ). Thus as discussed earlier, sdγit(T ) ≤ 3.

Subcase 2.3. diam(T ) = 7.

Suppose that v3 is a support and x be its leaf neighbour. Here |epn(v3, S)| ≤ 2. If

|epn(v3, S)| = 1, then (S \ {v3, v2}) ∪ {v1, x}, is an ITDS of T which implies that

γit(T ) = γ(T ). If |epn(v3, S)| = 2 and deg(v3) ≥ 3, then subdividing the edges

v1v2, v2v3, v3v4 and v3x, we see that γit(T
′) ≥ γ(T ′) = γ(T ) + 2 > γ(T ) + 1 = γit(T ).

Therefore, sdγit(T ) ≤ 4. Suppose that v3 is not a support and deg(v3) ≥ 3. Then

(S \ {v2}) ∪ {v1} is an ITDS of T , which implies that γit(T ) = γ(T ). A similar

argument holds for v6. Now consider the case deg(v3) = deg(v6) = 2. If v4 is a

support, then (S\{v2})∪{v1} is an ITDS of T . If v5 is a support, then (S\{v7})∪{v8}
is an ITDS of T . Hence, if either v4 or v5 is a support, then γit(T ) = γ(T ). Suppose

that v4 and v5 are not supports. If deg(v4) = deg(v5) = 2, then T = P8 and

sdγit(P8) = 2. Suppose that at least one of deg(v4), deg(v5) is at least 3. If both v4
and v5 are adjacent to supports, then subdividing the edges v1v2 and v7v8, we see

that γ(T ′) = γ(T ) + 2. Hence, γit(T
′) > γit(T ) and therefore sdγit(T ) ≤ 2. If at

least one of v4 or v5 is not adjacent to a support, than choose S such that v4 ∈ S.

Now, (S \ {v2}) ∪ {v1} is an ITDS of T which implies that γit(T ) = γ(T ). Thus as

discussed earlier, sdγit(T ) ≤ 3.

Subcase 2.4. diam(T ) ≥ 8.

Suppose that v3 is a support. In this case |epn(v3, S)| ≤ 2. If |epn(v3, S)| = 1, then

(S\{v3, v2})∪{v1, y} where y is the leaf vertex adjacent to v3 is an ITDS of T . Hence,

γit(T ) = γ(T ), which is not the case. Suppose that |epn(v3, S)| = 2. Suppose that

vk−2 ∈ S. Then |epn(vk−2), S| ≤ 2. If |epn(vk−2, S)| = 1, then (S \ {vk−1, vk−2}) ∪
{vk, z}, where |epn(vk−2, S)| = {z} is an ITDS of T . If |epn(vk−2, S)| = 2, then

subdivide the edges v3y and vk−2z, where z ∈ epn(vk−2, S)), we see that γit(T ) ≥
γ(T ′) = γ(T ) + 2 > γ(T ) + 1 = γit(T ). Therefore, sdγit(T ) ≤ 2. If vk−2 /∈ S

and deg(vk−2) ≥ 3, then (S \ {vk−1}) ∪ {vk} is an ITDS of T , which implies that

γit(T ) = γ(T ). Suppose that deg(vk−2) = 2. If vk−3 ∈ S, then (S\{vk−1})∪{vk} is an

ITDS of T , which implies that γit(T ) = γ(T ). If vk−3 /∈ S, then subdividing the edges

v3y and vkvk−1, we see that γit(T
′) > γit(T ). Hence, sdγit(T ) ≤ 2. Suppose that v3

is not a support. If deg(v3) ≥ 3, then (S \{v2, v3})∪{v4, v1} or (S \{v2})∪{v1} is an

ITDS of T according as v3 ∈ S or v3 /∈ S, which implies that γit(T ) = γ(T ). Suppose

that deg(v3) = 2. If v4 ∈ S, then (S\{v2})∪{v1} is an ITDS of T , which implies that,

γit(T ) = γ(T ). If v4 /∈ S, then subdividing the edges v1v2 and vk−1vk, we see that
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γit(T
′) ≥ γ(T ′) = γ(T ) + 2 > γ(T ) + 1 = γit(T ). Therefore, sdγit(T ) ≤ 2. Summing

up the above arguments, we conclude that when γit(T ) = γ(T ) + 1, sdγit(T ) ≤ 4.

4. Trees with sdγit(T ) = 3

In this section we characterize the class of all trees T with sdγit(T ) = 3.

Aram et al. [2], classify the class of trees as class 1, class 2 or class 3 depending on

whether their domination subdivision number is 1,2 or 3 respectively. They have also

characterized all trees with sdγ(T ) = 3. In order to characterize the said trees, they

have defined a family F of labelled trees that are of class 3 as follows. The label of a

vertex is called its status, denoted as sta(v).

Definition: Let F be family of labelled trees that

(1) contains P4 where the two leaves have status A, and the two support vertices

have status B, and

(2) is closed under the two operations T1 and T2 which extend the tree T by at-

taching a tree to the vertex y ∈ V (T ), called the attacher.

Operation T1. Assume sta(y) = A. Then add a path xwv and the edge xy.

Let sta(x) = sta(w) = B, and sta(v) = A.

Operation T2. Assume sta(y) = B. Then add a path xw and the edge xy.

Let sta(x) = B and sta(w) = A.

The two operations T1 and T2 are illustrated in Figure 3.

A ABB B B A

T2 :T1 :

Figure 3. The two operations.

If T ∈ F, they defined A(T ) and B(T ) to be the set of vertices of statuses A and B

respectively, in T . The sets A(T ) and B(T ) depend a priori on the way the tree T is

constructed from an initial P4. We state below three results proved by them in [2].

Lemma 2. [2] If T ∈ F and T is obtained from T0 = P4 by a sequence T1, T2,. . . ,Tm,
then A(T ) is a γ(T )-set and γ(T ) = m+ 2.

Lemma 3. [2] Let T ∈ F, T ∗ be obtained from T by subdividing one edge of T and
z ∈ A(T ). Then γ(T ∗) = γ(T ) and there is a γ-set of T ∗ containing z.

Theorem 7. [2] A tree T of order n ≥ 3 is in class 3 if and only if T ∈ F.
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In the following theorem we prove that if T ∈ F, then γit(T ) = γ(T ).

Theorem 8. If T ∈ F, then γit(T ) = γ(T ).

Proof. If T = P4, then γit(T ) = γ(T ) = 2. Let T be obtained from P4 by a sequence

of operations T1,T2, . . . ,Tm. By Lemma 2, A(T ) is a γ-set of T . If the mth operation

is T1, then a path xwv and an edge xy where y ∈ V (T ) is added to T . Further by

definition, y, v ∈ A(T ). Now any maximum independent set in T contains either y or

v. Thus, A(T ) is a γit-set of T . Hence, γit(T ) = γ(T ).

If the mth operation is T2, then a path xw and an edge xy, where y ∈ V (T ) is added

to T . By definition of F, y, x ∈ B(T ) and w ∈ A(T ). Now there exists a vertex u in

A(T ) such that u ∈ N(y). Thus, any maximum independent set of T contains either

w or u. Thus, A(T ) is a γit-set of T . Hence, γit(T ) = γ(T ).

In the following theorem we characterize trees T with γit(T ) = γ(T ) and sdγit(T ) = 3.

Theorem 9. For any tree T with γit(T ) = γ(T ), sdγit(T ) = 3 if and only if T ∈ F and
diam(T ) ≥ 6.

Proof. Suppose that sdγit(T ) = 3. By Theorem 5, sdγit(T ) ≤ 3. Hence, sdγ(T ) = 3

and by Theorem 7, T ∈ F. Since T does not have a strong support, diam(T ) ≥ 3. We

claim that diam(T ) ≥ 6. Suppose to the contrary that 3 ≤ diam(T ) ≤ 5. Consider

P4. Then by definition of F, we see that operation T1 cannot be performed at any

vertex of P4. Further, operation T2 can be performed only at the internal vertices of

P4. Hence, clearly T is either P4 or T9 or T10. (Refer Figure 4).

T9 T10

Figure 4. Trees illustrating the proof of Theorem 9

By Theorem 2, sdγit(P4) = 2, which is a contradiction. If T = T9 or T10, subdividing

the two edges incident at a weak support of degree two, we see that the set of all

supports of the resulting graph T ′ from a γ-set of T ′. Further any γ-set of T ′ contains

two weak supports at a distance 3. Hence given any γ-set S of T ′, there is a maximum

independent set of T ′ which does not intersect S. Hence, γit(T
′) > γit(T ). Thus,

sdγit(T ) ≤ 2, which is a contradiction. Thus, diam(T ) ≥ 6.

Conversely suppose that T ∈ F and diam(T ) ≥ 6. We claim that sdγit(T ) = 3.

Clearly we see that subdividing any single edge in T will not increase γit(T ). Hence,
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sdγit(T ) ≥ 2. Let T ∗ be obtained from T by subdividing any two edges e, f of T .

Consider the length m of the sequence of operations needed to construct the tree T .

Let T ∈ F be obtained from T1,T2, . . . ,Tm. Let T be obtained from Tm−1 by the

operation Tm.

Case 1. e ∈ E(Tm−1), f /∈ E(Tm−1).

Subcase 1.1. T is obtained from Tm−1 using operation T1.

A path xwv and an edge xy with y ∈ A(Tm−1) is added to Tm−1. Without loss of

generality let f = xw. Since sdγit(T ) = 3, γ(T ∗) = γ(T ). If there exists a γ(T ∗)-

set which contains x, then choose a γ(T ∗)- set S such that x, v ∈ S. Now every

maximum independent set of T ∗ contains either x or v. Thus, S is a γit(T
∗)- set and

γit(T
∗) = γ(T ∗). By Lemma 3, γ(T ∗) = γ(T ) = γit(T ). Hence, γit(T

∗) = γit(T )

which implies that sdγit(T ) ≥ 3. If there does not exist a γ(T ∗)- set which contains

x, then every γ(T ∗)- set S contains y and |epn(y, S)| ≥ 2. Further there exist a

path y, a1, a2, a3 in that order such that a1, a2 /∈ S, a3 ∈ S with a2 ∈ epn(a3, S)

and |epn(a3, S)| ≥ 2 (such a path exits as diam(T ) ≥ 6). Now, every maximum

independent set of T ∗ contains either y or a3. Hence, as before sdγit(T ) ≥ 3.

Subcase 1.2. T is obtained from Tm−1 using operation T2.

A path xw and an edge xy with y ∈ B(Tm−1) is added to Tm−1. Without loss of

generality let f = xy. If there exists a γ(T ∗)-set which contains y, then choose a

γ(T ∗)- set S such that y, w ∈ S. Now every maximum independent set T ∗ contains

either y or w. Thus, S is a γit(T
∗)- set and γit(T

∗) = γ(T ∗) = γ(T ) = γit(T ). Thus,

sdγit(T ) ≥ 3. If there does not exist a γ(T ∗)- set which contains y, then every γ(T ∗)-

set S contains a vertex z ∈ N(y) ∩ V (Tm−1) with |epn(z, S)| ≥ 2 . Then there exists

a path y, a1, a2, a3 in that order such that a1, a2 /∈ S, a3 ∈ S with a2 ∈ epn(a3, S)

and |epn(a3, S)| ≥ 2. Now every maximum independent set of T ∗ contains either z

or a3. Hence, as before sdγit(T ) ≥ 3.

Case 2. e, f /∈ E(Tm−1).

Subcase 2.1. T is obtained from Tm−1 using operation T1.

As in the earlier case y, x, w, v are defined. Without loss of generality e = yx, f = xw.

Since sdγ(T ) = 3, γ(T ∗) = γ(T ). Any γ(T ∗) set will contain y′ and w where y′ is

the subdivision vertex of xy. It is also clear that any maximum independent set

of T ∗ will contain y′. Hence, any γ(T ∗) set say S is also a γit(T
∗)- set. Thus,

γit(T
∗) = γ(T ∗) = γ(T ) = γit(T ). Hence, sdγit(T ) ≥ 3.

Subcase 2.2. T is obtained from Tm−1 using operation T2.

As in the earlier case y, x, w are defined. Let e = yx, f = xw,w1, w2 be the subdivi-

sion vertices of e and f respectively. If there exist a γ(T ∗) which contains w1, then

choose a γ(T ∗)- set S such that w1, w ∈ S. Then every maximum independent set of

T ∗ will contain either w1 or w. Thus, S is a γit(T
∗)- set. Therefore, sdγit(T ) ≥ 3.

Otherwise, every γ(T ∗)- set S will contain y with |epn(y, S)| ≥ 2. Further there exist

a path y, a1, a2, a3 as described in Subcase 2.1 of Case 2. Hence, sdγit(T ) ≥ 3.

Case 3. e, f ∈ E(Tm−1).
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Subcase 3.1. T is obtained from Tm−1 using operation T1.

The proof is similar to Subcase 1.2 of Case 1.

Subcase 3.2. T is obtained from Tm−1 using operation T2.

The vertices y, x, w are defined as in Subcase 1.2 of Case 1. If there exist a γ(T ∗)-

set containing some member z ∈ N(y) \ {x}, then choose a γ(T ∗)-set S such that

z, w ∈ S. Then S is a γit(T
∗)- set. Therefore, sdγit(T ) ≥ 3. Otherwise for every

γit(T
∗)- set S, there exist a path y, z, a1, a2 in that order such that y, z, a2 /∈ S ,

x, a1 ∈ S with y ∈ epn(x, S), z, a2 ∈ epn(a1, S). Now any maximum independent set

of T ∗ will contain either x or a1. Hence, S is a γit(T
∗)- set. Thus, sdγit(T ) ≥ 3.

In all the three cases we see that sdγit(T ) ≥ 3. By Theorem 5, sdγit(T ) ≤ 3. Hence,

sdγit(T ) = 3.

Next we characterize trees T with γit(T ) = γ(T ) + 1 and sdγit(T ) = 3. For this

purpose, we first prove the following four lemmas. Consider the trees Ti, 2 ≤ i ≤ 5

as in Figure 1. Let S be a γ - set of T such that S does not contain leaf vertices.

Lemma 4. If T = T2, then sdγit(T ) = 3.

Proof. Consider the graph T2 in Figure 1. Let u, a1, b1, u1, u2, be as labelled in

Figure 1. Now S = {u, a1} is a γ -set of T . Clearly γit(T ) = γ(T )+1. Subdividing an

edge incident at a1 does not increase the value of γ(T ). Now subdividing any pendant

edge incident at u will increase the value of γ(T ) by 1. Without loss of generality let

the edge uu1 be subdivided. Then, (S \ {u}) ∪ {u1, u2} is an ITDS of the resulting

graph, as every maximum independent set of T ′ contains u1 and u2. Therefore,

γit(T
′) = γ(T )+1 = γit(T ), which implies that γit(T

′) = γit(T ). Hence, sdγit(T ) ≥ 2.

The following table (Table 2) gives the respective ITDS of the resulting graph

and the justification. We also assume that wi, i = 1, 2 are the subdivision vertices

taken in the order in which the edges appear in the table, for all the tables that appear

in the following Lemmas, wi, 1 ≤ i ≤ k are defined in a similar manner.

Table 2. Subdividing two edges

Edges subdivided ITDS Every maximum independent
set of T ′ contains

uu1 and uu2 (S \ {u}) ∪ {u1, u2} u1

uu1 and a1b1 (S \ {u, a1}) ∪ {u1, u2, w1} u1 and u2

a1b1 and ua1 (S \ {a1}) ∪ {w1, b1} b1 or w1

uu1 and ua1 (S \ {u}) ∪ {u1, u2} u1 and u2

Thus, in all the cases γit(T
′) ≤ γit(T ). Hence, sdγit(T ) ≥ 3. Finally, subdivide

the edges uu1, ua1 and a1b1. Corresponding to any γ - set S of T ′, G[V \ S] =
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(k + 2)K1 ∪K2 and thus any maximum independent set of G[V \ S] is of size k + 3.

Further, β(T ′) = k + 3. Hence, there exist a maximum independent set of T ′ which

does not intersect S. Thus, γit(T
′) > γit(T ) which implies that sdγit(T ) = 3.

Lemma 5. If T = T3, then sdγit(T ) = 3.

Proof. Consider the graph T3 in Figure 1. Let u, a1, a2, . . . , ak, b1, b2, . . . , bk, u1, u2,

be as labelled in Figure 1 and S = {u, a1, a2, . . . , ak} is a γ - set of T . Clearly

γit(T ) = γ(T ) + 1. Subdividing any edge incident at ai, 1 ≤ i ≤ k does not increase

γ(T ). Hence, γit(T ) also does not increase. Now subdividing any pendant edge

incident at u will increase the value of γ(T ) by 1. Without loss of generality let

the edge uu1 be subdivided. Then, (S \ {u}) ∪ {u1, u2} is an ITDS of the resulting

graph, as every maximum independent set of T ′ contains u1 and u2. Therefore,

γit(T
′) = γ(T ) + 2 > γ(T ) + 1 = γit(T ), which implies that γit(T

′) = γit(T ). Hence,

sdγit(T ) ≥ 2. The following table (Table 3) gives the respective ITDS of the resulting

graph and the justification. We define wi, i = 1, 2 as earlier.

Table 3. Subdividing two edges

Edges subdivided ITDS Every maximum independent

set of T ′ contains

uu1 and uu2 (S \ {u}) ∪ {u1, u2} u1 and u2

uu1 and a1b1 (S \ {u, a1}) ∪ {u1, u2, w1} u1 and u2

a1b1 and a2b2 (S \ {a1, a2}) ∪ {w1, w2, b1} b1

ua1 and a1b1 (S \ {a1}) ∪ {w1, b1} b1 or w1

Thus in all the cases, γit(T
′) ≤ γit(T ). Hence, sdγit(T ) ≥ 3.

Finally, subdivide the edges uu1, ua1 and a1b1. Corresponding to any γ-set S of T ′,

G[V \ S] = (k + 2)K1 ∪ K2 and thus any maximum independent set of G[V \ S] is

of size k + 3. Further, β(T ′) = k + 3. Hence, there exist a maximum independent

set of T ′ which does not intersect S. Thus, γit(T
′) > γit(T ) which implies that

sdγit(T ) = 3.

Lemma 6. If T = T5, then sdγit(T ) = 3.

Proof. Consider the graph T5 in Figure 1. Let x, x1, x2, a1, a2, . . . , ak,

b1, b2, . . . , bk, y1, y2, . . . , yk, z1, z2, . . . , zk, c1, c1, . . . , ck, be as labelled in Figure

2 and S = {x, a1, a2, . . . , ak, c1, c1, . . . , ck} is a γ-set of T . Clearly γit(T ) = γ(T ) + 1.

Subdividing any edge incident at ai does not increase the value of γ(T ). Now subdi-

viding any pendant edge incident at u will increase the value of γ(T ) by 1. Without

loss of generality let the edge xx1 be subdivided. Then, S∪{x1} is an ITDS of the re-

sulting graph, as every maximum independent set of T ′ contains x1 and x. Therefore,
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γit(T
′) = γ(T )+1 = γit(T ), which implies that γit(T

′) = γit(T ). Hence, sdγit(T ) ≥ 2.

The following table (Table 4) gives the respective ITDS of the resulting graph and

the justification. We define wi, i = 1, 2 as earlier.

Table 4. Subdividing two edges

Edges subdivided ITDS Every maximum independent

set of T ′ contains

xx1 and xx2 (S \ {x}) ∪ {x1, w2} x1

xx1 and xa1 (S \ {a1}) ∪ {w1, b1} b1

xx1 and z1x2 (S \ {x}) ∪ {x1, x2} x1

a1b1 and a2b2 (S \ {a1, a2}) ∪ {w1, w2, x1} x1

y1c1 and y2c2 (S \ {y1, y2, x}) ∪ {w1, w2, x1, x2} x1

xx2 and y1c1 (S \ {y1}) ∪ {w2, c1} c1

a1b1 and y1c1 (S \ {a1, y1}) ∪ {w1, w2, x1} x1

xx1 and y1c1 (S \ {y1, x}) ∪ {w2, x1, x2} x1

Thus, in all the cases γit(T
′) ≤ γit(T ). Hence, sdγit(T ) ≥ 3. Finally, subdivide

the edges y1c1, y1z1 and y2z2, then we see that γit(T
′) = γ(T ′) = γ(T ) + 2 >

γ(T ) + 1 = γit(T ). Therefore, γit(T
′) > γit(T ). Hence, sdγit(T ) ≤ 4 which implies

that sdγit(T ) = 4.

Theorem 10. Let T be a tree with γit(T ) = γ(T ) + 1. Then, sdγit(T ) = 3 if and only if
T is T2 or T3 or T4 or T5

Proof. The sufficiency follows from Lemmas 1, 4, 5 and 6. To prove the necessity,

suppose that sdγit(T ) = 3. As in the proof of Theorem 6, we see that if T has either a

strong support adjacent to at least three leaf vertices or two strong supports adjacent

to exactly two leaf vertices respectively, then sdγit(T ) ≤ 2. Suppose T contains

exactly one strong support adjacent to exactly two leaf vertices. Then as in the proof

of Theorem 6, if diam(T ) ≥ 5, then sdγit(T ) ≤ 2. If diam(T ) = 3, then T = T2. If

diam(T ) = 4, then T is T1(a) or T2(b), γit(T ) = γ(T ) which is not the case. Thus,

T = T3.

Suppose T contains no strong supports. Let P = (v1, v2, . . . , vk), where k = diam(T )+

1 be a diametral path in T . If diam(T ) = 3, then T = P4. If diam(T ) = 4, then T

is either a healthy spider or a wounded spider. For all the said graphs, γit(T ) = γ(T )

which is not the case. Suppose that diam(T ) = 5. If deg(v3) = deg(v4) = 2, then

T = P6, and by Theorem 2, sdγit(T ) = 4. If deg(v3) ≥ 3 and deg(v4) = 2 and v3 is

not a support, then T = T6. By Lemma 7, sdγit(T ) = 4. In all the other cases, as

discussed in Theorem 6, we see that γit(T ) = γ(T ) which is not the case.

Suppose that diam(T ) = 6. Let S be a γ-set of T such that S does not contain

leaf vertices. If deg(v3) = deg(v4) = deg(v5) = 2, then T = P7. Suppose that v3
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is a support. Let x be its leaf neighbour. If deg(v4) = deg(v5) = 2, then T = T7
and by Lemma 8, sdγit(T ) = 4. Suppose that deg(v4) ≥ 4 and deg(v5) = 2. If v4 is

adjacent to a support, then (S \{v2, v3})∪{v1, x} is an ITDS of T which implies that

γit(T ) = γ(T ). If v4 is not adjacent to a support and each member of N(v4) \ {v3}
is of degree 2, then T = T5. If v4 is not adjacent to a support and some member

of N(v4) \ {v3, v5} is of degree at least 3, then γit(T ) = γ(T ). Then as discussed in

Subcase 2.2 of Case 2 of Theorem 6, we see that if v4 is not a support and adjacent

to a support, then T = T4 and in all other cases γit(T ) = γ(T ).

Suppose that diam(T ) = 7. If v3 and v6 are supports and deg(v4) = deg(v5) = 2,

then T = T8 and by Lemma 9, sdγit(T ) = 4. In all the other cases, as discussed in

Theorem 6, we see that either γit(T ) = γ(T ) or sdγit(T ) ≤ 2, which is a contradiction.

If diam(T ) ≥ 8, as in the proof of Subcase 2.4 of Theorem 6, we see that either

γit(T ) = γ(T ) or sdγit(T ) ≤ 2, which is a contradiction.

Hence, we conclude that if sdγit(T ) = 3, then T = Ti, 2 ≤ i ≤ 5.

5. Trees with sdγit(T ) = 4

In view of Theorem 5, we observe that if γit(T ) = γ(T ), then sdγit(T ) ≤ 3. Hence,

for trees T with sdγit(T ) = 4, γit(T ) = γ(T ) + 1. In this section we characterize the

class of all trees T with sdγit(T ) = 4. For this purpose, we first prove the following

three lemmas. Consider the trees Ti, 6 ≤ i ≤ 8 as in Figure 5.

... ...

...
...

T8

v1 v2 vkb1b2bk

a1a2ak

yx y1x2

x1 y2 u2u1 uk

x u

v

y

T6

a1a2

T7x

ak
y1

y

x2

b1 b2 bk

x1

y2

a1 a2

b1b2bk

ak

Figure 5. Examples of trees with sdγit (T ) = 4

Lemma 7. If T = T6, then sdγit(T ) = 4.
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Proof. Consider the graph T6 in Figure 3. Let x, a1, a2, . . . , ak, b1, b2, . . . , bk, u, v, y

be as labelled in Figure 5 and S = {x, a1, a2, . . . , ak, v} is a γ-set of T . Further,

deg(x) ≥ 3. Now subdividing any edge incident with ai will not increase the value of

γ(T ). Further subdividing any edge in the (x, y)-path will increase the value of γ(T )

by 1. Now (S \ {v})∪{u, y}, where w is a subdivision vertex of uv is an ITDS of the

resulting graph, as every maximum independent set of T ′ contains u or v. Therefore,

γit(T
′) = γit(T ). Hence, sdγit(T ) ≥ 2.

The following tables (Table 5 and Table 6) give the respective ITDS of the resulting

graph and the justification. We define wi, i = 1, 2 as earlier.

Table 5. Subdividing two edges

Edges subdivided ITDS Every maximum independent
set of T ′ contains

xa1 and a1b1 (S \ {a1}) ∪ {w1, b1} w1 or b1

uv and vy (S \ {v}) ∪ {w1, y} w1 or y

xu and vy (S \ {v}) ∪ {u, y} u and y

a1b1 and vy (S \ {a1, v}) ∪ {w1, u, y} u or y

a1b1 and a2b2 (S \ {a1, a2}) ∪ {w1, w2, y} y

Thus in all the cases γit(T
′) ≤ γit(T ). Hence, Table 5 implies that sdγit(T ) ≥ 3 and

Table 6 implies that sdγit(T ) ≥ 4.

Table 6. Subdividing three edges

Edges subdivided ITDS Every maximum independent
set of T ′ contains

xa1, a1b1 and vy (S \ {a1, v}) ∪ {w3, b1, x} x

xa2, a2b2 and xu (S \ {a2}) ∪ {w1, x} x

xu, uv and vy (S \ {v}) ∪ {w3, u} u or w3

xa1, uv and vy (S \ {v}) ∪ {u,w3} u

xa1, xa2 and a1b1 (S \ {a1, v}) ∪ {w1, x, y} y

a1b1, a2b2 and vy (S \ {a1, v, a2}) ∪ {w1, w2, u, y} y or u

Finally, if we subdivide the edges incident with a1 and two edges incident with v,

then we see that γ(T ′) = γ(T ) + 2 > γ(T ) + 1 = γit(T ). Therefore, γit(T
′) > γit(T ).

Hence, sdγit(T ) ≤ 4 which implies that sdγit(T ) = 4.

Lemma 8. If T = T7, then sdγit(T ) = 4.

Proof. Consider the graph T7 in Figure 5. Let x, a1, a2, . . . , ak, b1, b2, . . . , bk,
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x1, x2, y, y1, y2 be as labelled in Figure 5 and S = {x, a1, a2, . . . , ak, y} is a γ-set of T .

Further, deg(x) ≥ 3. Now subdividing any edge incident at ai will not increase the

value of γ(T ). Further subdividing any edge in the (x, y2)-path will increase γ(T )

by 1. Now (S \ {y}) ∪ {y1, y2}, where w is a subdivision vertex of yy2 is an ITDS

of the resulting graph, as every maximum independent set of T ′ contains y1 or y2.

Therefore, γit(T
′) = γit(T ). Hence, sdγit(T ) ≥ 2.

The following tables (Table 7 and Table 8) give the respective ITDS of the resulting

graph and the justification. We define wi, i = 1, 2 as earlier. Thus in all the cases

Table 7. Subdividing two edges

Edges subdivided ITDS Every maximum independent
set of T ′ contains

y1y and yy2 (S \ {y}) ∪ {w1, y2} y2

xa1 and yy2 (S \ {x, y}) ∪ {x1, x2, w2} x1 and x2

xa1 and a1b1 (S \ {a1}) ∪ {w1, b1} b1

a1b1 and xx2 (S \ {x, a1}) ∪ {x1, w1, w2} x1

a1b1 and yy1 (S \ {a1, y}) ∪ {b1, y1, y2} b1

a1b1 and a2b2 (S \ {a1, a2}) ∪ {w1, w2, b1} b1

γit(T
′) ≤ γit(T ). Hence, Table 7 implies that sdγit(T ) ≥ 3 and Table 8 implies that

sdγit(T ) ≥ 4.

Table 8. Subdividing three edges

Edges subdivided ITDS Every maximum independent
set of T ′ contains

y1y, x2y1 and yy2 (S \ {y}) ∪ {w3, y1} y1

xa1, a1b1 and xa2 (S \ {a1}) ∪ {b1, w1} b1 or w1

xa1, a1b1 and yy1 (S \ {y, a1}) ∪ {w1, y2, y1} y1 or y2

xx1y, a1b1 and xa1 (S \ {a1}) ∪ {w3, w1} x and x1

y1y, a1b1 and yy2 (S \ {a1, y}) ∪ {w1, w2, y2} y2

y1y, xx1 and yy2 (S \ {x}) ∪ {x1, y1} x1

Finally, if we subdivide the edges xx1, xx2 , yy1 and yy2, then we see that γ(T ′) =

γ(T )+2 > γ(T )+1 = γit(T ). Therefore, γit(T
′) > γit(T ). Hence, sdγit(T ) ≤ 4 which

implies that sdγit(T ) = 4.

Lemma 9. If T = T8, then sdγit(T ) = 4.

Proof. Consider the graph T8 in Figure 5. Let x, y, a1, a2, . . . , ak, b1, b2, . . . , bk,
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u1, u2, . . . , uk, v1, v2, . . . , vk, x1, x2, y1, y2 be as labelled in Figure 5 and

S = {x, y, a1, a2, . . . , ak, u1, u2, . . . , uk} is a γ-set of T . Further, deg(x),deg(y) ≥ 4.

Now subdividing any edge incident at ai or ui will not increase the value of γ(T ).

Further subdividing any edge not incident with ai or ui will increase γ(T ) by 1.

Then (S \ {x}) ∪ {x1, x2} is an ITDS of the resulting graph, as every maximum

independent set of T ′ contains x1 and x2. Therefore, γit(T
′) = γit(T ). Hence,

sdγit(T ) ≥ 2.

The following tables (Table 9 and Table 10) give the respective ITDS of the resulting

graph and the justification. We define wi, i = 1, 2, 3 as earlier.

Table 9. Subdividing two edges

Edges subdivided ITDS Every maximum independent

set of T ′ contains

xa1 and a1b (S \ {a1}) ∪ {b1, w1} b1 or w1

xx1 and xa1 (S \ {x}) ∪ {x1, x2} x1 or x2

xx1 and xx2 (S \ {x}) ∪ {w1, x2} w1 or x2

xx2 and x2y1 S ∪ {w2} w2 or w1

xx1 and yy1 (S \ {x, y}) ∪ {w2, x1, x2} x1 or x2

a1b1 and xx2 (S \ {a1}) ∪ {w1, w2} w1 or w2

a1b1 and u1v1 (S \ {a1, u1}) ∪ {w1, w2, x1} x1

Thus in all the cases, γit(T
′) ≤ γit(T ). Hence, sdγit(T ) ≥ 3.

Table 10. Subdividing three edges

Edges subdivided ITDS Every maximum independent

set of T ′ contains

xx2, x2y1 and yy1 S ∪ {w2} w2

xx1, yy1 and yy2 (S \ {x, y}) ∪ {x1, x2, w3} x1 or x2

xx1, xa1 and a1b1 (S \ {a1}) ∪ {w1, w3} w1 or x

xa1, a1b1 and a2b2 (S \ {a1}) ∪ {w2, b2} b2

xa1, a1b1 and yy2 (S \ {a1}) ∪ {w3, b1} w3 or b1

xx1, xx2 and x2y1 (S \ {x}) ∪ {x1, x2} x2 and x1

xx1, xx2 and xa1 (S \ {x}) ∪ {x1, x2} x1 or x2

Thus in all the cases, γit(T
′) ≤ γit(T ). Hence, sdγit(T ) ≥ 4. Finally, subdivide the

edges xx1, xx2 , yy1 and yy2, then we see that γ(T ′) = γ(T ) + 2 > γ(T ) + 1 = γit(T ).

Therefore, γit(T
′) > γit(T ). Hence, sdγit(T ) ≤ 4 which implies that sdγit(T ) = 4.
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Theorem 11. For any tree T , sdγit(T ) = 4 if and only if T is one of the graphs: P6 or
Ti, 6 ≤ i ≤ 8.

Proof. The sufficiency holds by Lemmas 7, 8 and 9. To prove the necessity, suppose

that sdγit(T ) = 4. Suppose T has a strong support. Then, as in the proof of Theorem

6, either sdγit(T ) ≤ 2 or γit(T ) = γ(T ). Hence, T does not have strong supports.

Let P = (v1, v2, . . . , vk), where k = diam(T )+1 be a diametral path in T . Suppose

that diam(T ) = 5. If deg(v3) = deg(v4) = 2, then T = P6, and if deg(v3) ≥ 3

and deg(v4) = 2 and v3 is not a support, then T = T6. In all the other cases, as

discussed in Theorem 6, we see that γit(T ) = γ(T ) which is not the case. Suppose

that diam(T ) = 6. If v3 is a support and deg(v3) ≥ 3 and deg(v4) = deg(v5) = 2,

then T = T7. If v4 is not a support, deg(v4) ≥ 3 and deg(v3) = deg(v5) = 2, then

T = T4 and by Lemma 1, sdγit(T ) = 3, which is a contradiction. In all the other

cases, as discussed in Theorem 6, we see that γit(T ) = γ(T ).

Suppose that diam(T ) = 7. If v3 and v6 are supports and deg(v4) = deg(v5) = 2,

then T = T8. In all the other cases, as discussed in Theorem 6, we see that γit(T ) =

γ(T ). If diam(T ) ≥ 8, as in the proof of Subcase 2.4 of Theorem 6, we see that either

γit(T ) = γ(T ) or sdγit(T ) ≤ 2, which is a contradiction. Hence, T = Ti, 6 ≤ i ≤ 8.

6. Conclusion

We have proved that for any tree T , sdγit(T ) ≤ 4. We have characterized trees T

with sdγit(T ) = 3 and sdγit(T ) = 4 respectively. Characterising the class of trees T

for which sdγit(T ) = 1 and 2 respectively are still open. One can venture into these

problems which are quite challenging.
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