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Abstract: Let T be a tree of order n with Laplacian eigenvalues p; > pg > -+ >
pn—1 > pn = 0. The Wiener index of T is defined as W(T') = nZ?;ll ‘% The
modified hyper-Wiener index of T is stated in terms of W (T") and Laplacian eigenvalues

2
as WWW (T) = Wé:) -5 ?:_11 ;%2 In this study, we present some relations between

modified hyper—Wiener index, the first Zagreb index, modified first Zagreb index and
inverse degree index of trees when order n and maximal vertex degree of a graph are
known.

Keywords: graph, Laplacian eigenvalues, modified hyper—Wiener index.

AMS Subject classification: 05C50, 15A18

1. Introduction

Let G = (V,E), V = {v1,vs,...,0,}, be a simple connected graph of order n and
size m with the vertex degree sequence dy > dy > --- > d,. Denote by A(G)
the (0,1) —adjacency matrix of G. The Laplacian matrix of G is defined as L (G) =
D (G)— A(G), where D (G) = diag(dy,da, . ..,d,) is the diagonal degree matrix of G
[14]. Eigenvalues of L (G), p1 > pa > -+ > pin—1 > ln = 0, represent the Laplacian
eigenvalues of G [6].
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In graph theory, a graph invariant is a property of graphs that is preserved by iso-
morphism [7]. The graph invariants that assume only numerical values are usually
referred to as topological indices in chemical graph theory [21]. The Wiener index is
a well-known distance-based topological index introduced as structural descriptor for
acyclic organic molecules. It was conceived by Harold Wiener in 1947 as [22]

W(G)=> dij,

i<j

where d;; is the number of edges in a shortest path between vertices v; and v;. The
Wiener index is one of the most frequently used molecular shape descriptors. It has
found many applications in the modelling of physico-chemical properties of organic
molecules. Since many molecular graphs of organic compounds are trees, there are a
lot of studies of the properties of the Wiener indices of trees [4]. The hyper—Wiener
index [9] and modified hyper—Wiener index are generalization of the concept of Wiener
index [20].

The following results connect the Wiener index, modified hyper—Wiener index (quan-
tities defined in terms of distances in a graph) and Laplacian eigenvalues. Namely,
for any tree T of order n, the Wiener index can be calculated as [10, 18]:

and the modified hyper-Wiener index as [9]

1
WWW(T)=n>» —.
=g Pl

For any tree T of order n, the following relation between Laplacian eigenvalues, Wiener
index and the modified hyper-Wiener index has been obtained in [8]:

n—1

W(T)> n 1
=1 "7

Several lower and upper bounds on WWW (T') can be found in [1].

Before we proceed, let us recall some degree—based indices that are of interest for the
present paper. The first Zagreb index is defined by [11]

M, (G) = Zn:df.
i=1
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The modified first Zagreb index is defined as [19]

"1
li(G):Zﬁ
i=1

The inverse degree index is introduced in [5] as

ID(G) = idl
i=1 "

In this paper, we investigate some relationships between modified hyper—Wiener in-
dex, the first Zagreb index, modified first Zagreb index and inverse degree index of
trees when order n and maximal vertex degree of a graph are known.

2. Preliminaries and Lemmas

Let a be a real number. The sum of the a-th powers of the Laplacian eigenvalues of
graph G closely related with several graph invariants is defined by [23] (see also [2, 3])

n—1
Sa (G) =Yl
i=1

Let us denote by K ,_1 the star graph of order n. We now recall two results from
the literature that are of interest for the present paper.

Lemma 1. [13] Let G be a simple connected graph of order n > 3 with vertex degree
sequence diy > dz > --- > dp, where dp—2 > dn—1+dn, — 1. If a <0 or a > 1, then

50 (G)> (1+d)* +d5 +- - +dy_as+ (dn1 +dn — 1) (2.1)
with equality if and only if G = K1 p—1.

Lemma 2. [12, 16] Let p = (p:), ¢ = 1,2,...,n, be a sequence of non—negative real
numbers, and a = (a;), 1 = 1,2,...,n, sequence of positive real numbers. Then, for any real
r, <0 orr>1, holds

(Zm) Zpia§><2piai>. (2.2)

When 0 < r < 1, the opposite inequality is valid. Equality holds if and only if either r = 0,
orr=1,0ra =ax = -+ =an, orpr =p2=---=p =0 and a4+1 = -+ = an, or
Pig1=--=pn=0and a1 = - =a¢, forsomet , 1 <t <n-—1.
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3. Main Results

In the next theorem we establish a relationship between WWW(T), W(T) and
M7 (T), when n and d; are known.

Theorem 1. Let T be a tree of order n > 2. Then, we have

W(T)? 4+ n? 2d, + 1
n2 d2(1+dy)?

WWW(T) < g < - ’”Ml(T)) . (3.1)

Equality holds if and only if T =2 K1 p—1.

Proof. According to (2.1), for any connected graph G and o = —2, the following
inequality is valid

n—1 n—2

1 1
= > 3.2
Y A R )

with equality if and only if G = K; ,,_;. Let G = T. Thus d,, = d,,—1 = 1. Then,
according to (1.1) and (3.2), we have that

n—1 n—2
1 W(T)? 2WWW(T) 1
— = — >14+ — . 3.3
SE e R (AL +Zcl2 33
Since
n—2 1 1
—="M(T) - - — 2,
2@ 7
from the above and (3.3), we arrive at (3.1).
Equality in (3.3), and consequently in (3.1), holds if and only if 7= K ,,_1. O

Corollary 1. Let T be a tree of order n > 4. Then

W -n? 1 _J([D(T)—Z—dll)s
2(n—2)—d1

Equality holds if and only if T =2 K1 p—1.
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Proof. In [15] it was proven that

(ID(T) o i)B
2n—2)—dy

1
-+

M (T) > 2 +
di

with equality if and only if "= P,, or T' = K, ,_;. From the above and inequality
(3.1), the required result is obtained. O

Corollary 2. Let T be a tree of order n > 4. Then

W(T)? —n® 1 B (n —3)3
n2 (1+d)?  (2(n—2)—di)?

WWW (T) < g
Equality holds if and only if T = K1 p—1.

Proof. In [15] it was proven that

I G 3)°

li(T)>2+d2 —( 2n—2)—di)?’

with equality if and only if "= P,,, or T' = K; ,,—1. From the above and inequality
(3.1), we get the required result. O

Corollary 3. Let T be a tree of order n > 4. Then

W(T)? —n? 1 (n —3)?
n2 S (1+di)? M(T)-2-a2

WWW (T) < g
Equality holds if and only if T = K1y n_1.

Proof.  According to the inequality between arithmetic and harmonic means (see
e.g. [17]), the following is valid

M‘
@.QM—‘

@
||
N

Z a2 (n-37,
i=2
that is
IESE U
d? —d? -2
From the above and inequality (3.3), we obtain that

W(T)2 2WWW(T) 1 (n — 3)2
- > 1+ + —
n? n (1+di)2 M(T)—di—2

from which we obtain the required result. O]
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Theorem 2. LetT, T % P,, be a tree of order n > 4. Then we have

w(r?-n> 1
77,2 (1+d1)2

1 o1 (d(ID(T)-2)—n+2)*
e (“’” At -2 )]

Equality holds if and only if T = K1y n_1.

WWW(T) <2
2 { (3.4)

Proof. The inequality (2.2) can be considered as

n—2 r—1 n—2 n—2 T
(Zm) > piaj > (Zpiaz) . (3.5)
1=2 =2

=2

Forr =2, p; = dl ,a; =d;, 1 =2,3,...,n — 2, the above inequality becomes

n—2 n—2 n—2 2
SN d>>(zd;;di) - 5)

=2

n—2 n—2 n—2 n—2

dy — d; 1 1 1 1
> =Y -y —=dy - (IDT)-2-—
, a2 ‘e —d = ( (T) d1>

ni22 ? i= i=2 =2
> (dy—di) =di(n—3) = (2(n—1) —dy — 2) = (n— 2)(d1 — 2),
=2

dy — d; —d <ID(T)2d1) —(n-3)=d(ID(T)-2)—n+2,
1

From the above arguments and (3.6), we obtain

n—2
<d1 > diz —(ID(T) -2 — dll)> (n—2)(dy —2) > (dy(ID(T) — 2) —n+2)2.

=2 !

Since n > 4 and d; # 2, from the above inequality we have that

— 1 1 (d1(ID(T)—2) —n+2)?
2?2 ( D) =2 G L S =) )
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Now, from the above and inequality (3.3) we obtain

W(TP 2WWw(r) 11 L (@{ID(T) - 2) —n+2)°

n2 n =TT 1+ d)? d1<ID(T)_2_dT (n—2)(d; — 2) )

from which we arrive at (3.4).

Equality in (3.6) holds if and only if do =d3 = -+ =dp—9,0r dy =dy = -+ =d; >
diy1 = -+ = dp_o, for some t, 1 <t < n— 3. Equality in (3.3) holds if and only if
T = Kj ,—1. This implies that equality in (3.4) holds if and only if T = K4 ;. O

In the next theorem we establish a relationship between WWW (T'), M;(T) and
ID(T), when n and d; are known.

Theorem 3. Let T, T % P,, be a tree of order n > 4. Then

n [W(T)? — n? 1 n—3
WWW(T) < 5 > “Grap T E
(di(ID(T) - 2) — 2(n — 2))*

di(di(n —2) = Mi(T) +2)

Equality holds if and only if T =2 K1 p—1.

Proof. Forr = 2, p; = dfd;d?, a; = d;, i = 2,3,...,n — 2, the inequality (3.5)
becomes '
S N =0 A
> S di-d) = > ) (3.8)
=2 z =2 =2
Since

=2

n—2 d% _d2 2n72 1 n—2 )

> = dlzd——Zdi:dl(ID(T)—2)—2(n—2)
i=2 v i=2 ' =2

From the above identities and inequality (3.8) we obtain that

(dfz d—12 —n+ 3> (d3(n —2) — My(T) +2) > (di(ID(T) — 2) — 2(n — 2))?.

K2
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Since T # P, then d3(n — 2) — M1(T) + 2 # 0. Therefore we have that

1 _n-=3  (dB(UIDT)-2) —2(n—2)>
LT T BB DD

From the above and (3.3) we obtain that

W(T)? 2WWW(T) -1 1 n—3 (B(ID(T)—-2)—2(n—2))?
2 n S T ardr & T REn-2) - M(T)+2)

from which the inequality (3.7) follows.

Equality in (3.8) holds if and only if do =d3 = --- =dp—9,0r dy =dy = --- = d; >
diy1 = -+ = dp_o, for some t, 1 <t < n — 3. Equality in (3.3) holds if and only if
T = K1 —1. Then the equality in (3.7) holds if and only if T' = K4 ,,_1. O

By a similar procedure as in case of Theorems 2 and 3, the following results can be
proven.

Theorem 4. Let T be a tree of order n > 5. If T = K1 ,—1, then

WWW(T) = (n—1)%=n*(n—-2) 1.
2n
IfT 2 Kijn1 and T 2 P,, then
n [W(T)? — n? 1
WWW(T) < 5 2 - (1+d1)2_
2

) ) (¢ (1D(T) =2 - L) —n+3)
——|ID(T)—— -2+

do dy dz(n — 3) +dy — 2(n — 2)

Theorem 5. Let T be a tree, T % Ki,n—1 and T % P, of order n > 5. Then we have
w(T 1 _n- 3 B
(1 + dy)? d3

<3
(& (10 —di—z)—(z(n—z)—dl))2
d3(d3(n —3) — My(T) + di +2)

WWW (T
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