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Abstract: We consider the restricted subsets of Nn = {1, 2, . . . , n} with q ≥ 1 being

the largest member of the set Q of disallowed differences between subset elements. We
obtain new results on various classes of problem involving such combinations lacking

specified separations. In particular, we find recursion relations for the number of k-

subsets for any Q when |Nq −Q| ≤ 2. The results are obtained, in a quick and intuitive
manner, as a consequence of a bijection we give between such subsets and the restricted-

overlap tilings of an (n + q)-board (a linear array of n + q square cells of unit width)

with squares (1×1 tiles) and combs. A (w1, g1, w2, g2, . . . , gt−1, wt)-comb is composed
of t sub-tiles known as teeth. The i-th tooth in the comb has width wi and is separated

from the (i + 1)-th tooth by a gap of width gi. Here we only consider combs with

wi, gi ∈ Z+. When performing a restricted-overlap tiling of a board with such combs
and squares, the leftmost cell of a tile must be placed in an empty cell whereas the

remaining cells in the tile are permitted to overlap other non-leftmost filled cells of tiles

already on the board.
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1. Introduction

The problem of enumerating combinations with disallowed separations is as follows.

We wish to find the number Sn of subsets of Nn = {1, 2, . . . , n} satisfying the condition

|x− y| /∈ Q where x, y is any pair of elements in the subset and Q is a given nonempty

subset of Z+. We also wish to find the number Sn,k of such subsets of Nn that are of

size k. For Q = {1} it is well known that Sn = Fn+2 where Fj is the j-th Fibonacci

number defined by Fj = Fj−1 + Fj−2 + δj,1 with Fj<1 = 0, where δi,j is 1 if i = j

and 0 otherwise, and Sn,k =
(
n+1−k

k

)
[12]. The quantity

(
n+1−k

k

)
is also the number

of ways of tiling an (n+ 1)-board (i.e., an (n+ 1)×1 board of unit square cells) using

unit squares and k dominoes (2 × 1 tiles) [6]. This correspondence can be regarded
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as a result of the bijection given in [3], generalized in [1], and that we will extend to

the most general case here. It also appears to be well known that if Q = {1, . . . , q}
then Sn = Sn−1 + Sn−q−1 + δn+q,0 with Sn+q<0 = 0. Expressions for the number

of combinations when Q = {2}, Q = {q} for q ≥ 2, and Q = {m, 2m, . . . , jm} for

j,m ≥ 1 are derived in [14], [15, 16, 19], and [1, 17], respectively.

Sn,k also has links with graph theory. A path scheme P (n,Q) is an undirected graph

with vertex set V = Nn and edge set {(x, y) : |x− y| ∈ Q} [13]. A subset S of V is

said to be an independent set (or a stable set) if no two elements of S are adjacent.

The number of independent sets of path scheme P (n,Q) of size k is then clearly Sn,k
(and the total number is Sn). The elements qi for i = 1, . . . , |Q| of set Q are said

to form a well-based sequence if, when ordered so that qj > qi for all j > i, then

q1 = 1 and for all j > 1 and ∆ = 1, . . . , qj − 1, there is some qi such that qj = qi + ∆

[13, 21]. Equivalently, the sequence of elements of Q, the largest of which is q, is

well based if a = |Nq −Q| is zero or if for all i, j = 1, . . . , a (where i and j can be

equal), pi+pj /∈ Q where the pi are the elements of Nq−Q. E.g., the only well-based

sequences of length 3 are the elements of the sets {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, and

{1, 3, 5}. By considering P (n,Q), Kitaev obtained an expression for the generating

function of Sn when the elements of Q are a well-based sequence [13]. We will show

the result via combinatorial proof and also obtain a recursion relation for Sn,k.

We define a (w1, g1, w2, g2, . . . , gt−1, wt)-comb as a linear array of t sub-tiles (which we

refer to as teeth) of dimensions wi× 1 separated by t− 1 gaps of width gi. The length

of a comb is
∑t−1
i=1(wi+gi)+wt. When the t teeth are all of width w and the t−1 gaps

are all of width g, it is referred to as a (w, g; t)-comb [4]; such combs can be used to

give a combinatorial interpretation of products of integer powers of two consecutive

generalized Fibonacci numbers [5]. Evidently, a (w, g; 1)-comb (or w-comb) is just a

w-omino (and a (w, 0;n)-comb is an nw-omino). A (w, g; 2)-comb is also known as a

(w, g)-fence. The fence was introduced in [7] to obtain a combinatorial interpretation

of the tribonacci numbers as the number of tilings of an n-board using just two types

of tiles, namely, squares and ( 1
2 , 1)-fences. ( 1

2 , g)-fences have also been used to obtain

results on strongly restricted permutations [8].

In this paper, we start in Section 2 by giving the bijection between combinations with

disallowed separations and the restricted-overlap tilings of boards with squares and

combs. Counting these types of tilings requires knowledge of all permissible minimal

gapless configurations of square-filled and/or restricted overlapping combs known as

metatiles which are introduced in Section 3. In Section 4 we derive results from

which recursion relations for Sn,k (or Sn) for various classes of the set of disallowed

differences Q can be obtained.
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2. The bijection between combinations with disallowed sepa-
rations and restricted-overlap tilings with squares and combs

In order to formulate the bijection we first introduce the concept of the restricted-

overlap tiling of an n-board. In this type of tiling, any cell but the leftmost cell of a

tile is permitted to overlap any non-leftmost cell of another tile. The C2, C2S, and

C3S metatiles in Figure 1 are examples where such overlap occurs (note that in that

figure and in Figure 3, for clarity, some of the overlapping tiles are shown displaced

downwards a little from their final position). It is readily seen that when tiling an

n-board, only tiles with gaps can overlap in this sense and so restricted-overlap tiling

of n-boards with just squares and other w-ominoes is the same as ordinary tiling.

Let q be the largest element in the set Q of disallowed differences. The comb corre-

sponding to Q is of length q + 1, has cells numbered from 0 to q, and is constructed

as follows. By definition, cells 0 and q are filled (as they are the end teeth or parts

of them). For the cells in between, cell i (for i = 1, . . . , q − 1) is filled if and only if

i ∈ Q. For example, Q = {1, 2, 4} corresponds to a (3, 1, 1)-comb. One could also

regard it as a (1, 0, 2, 1, 1)-comb but for simplicity we insist that all teeth and gaps in

a comb corresponding to Q are of positive width. This ensures that there is only one

comb that corresponds to a given Q.

Theorem 1. There is a bijection between the k-subsets of Nn each pair x, y of elements of
which satisfy |x− y| /∈ Q and the restricted overlap-tilings of an (n+ q)-board using squares
and k combs corresponding to Q as described above.

Proof. The (n + q)-board associated with a subset S satisfying the conditions re-

garding disallowed differences has cells numbered from 1 to n + q. It is obtained by

placing a comb at cell i (with the leftmost tooth of the comb occupying cell i) if and

only if i ∈ S and then, after all the comb tiles have been placed, filling any remaining

empty cells with squares. S = ∅ therefore corresponds to a board tiled with squares

only. The n singletons correspond to each of the possible places to put a tile of length

q + 1 on an (n+ q)-board. If S contains more than one element, then there will be a

tiling corresponding to S iff, for any two elements x < y in S, the comb representing

x (which has its cell 0 at cell x of the board) has a gap at its cell y − x (which is cell

y on the board). This will be the case if y − x /∈ Q.

To illustrate the bijection, we return to the Q = {1, 2, 4} example. The first case of

an allowed subset of Nn with more than one element is {1, 4} which can only occur

if n ≥ 4. This subset corresponds to the restricted-overlap tiling of an (n+ 4)-board

with the first comb (corresponding to the element 1) placed at the start (cell number

1) of the board and the second comb (corresponding to the element 4) placed with

its start in the gap of the first comb which is at cell number 4 of the board. As the

length of a (3, 1, 1)-comb is 5, a board of length at least 8 is required for such a tiling.

The remaining empty cells on the board (cell 7 and any cells beyond cell 8) are filled

with squares.
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The bijection also applies in the Q = ∅ case if we set q = 0. The comb corresponding

to Q is then a square (but we still call it a comb to distinguish it from the ordinary

squares) so Sn,k is the number of tilings of an n-board using k square combs (and

n− k ordinary squares) which is
(
n
k

)
.

Let Bn be the number of ways to restricted-overlap tile an n-board with squares and

combs corresponding to Q, and let Bn,k be the number of such tilings that use k

combs. We choose to set B0 = B0,0 = 1.

Theorem 2. Sn = Bn+q and Sn,k = Bn+q,k.

Proof. This follows immediately from Theorem 1.

Lemma 1. If the number of tilings of an n-board with squares and length-(q + 1) combs
is given by

Bn = δn,0 +
∑
m>0

(αmδn,m + βmBn−m), Bn<0 = 0,

then the generating function G(x) for Sn can be written as

G(x) =
1 +

∑
m>0

(
αm+q +

∑q
j=1 βm+j

)
xm

1−
∑

m>0 βmx
m

. (2.1)

Proof. The generating function for Bn is (1 +
∑
m>0 αmx

m)/(1 −
∑
m>0 βmx

m).

The first q + 1 terms of the expansion of this must be 1 + x+ · · ·+ xq since there is

only one way to tile an n-board with squares and combs when 0 ≤ n ≤ q, namely, the

all-square tiling. From Theorem 2, Sn = Bq+n, and so

G(x) =
1

xq

(
1 +

∑
m>0 αmx

m

1−
∑
m>0 βmx

m
− 1− x− · · · − xq−1

)
,

which simplifies to (2.1) after first putting the terms inside the parentheses over a

common denominator and then in the numerator discarding the xr terms for 1 ≤ r < q

since they must sum to zero.

It can be seen that restricted-overlap tiling with squares and just one type of (1, g; t)-

comb, where g = 0, 1, 2 . . ., will result in no overlap of the combs and so the number

of such tilings is the same as for ordinary tiling. For other types of comb, there will be

some tilings where overlap occurs. The case Q = {m, 2m, . . . , jm} with j,m ≥ 1 as

studied in [1, 17], which is a generalization of all the other cases for which results for

Sn,k were obtained previously, corresponds to tiling with squares and (1,m−1; j+1)-

combs. Thus any results for Sn,k we obtain for nonempty Q not of this form (and so

overlap does occur) will be new ones.
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3. Metatiles

We extend the definition of a metatile given in [7, 8] to the case of restricted-overlap

tiling. A metatile is a minimal arrangement of tiles with restricted overlap that exactly

covers a number of adjacent cells without leaving any gaps. It is minimal in the sense

that if one or more tiles are removed from a metatile then the result is no longer a

metatile.

When tiling with squares (denoted by S) and combs corresponding to Q (denoted by

C), the two simplest metatiles are the free square (i.e., a square which is not inside a

comb), and a comb with all the gaps filled with squares. The symbolic representation

of the latter metatile is CSg where g =
∑
i gi. If a comb has no gaps then it is a

(q + 1)-omino and is therefore a metatile by itself.

If the comb contains a gap, we can initiate the creation of at least one more metatile

by placing the start of another comb in the gap. For instance, in the case of an

(l, 1, r)-comb where r ≥ l, this is the only other possible metatile and so there are

three metatiles in total (Figure 1(a)). However, if r < l, adding a comb leaves a

gap which can be filled either with a square to form a completed metatile (C2S) or

with another comb which will leave a further gap, and so on (Figure 1(b)). Thus the

possible metatiles in this case are CmS for m = 0, 1, 2, . . .. More generally, we have

the following lemma.

S CS

C2

S CS

C2S

C3S

(a) (b)

C[q+1]

01r0

S[1]

S

C[q−r]

C[q+1]

01r0

S[1]

S

C[q−r]

Figure 1. Metatiles, their symbolic representations, and digraphs for generating them when restricted-
overlap tiling an n-board with squares and (l, 1, r)-combs for (a) r ≥ l (b) r < l.

Lemma 2. Let r be the length of the final tooth in the comb which has at least one gap.
The set of possible metatiles when restricted-overlap tiling a board of arbitrary length with
squares and combs is finite if and only if 2r ≥ q.

Proof. We can reuse the depiction of tilings in Figure 1 but with the left tooth of

each comb now replaced by arbitrary teeth and gaps (but starting with a tooth).
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There is no possibility of a ‘chain’ of combs if, when a second comb is placed with

the first cell of its first tooth just before the start of the right tooth of the first comb,

the start of the right tooth of the second comb is before or aligned with the end of

the right tooth of the first comb. This occurs if q − r ≤ r. If q − r > r, a third comb

can be placed so that its first cell is immediately to the left of the right tooth of the

second comb and this can be continued indefinitely.

As with fence tiling [8], we can systematically construct all possible metatiles with

the aid of a directed pseudograph (henceforth referred to as a digraph). As before,

the 0 node corresponds to the empty board or the completion of the metatile. The

other nodes represent the state of the incomplete metatile. The occupancy of a cell

in it is represented by a binary digit: 0 for empty, 1 for filled. We label the node

by discarding the leading 1s and trailing zeros and so the label always starts with a

0 and ends with a 1, with 1r denoting 1 repeated r times. Each arc represents the

addition of a tile and any walk beginning and ending at the 0 node without visiting

it in between corresponds to a metatile. With our restricted-overlap tiling, all nodes

have an out-degree of 2 as a gap may always be filled by a square or the start of a

comb. The destination node is obtained by performing a bitwise OR operation on the

bits representing the added tile and the label of the current node, and then discarding

the leading 1s. Figure 1 illustrates this for the metatiles involved when tiling with

squares and (l, 1, r)-combs.

The most important property of a metatile is its length. This is obtained by summing

the contribution to the length associated with each arc in the walk representing the

metatile. The contribution to the length associated with an arc is zero if it corresponds

to the addition of a square (except in the case of the trivial S metatile) and for a

comb arc equals q + 1 − d where d is the number of digits in the node label from

which the arc emanates except when that node is the 0 node in which case d = 0.

In the digraphs, the contribution to the length associated with each arc is given as

a subscript in square brackets if it is not zero. For example, from the digraph in

Figure 1(b), for tiling with squares and (l, 1, r < l)-combs we see that the length of

a CmS metatile where m > 0 is q + 1 + (m − 1)(q − r) = ml + r + 1 as in this case

q = l + r.

4. Counting restricted-overlap tilings

For brevity, we just give results for Bn and Bn,k as these are easily converted to

recursion relations for Sn and Sn,k and the generating function for Sn using Theorem 2

and Lemma 1. As with ordinary (non-overlapping) tiling, the following lemma is the

basis for obtaining recursion relations for Bn and Bn,k.
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Lemma 3. For all integers n and k,

Bn = δn,0 +

Nm∑
i=1

Bn−li , (4.1a)

Bn,k = δn,0δk,0 +

Nm∑
i=1

Bn−li,k−ki , (4.1b)

where Nm is the number of metatiles, li is the length of the i-th metatile and ki is the number
of combs it contains, and Bn<0 = Bn,k<0 = Bn<k,k = 0.

Proof. As in [6, 8], we condition on the last metatile on the board. To obtain (4.1b)

we note that if an n-board tiled with squares and k combs ends with a metatile of

length li that contains ki combs then there are Bn−li,k−ki ways to tile the rest of the

board. The δn,0δk,0 term is from the requirement that B0,0 = 1. This term arises

in the sum when a particular metatile containing k combs completely fills the board;

there is only one tiling where this occurs. The derivation of (4.1a) is analogous but

we ignore the number of combs. Alternatively, each term in (4.1a) is obtained from

the corresponding term in (4.1b) by summing over all k.

Theorem 3. If Q = {1, . . . , l− 1, q− r+1, . . . , q− 1, q} (or Q = {q− r+1, . . . , q− 1, q}
if l = 1) where l ≥ 1, 2r ≥ q, and q + 1 ≥ l + r, then

Bn = δn,0 +Bn−1 +Bn−q−1 +

q−l−r∑
j=0

f
(l)
j Bn−l−q−1−j ,

Bn,k = δn,0δk,0 +Bn−1,k +Bn−q−1,k−1 +

q−l−r∑
j=0

bj/lc∑
i=0

(
j − (l − 1)i

i

)
Bn−l−q−1−j,k−2−i,

where the (1, l)-bonacci number f
(l)
j = f

(l)
j−1 + f

(l)
j−l + δj,0, f

(l)
j<0 = 0. The sums are omitted if

q + 1 = l + r.

Proof. We use Lemma 3. If q + 1 = l + r, C is just a (q + 1)-omino and the results

follow immediately. Otherwise, C is an (l, q+ 1− l− r, r)-comb. There are two trivial

metatiles: S and CSq+1−l−r which have lengths of 1 and q + 1, respectively. For the

remaining metatiles, since 2r ≥ q, as described in the proof of Lemma 2, the final

comb in the metatile must start within the gap of the first comb. Number the cells in

this gap from j = 0 to q − l− r. If the start of the left tooth of the final comb in the

metatile lies in cell j of this gap, the length of the metatile is l+ q+ 1 + j. Cells 0 to

j − 1 of the gap can have either an S or the left tooth of a C and we end up with a

metatile of this length. The number of ways this can be done is simply the number of

ways to tile a j-board using squares and l-ominoes which is f
(l)
j [6] (when l = 1, the

l-ominoes are regarded as being distinguishable from the ordinary squares). Hence

there are f
(l)
j metatiles of length l+ q+ 1 + j of which

(
j−li+i

i

)
have 2 + i combs.
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As an example of the application of the above theorem, we consider the case Q = {2}.
Then l = r = 1 and q = 2 and we obtain the recursion relation Bn,k = δn,0δk,0 +

Bn−1,k + Bn−2,k−1 + Bn−4,k−2. Using Theorem 2 gives Sn,k = δn,−2δk,0 + Sn−1,k +

Sn−2,k−1+Sn−4,k−2 which is in agreement with the recursion relation first obtained by

Konvalina [14]. Note that the metatiles in this case are the square (S), a comb with its

gap filled by a square (CS), and two interlocking combs (C2). No overlapping occurs

in this case and so it also an ordinary tiling which has been examined extensively [9].

For instances where the largest element of Nq −Q (the set of allowed differences less

than q) is q− r and 2r ≥ q but the other conditions in Theorem 3 do not hold, as the

number of possible metatiles is finite (by Lemma 2), it is straightforward to find the

length and number of combs in each of them and then use (4.1) to obtain recursion

relations for Bn and Bn,k.

To enable us to tackle some cases where there are an infinite number of possible

metatiles, we begin by reviewing some terminology describing features of the digraphs

used to construct metatiles [8]. A cycle is a closed walk in which no node or arc is

repeated aside from the starting node. We refer to cycles by the arcs they contain.

For example, the digraph in Figure 1(a) has 3 cycles: S[1], C[q+1]S, and C[q+1]C[q−r].

An inner cycle is a cycle that does not include the 0 node. For example, the digraph

in Figure 1(b) has a single inner cycle, namely, C[q−r]. If a digraph has an inner

cycle, there are infinitely many possible metatiles as, once reached, the cycle can be

traversed an arbitrary number of times before the walk returns to the 0 node. If all

of the inner cycles of a digraph have one node (or more than one node) in common,

that node (or any one of those nodes) is said to be the common node. In the case

of a digraph with one inner cycle, any of the nodes of the inner cycle can be chosen

as the common node. A common circuit is a simple path from the 0 node to the

common node followed by a simple path from the common node back to the 0 node.

For example, in the digraph in Figure 1(b), the common node is 01r and the common

circuit is C[q+1]S. If a digraph has a common node, members of an infinite family of

metatiles can be obtained by traversing the first part of the common circuit from the 0

node to the common node and then traversing the inner cycle(s) an arbitrary number

of times (and in any order if there are more than one) before returning to the 0 node

via the second part of the common circuit. An outer cycle is a cycle that includes

the 0 node but does not include the common node. Thus any metatile which is not a

member of an infinite family of metatiles has a symbolic representation derived from

an outer cycle. E.g., the only outer cycle in the digraph in Figure 1(b) is S[1].

The following theorem is a restatement of Theorem 5.4 and Identity 5.5 in [8] but

with more compact expressions for Bn and Bn,k and improved proofs. Note that the

length of a cycle or circuit is simply the total contributions to the length of the arcs

it contains.

Theorem 4. For a digraph possessing a common node, let loi be the length of the i-th
outer cycle (i = 1, . . . , No) and let koi be the number of combs it contains, let Lr be the
length of the r-th inner cycle (r = 1, . . . , N) and let Kr be the number of combs it contains,
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and let lci be the length of the i-th common circuit (i = 1, . . . , Nc) and let kci be the number
of combs it contains. Then for all integers n and k,

Bn = δn,0 +

N∑
r=1

(Bn−Lr − δn,Lr ) +

No∑
i=1

(
Bn−loi −

N∑
r=1

Bn−loi−Lr

)
+

Nc∑
i=1

Bn−lci , (4.2a)

Bn,k = δn,0δk,0 +

N∑
r=1

(Bn−Lr,k−Kr − δn,Lrδk,Kr )

+

No∑
i=1

(
Bn−loi,k−koi −

N∑
r=1

Bn−loi−Lr,k−koi−Kr

)
+

Nc∑
i=1

Bn−lci,k−kci , (4.2b)

where Bn<0 = Bn,k<0 = Bn<k,k = 0.

Proof. From Lemma 3,

Bn = δn,0 +

No∑
i=1

Bn−loi +

Nc∑
i=1

∑
j1,...,jN≥0

(
j1 + · · ·+ jN
j1, . . . , jN

)
Bn−λi

, (4.3a)

Bn,k = δn,0δk,0 +

No∑
i=1

Bn−loi,k−koi +

Nc∑
i=1

∑
j1,...,jN≥0

(
j1 + · · ·+ jN
j1, . . . , jN

)
Bn−λi,k−κi

(4.3b)

with Bn<0 = Bn,k<0 = Bn<k,k = 0, where λi = lci +
∑N
s=1 jsLs and κi = kci +∑N

s=1 jsKs. The multinomial coefficient (which counts the number of arrangements

of the inner cycles) results from the fact that changing the order in which the inner

cycles are traversed (after the common node is reached via the outgoing path of a

common circuit) gives rise to distinct metatiles of the same length. The sum of terms

over j1, . . . , jN in (4.3a) may be re-expressed as

∑
j1,...,jN≥0

M(∅)Bn−λi
= Bn−lci +

N−1∑
m=0

∑
Rm

∑
js/∈Rm≥1,
jt∈Rm=0

M(Rm)Bn−λi

where M(R) denotes the multinomial coefficient
(
j1+···+jN
j1,...,jN

)
with jt∈R = 0, and Rm

denotes a set of m numbers drawn from NN . For example, if N > 2 an instance of R2

is {1, 2} in which case M(R2) =
(
j3+···+jN
j3,...,jN

)
. Replacing n by n− Lr in (4.3a) gives

Bn−Lr = δn,Lr +

No∑
i=1

Bn−loi−Lr +

Nc∑
i=1

∑
j1,...,jN≥0

M(∅)Bn−λi−Lr .

After changing jr to jr − 1, the sum of terms over j1, . . . , jN may be re-expressed as

∑
jr≥1,
jt 6=r≥0

Mr(∅)Bn−λi
=

N−1∑
m=0

∑
R[r]

m

∑
j
s/∈R[r]

m
≥1,

j
t∈R[r]

m
=0

Mr(R[r]
m )Bn−λi

,
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where Mr(R) denotes the multinomial coefficient M(R) with jr replaced by jr − 1

(so, for example, M3({1, 2}) =
(
j3+···+jN−1
j3−1,...,jN

)
) and R[r]

m is a set of m numbers none of

which equal r drawn from NN . After subtracting
∑N
r=1Bn−Lr

from (4.3a) and using

the result for multinomial coefficients that M(R) =
∑
r/∈RMr(R), we obtain (4.2a).

Similarly, subtracting
∑N
r=1Bn−Lr,k−Kr

from (4.3b) gives (4.2b).

The rest of the theorems in this section concern families of Q whose corresponding

digraphs each have a common node. Once the lengths of and the number of combs in

each cycle and common circuit have been determined, the recursion relations for Bn
and Bn,k follow immediately from Theorem 4.

It can be seen from (4.2) that the recursion relation for Bn can be obtained from that

for Bn,k by replacing Bn−ν,k−κ and δn,νδk,κ by Bn−ν and δn,ν , respectively, for any ν

and κ. For the remaining theorems we therefore give the recursion relation for Bn,k
and only also show the one for Bn if we use the expression for Bn elsewhere.

For the more generally applicable theorems that follow, Bn and Bn,k are given most

simply in terms of the elements pi of Nq −Q, the set of allowed differences less than

q. We order the pi so that pi < pi+1 for all i = 1, . . . , a − 1, where a = |Nq −Q|,
the number of allowed differences less than q. Note that if the comb corresponding to

Q has leftmost and rightmost teeth of widths l and r, respectively, then p1 = l and

pa = q−r. In digraphs, we let σi (for i = 1, . . . , a) denote the bit string corresponding

to filling the first i− 1 empty cells of a comb with squares and discarding the leading

1s. Thus σa is always 01r. It is also easily seen that the comb arc leaving the σi node

is C[pi].

Theorem 5. If the elements of Q are a well-based sequence then

Bn = δn,0 +Bn−1 +Bn−q−1 +

a∑
i=1

(Bn−pi −Bn−pi−1 − δn,pi), (4.4a)

Bn,k = δn,0δk,0 +Bn−1,k +Bn−q−1,k−1 +
a∑

i=1

(Bn−pi,k−1 −Bn−pi−1,k−1 − δn,piδk,1).

(4.4b)

If Q = Nq (and so a = 0) then the sums over i are omitted.

Proof. If Q = Nq the comb is a (q + 1)-omino and the results follow immediately.

Otherwise, we first need to establish that the comb leaving the σi node for any i =

1, . . . , a in the digraph (Figure 2; Figure 1(b) shows the a = 1 instance of the digraph)

takes us back to the σ1 node. This is equivalent to there being a gap at position pi+pj
(for any i, j = 1, . . . , a) of the first comb (or that position being beyond the end of the

comb) where pj can be viewed as the position of the j-th empty cell in the comb added

at cell pi in the first comb. This must be the case by the definition of a well-based

sequence; if there were no gap it would mean pi + pj ∈ Q which is impossible. The

digraph has a inner cycles, namely, Si−1C[pi] for i = 1, . . . , a, which have lengths pi,
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S SS SC[q+1]
σ10

S[1]
C[p1]

C[pi]

S

C[pa]

σaσi

Figure 2. Digraph for tiling a board with squares and combs corresponding to a well-based sequence of
disallowed differences.

respectively. The common node is σ1. There is one common circuit (C[q+1]S
a), which

is of length q + 1, and one outer cycle (S[1]), which is of length 1.

The following corollary was established via graph theory and results concerning bit

strings in [13].

Corollary 1. The generating function for Sn when the elements qi of Q form a well-based
sequence is given by

G(x) =
c

(1− x)c− x , (4.5)

where c = 1 +
∑|Q|

i=1 x
qi .

Proof. Applying Lemma 1 to (4.4a) it can be seen that the numerator of (2.1)

reduces to

1 +

q∑
m=1

(q−m∑
j=1

( a∑
i=1

(δm+j,pi − δm+j,pi+1)
)

+ 1

)
xm,

where the +1 inside the brackets results from the fact that βq+1 appears as a term

in the sum over j for every m up to q. Note also that we must have p1 > 1 and

pa < q. When summed over j, δm+j,pi − δm+j,pi+1 cancels (thus leaving just the +1

multiplying the xm) except if pi = m in which case δm+j,pi is always zero and the

−δm+j,pi+1 when j = 1 cancels the +1. Hence the numerator simplifies to c. The

denominator of (2.1) is, in the present case, 1−x−xq+1−(1−x)c̄, where c̄ =
∑a
i=1 x

pi .

Using the result that c + c̄ =
∑q
i=0 x

i = (1 − xq+1)/(1 − x) it is then easily shown

that the denominator can be re-expressed as (1− x)c− x.

We consider the case Q = {1, 3, 5} as an example for the application of Theorem 5.

Then q = 5, a = 2, p1 = 2, and p2 = 4. Hence Bn,k = δn,0δk,0 − δn,2δk,1 −
δn,4δk,1 + Bn−1,k + Bn−2,k−1 − Bn−3,k−1 + Bn−4,k−1 − Bn−5,k−1 + Bn−6,k−1. Since

in this case c = 1 + x + x3 + x5, Corollary 1 gives the generating function for Sn of

(1 + x+ x3 + x5)/(1− x− x2 + x3 − x4 + x5 − x6) as found by Kitaev [13].

The proofs of some of the results that follow (starting with the next lemma which is

used in the proof of Theorem 6) require combs where the number of gaps depends on

the particular instance of Q. We therefore extend our notation: an (l, [g], r)-comb is a

comb of length l+g+r whose left and right teeth have widths of l and r, respectively.
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(a) (b)

x rrr + 1 r + 1

Figure 3. The origin of the 1-arc inner cycle at the 01r node when restricted-overlap tiling with squares
and (a) (r + 2 − g, [g], r)-combs where 1 ≤ g ≤ r + 1 (b) (w1, g1, . . . , wt)-combs such that
wt = r, gt−1 = 1, wt−1 ≥ q − 2r − 1 = x, and t ≥ 2.

Lemma 4. When restricted-overlap tiling an n-board with S and C, where C contains
at least one gap and the width of the final tooth is r, there is a 1-arc inner cycle C[q−r]

containing the 01r node iff (a) q = 2r + 1 or (b) the final gap is of unit width and the
penultimate tooth has a width of at least q − 2r − 1.

Proof. If q < 2r + 1, by Lemma 2, there can be no inner cycles. If q = 2r + 1 and

so the length of C is 2(r + 1), we have the situation depicted in Figure 3(a). In the

figure, the cells of each comb marked with the dashed line could be parts of teeth or

gaps. For the first (paler) comb depicted in each case, any such cells which are parts

of gaps are filled with other tiles leaving the final gap cell empty (which corresponds

to the 01r node). The start of the next comb is placed in that cell (and we return

to the 01r node). If q > 2r + 1 the final gap in the comb must be of unit width and

the width wt−1 of the penultimate tooth cannot be less than x = q + 1 − 2(r + 1)

(Figure 3(b)).

Theorem 6. Let θ be the bit string representation of Q whereby the j-th bit from the right
of θ is 1 if and only if j ∈ Q. By bθ/2bc we mean discarding the rightmost b bits in θ and
shifting the remaining bits to the right b places. Using | to denote the bitwise OR operation,
if θ | bθ/2pi−1c for each i = 1, . . . , a− 1 is all ones after discarding the leading zeros, a ≥ 2,
and pa = q − r (which implies that r ≥ 1), then if (a) q = 2r + 1 or (b) q > 2r + 1 and
1 ≤ pa−1 ≤ r, then

Bn,k = δn,0δk,0 − δn,q−rδk,1 +Bn−1,k +Bn−q+r,k−1 −Bn−q+r−1,k−1 +Bn−q−1,k−1

+

a−1∑
i=1

(Bn−q−1−pi,k−2 −Bn−2q+r−1−pi,k−3). (4.6)

Proof. The condition pa = q − r means that the final tooth is of width r. The

conditions (a) and (b) correspond to those in Lemma 4 and thus guarantee a single-

comb inner cycle at the 01r node. The condition on θ means that placing a comb at

an empty cell (other than the final empty cell) will result in all gaps in the combs

to the right of this point being filled. On the digraph this means that there is an

arc from the σi node, where i = 1, . . . , a − 1, to the 0 node. Tiling with squares

and combs corresponding to Q leads to the digraph shown in Figure 4. There is one

inner cycle (C[q−r]) and one common circuit (C[q+1]S
a). The outer cycles are S[1] and

C[q+1]S
i−1C[pi] for i = 1, . . . , a−1 and their respective lengths are 1 and q+1+pi.
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S SS SC[q+1] σ10

S[1] C[p1] C[q−r]

S

C[pi]

01
rσi

[H]

Figure 4. Digraph for tiling a board with squares and combs corresponding to Q specified in Theorem 6.

It is straightforward to verify that the following four classes of Q satisfy the conditions

for Theorem 6 to apply: (i) Q = {2, . . . , q − r − 1, q − r + 1, . . . , q} where r ≥ 1 and

q ≥ max(2r + 1, 4) (e.g., for q ≤ 7: {2, 4}, {2, 3, 5}, {2, 4, 5}, {2, 3, 4, 6}, {2, 3, 5, 6},
{2, 3, 4, 5, 7}, {2, 3, 4, 6, 7}, {2, 3, 5, 6, 7}); (ii) Q = {1, . . . , l− 1, l+ 1, . . . , q− r− 1, q−
r + 1, . . . , q} where r ≥ l ≥ 2 and q ≥ 2r + 1 and 2l 6= q − r (e.g., for q ≤ 8:

{1, 3, 4, 6, 7}, {1, 2, 4, 6, 7, 8}, {1, 3, 4, 5, 7, 8}, {1, 3, 4, 6, 7, 8}); (iii) q = 2r + 1, p1 = l,

pa = r + 1, and l ≤ r ≤ 2l − 2 (e.g., for q ≤ 9: {1, 4, 5}, {1, 2, 5, 6, 7}, {1, 2, 6, 7, 8, 9},
{1, 2, 3, 6, 7, 8, 9}, {1, 2, 4, 6, 7, 8, 9}); (iv) Q = {2, 4, . . . , 2a, 2a+ 1, . . . , q} where a ≥ 3

and q = 4a − 4, 4a − 3 (e.g., for q ≤ 9: {2, 4, 6, 7, 8}, {2, 4, 6, 7, 8, 9}). These classes

cover all cases where the theorem applies for q ≤ 9.

As an example, we consider the case Q = {2, 4}. Then q = 4, r = 1, a = 2, p1 = 1,

and p2 = 3. From (4.6) we get Bn,k = δn,0δk,0 − δn,3δk,1 + Bn−1,k + Bn−3,k−1 −
Bn−4,k−1 +Bn−5,k−1 +Bn−6,k−2−Bn−9,k−3. An explicit formula for Sn,k in this case

can be obtained in terms of sums of products of binomial coefficients [17]. Summing

over k gives us a recursion relation for Bn whose generating function (1 − x3)/(1 −
x− x3 + x4 − x5 − x6 + x9) is that of sequence A224809 in the OEIS [20] which does

indeed correspond to numbers of subsets with differences not equalling 2 or 4.

Note that, omitting the sum, Theorem 6 holds for the case a = 1 if p1 = q − r and

q ≥ 2r + 1. It then coincides with Theorem 5.

Theorem 7. Suppose p1 = l and pa = 2l. Then if either (a) q = 4l−1 or (b) pa−1 ≤ q−2l
where q < 4l − 1, then

Bn,k = δn,0δk,0 − δn,2lδk,1 +Bn−1,k +Bn−2l,k−1 −Bn−2l−1,k−1 +Bn−q−1,k−1

+Bn−q−l−1,k−2 +Bn−q−2l−1,k−3 −Bn−q−3l−1,k−3 −Bn−q−4l−1,k−4

+

a−1∑
i=2

(Bn−q−pi−1,k−2 −Bn−q−2l−pi−1,k−3), (4.7)

where the sum is omitted if a = 2.

Proof. Tiling with squares and (l, [l + 1], q − 2l)-combs leads to the digraph shown

in Figure 5. Note that if a = 2, the σi nodes are omitted since i = 1, . . . , a− 2. There

is just one inner cycle (C[2l]) and one common circuit (C[q+1]S
a). Their respective

lengths are 2l and q + 1. The outer cycles are S[1], C[q+1]C[l]{S,C[l]}, and, if a ≥ 3,

C[q+1]S
i−1C[pi] for i = 2, . . . , a−1. Their respective lengths are 1, q+ l+1, q+2l+1,

and q + pi + 1.
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S SS SC[q+1] σ10

S[1] C[l]
C[2l]

S

C[pi]

01
r

01
q−l

C[l]

S

σi

Figure 5. Digraph for tiling a board with squares and (l, [l + 1], r = q − 2l)-combs used in the proof of
Theorem 7.

The instances of Q with q ≤ 9 to which Theorem 7 applies are {3}, {1, 3, 5, 6},
{1, 5, 6, 7}, {1, 3, 5, 6, 7}, and {1, 2, 4, 5, 7, 8, 9}. As an example, we consider the Q =

{3} case. Then l = 1 and a = 2 and Theorem 7 yields Bn,k = δn,0δk,0 − δn,2δk,1 +

Bn−1,k+Bn−2,k−1−Bn−3,k−1+Bn−4,k−1+Bn−5,k−2+Bn−6,k−3−Bn−7,k−3−Bn−8,k−4.

For the case Q = {q}, Prodinger [19] derived an explicit formula for Sn,k involving

the sum of a product of four binomial coefficients. Konvalina and Liu also showed

that Sqm+j = F q−jm+2F
j
m+3 for m = 0, 1, 2, . . . and j = 0, 1, . . . , q− 1 [16]. Returning to

our Q = {3} result, summing Bn,k over all k to obtain a recursion relation for Bn and

then applying Lemma 1 gives the generating function for Sn of (1 + x + x2 + 3x3 +

x4 − x5 − 2x6 − x7)/(1− x− x2 + x3 − x4 − x5 − x6 + x7 + x8) which matches that

for the sequence S3m+j = F 3−j
m+2F

j
m+3 for m = 0, 1, 2, . . . and j = 0, 1, 2 (see A006500

in the OEIS [20]).

Theorem 8. If p1 = l, pa = q − r, l > r and (i) q = 2l or (ii) a = 2, q ≥ 2l, but
q 6= 2l + r, then

Bn,k = δn,0δk,0 +Bn−1,k +Bn−2l−1,k−1 +Bn−3l−1,k−2

+

a∑
i=2

(Bn−pi,k−1 −Bn−pi−1,k−1 +Bn−l−pi,k−2 −Bn−l−pi−1,k−2 − δn,piδk,1 − δn,l+piδk,2).

(4.8)

Proof. Tiling with (i) squares and (l, [l−r+1], r)-combs, where l > r, or (ii) squares

and (l, 1,m 6= l− 1, 1, r)-combs, where 0 < l− r ≤ m+ 1, leads to the digraph shown

in Figure 6. There are 2(a− 1) inner cycles: {S,C[l]}Si−2C[pi] for i = 2, . . . , a. Their

lengths are pi and l + pi. The common node is σ1 and so the common circuits are

C[2l+1]{S,C[l]}Sa−1 which have lengths of 2l + 1 and 3l + 1.

The instances of Q for which Theorem 8 applies when q ≤ 8 are

{1, 4}, {1, 2, 6}, {1, 2, 4, 6}, {1, 2, 5, 6}, {1, 3, 4, 6}, {1, 2, 4, 6, 7}, {1, 3, 4, 5, 7},
{1, 2, 3, 8}, {1, 2, 3, 5, 8}, {1, 2, 3, 6, 8}, {1, 2, 3, 5, 6, 8}, {1, 2, 3, 7, 8}, {1, 2, 3, 5, 7, 8},
{1, 2, 3, 6, 7, 8}, {1, 2, 4, 5, 6, 8}, and {1, 3, 4, 5, 6, 8}.
We conclude by showing that all possible Q such that a ≤ 2 have been covered by

the theorems given here. When a = 0, the comb C is a (q + 1)-omino and Bn,k is

given by (4.4b). When a = 1, C is an (l, 1, r)-comb (and the two possible cases are
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SC[q+1] S SS S
σ20

S[1] C[p2]

S

C[pi]

01
rσ1

C[q−r]

C[l]

σi

Figure 6. Digraph for tiling a board with squares and (l, [l−r+1], r)-combs, where l > r, or with squares
and (l, 1,m 6= l− 1, 1, r)-combs, where 0 < l− r ≤ m+ 1, used in the proof of Theorem 8.

shown in Figure 1). Then if r ≥ l, Theorem 3 applies. Otherwise, if l > r, Theorem 5

applies since 2p1 > q (as p1 = l and q = l + r) and hence the elements of Q are a

well-based sequence. When a = 2, C is either an (l, 2, r)-comb or an (l, 1,m, 1, r)-

comb for some l,m, r ≥ 1. In the former case, q = l + r + 1 and so the condition

2r ≥ q leads to Theorem 3 applying when l < r. When l = r, it is covered by the

class (iii) instances of Q that apply to Theorem 6 except when l = 1 in which case

Theorem 7(a) applies. When l = r + 1, we have q = 2l and p2 = l + 1 = 2l − r and

so Theorem 8 applies. The final possibility is if the elements of Q are a well-based

sequence (and the case is then covered by Theorem 5) and this occurs if 2p1 > q which

implies that l > r+1. For (l, 1,m, 1, r)-combs, q = l+m+r+1 and so the 2r ≥ q case

(Theorem 3) is when l < r−m. Of the l ≥ r−m cases we first consider those where

l = m + 1. This can arise in two ways. If 2p1 = p2 (which implies l = m + 1) and

p1 +p2 > q (which implies l > r) then the elements of Q are a well-based sequence and

Theorem 5 applies. When l = m+ 1 and l ≤ r then Theorem 7(b) applies since these

conditions can be re-expressed as p2 = 2l and p1 ≤ r, respectively (and l ≥ r − m
in this case implies q ≤ 4l − 1). When l = 1 (and l ≥ r − m), the case falls into

class (i) to which Theorem 6 applies. There are three other ways in which l 6= m+ 1

arises when l ≥ r −m. If l ≤ r then we have class (ii) to which Theorem 6 applies.

If r < l ≤ m + r + 1 then Theorem 8 applies. Finally, if 2p1 > q (which implies

l > m+ r+ 1) then the elements of Q are a well-based sequence and Theorem 5 again

applies.

5. Discussion

As a = |Nq −Q| increases, so, in general, does the number of inner cycles in the

digraph and we find more and more instances (e.g., when Q = {1, 5} [2]) where the

digraph has inner cycles but no common node. In the simpler of such cases, it is still

possible to derive general recursion relations analogous to (4.2) [1, 2]. This enables

one to find recursion relations for all the a = 3 cases, as we will demonstrate in

forthcoming work. For cases where the digraph is more complex, we have not yet

managed to formulate a general procedure for obtaining the recursion relations.

On looking up sequences (Sn)n≥0 for various choices of Q in the OEIS, a number of

connections between certain classes of Q and some instances of strongly restricted
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permutations, combinations, and bit strings were identified. These are described and

proved in [2].

Various authors have also considered the number of ways of choosing k objects from

n arranged in a circle in such a way that no two chosen objects are certain disallowed

separations apart [10–12, 14, 17, 18]. A modified version of our bijection covers such

cases if we instead consider restricted-overlap tiling using curved squares and combs

of a circular n-board with the n-th cell joined to the first cell. There are, however,

subtleties about the rules for overlap which we will address in detail elsewhere.
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