Research Article

On connected graphs with integer-valued Q-spectral radius

Jesmina Pervin $^{\dagger},$ Lavanya Selvaganesh*, Smrati Pandey ‡

Department of Mathematical Sciences, Indian Institute of Technology (Banaras Hindu University),

Varanasi-221005, India

Received: 17 December 2023; Accepted: 15 September 2024 Published Online: 27 September 2024

Abstract: The *Q*-eigenvalues are the eigenvalues of the signless Laplacian matrix Q(G) of a graph *G*, and the largest *Q*-eigenvalue is known as the *Q*-spectral radius q(G) of *G*. The edge-degree of an edge is defined as the number of edges adjacent to it. In this article, we characterize the structure of simple connected graphs having integral *Q*-spectral radius. We show that the necessary and sufficient condition for such graphs to contain either a double star S_r^2 or its variation $S_r^{2,1}$ (having exactly one common neighbor between the central vertices) as a subgraph is that the maximum edge-degree is 2r, where r = q(G) - 3. In particular, we characterize all graphs that contain only double star as a subgraph when q(G) equals 8 and 9. Further, we characterize all the connected edge-non-regular graphs with a maximum edge-degree equal to 4 whose minimum *Q*-eigenvalue does not belong to the open interval (0, 1) and has an integral *Q*-spectral radius.

Keywords: edge-degree, integral graph, signless Laplacian matrix, Q-integral graph, Q-spectral radius.

AMS Subject classification: 05C50, 05C07

1. Introduction

All the graphs considered in this article are simple. Let G be a graph with vertex set V(G) and edge set E(G). We call a graph G as H-free if H is not a subgraph of G. For a vertex $x \in V(G)$, the degree, $d_G(x)$, is the number of vertices adjacent to x in G, and d_G^{\max} is used to denote the maximum degree of G. We use N(x) to denote the neighborhood of x. An edge in G with incident vertices x, y is denoted by xy.

^{*} Corresponding Author

^{© 2024} Azarbaijan Shahid Madani University

The cartesian product $G_1 \square G_2$ of two graphs G_1 and G_2 is defined by $V(G_1 \square G_2) = V(G_1) \times V(G_2)$ and $(x_1, y_1)(x_2, y_2) \in E(G_1 \square G_2)$ if and only if $x_1 = x_2$ and $y_1 y_2 \in E(G_2)$ or, $y_1 = y_2$ and $x_1 x_2 \in E(G_1)$. We define a double star S_r^2 obtained by taking two disjoint copies of star graph $K_{1,r}$ and adding an edge between the vertices of degree r. Consider $S_r^{2,1}$ as a variation of S_r^2 , where the vertices of degree r + 1 in S_r^2 have exactly one common neighbor, see Figure 3. We call the vertices of degree r + 1 in S_r^2 and $S_r^{2,1}$ as the central vertices. We use $\lambda_{\min}(B)$ to denote the minimum eigenvalue of a real symmetric square matrix B.

Let the adjacency matrix of G be A(G). G is called an *integral graph* if the spectrum of A(G) consists entirely of integers. The question about which graphs are integral dates back to Harary and Schwenk (1974) [7], who remarked that the general problem appeared intractable. For some results on integral graphs, see [2, 5].

Let D(G) be the diagonal matrix with $D(G)_{xx} = d_G(x)$, for any $x \in V(G)$. The matrix D(G) + A(G) is called the signless Laplacian matrix of G and is denoted by Q(G). The matrix Q(G) is positive semidefinite and irreducible. The eigenvalues of Q(G) are known as the Q-eigenvalues of the graph G. The Q-spectral radius q(G) of G is the largest Q-eigenvalue. A graph is called Q-integral if the spectrum of Q(G) consists entirely of integers. Several studies on signless Laplacian matrix of graphs and Q-integral graphs can be found in [1, 4, 6, 9, 13-18, 20, 21]. The edge-degree e-deg_G(e') of an edge $e' = xy \in E(G)$ is |N(x)| + |N(y)| - 2. We denote the maximum edge-degree of a graph G by e-deg_G^{max}. A graph G is called edge-regular if for all $e' \in E(G)$, e-deg_G(e') are equal and is denoted by e-deg_G, the edge-degree of G. If a graph is not edge-regular, we call it as edge-non-regular graph.

In 2008, Simić and Stanić [19] studied the connected Q-integral graphs with e- $deg_G^{\max} \leq 5$. In 2019, the connected Q-integral graphs with e- $deg_G^{\max} \leq 6$ was studied by Park and Sano [11]. They gave a structural classification for such graphs G when q(G) = 6. It is interesting that any connected Q-integral graph with e- $deg_G^{\max} = q(G) = 6$ always contains a double star S_3^2 as a subgraph. Though, it was proved in [10] that there is no connected Q-integral bipartite graph having S_3^2 as an induced subgraph.

Recently, in 2023 [12], the authors studied connected Q-integral graphs with e- $deg_G^{\max} \leq 8$ and gave a structural classification under the restriction q(G) = 7. They showed that S_4^2 is a subgraph of the connected Q-integral graph with e- $deg_G^{\max} = 8$. Besides, they also gave an upper bound and a lower bound for e- deg_G^{\max} in terms of q(G) for Q-integral graphs and proved that there does not exist any connected edge-non-regular Q-integral graph with $q(G) \leq 4$.

Moreover, it is quite surprising to observe that the double star S_r^2 is always a subgraph of connected Q-integral graph with e- $deg_G^{\max} = 2r$, where r = q(G) - 3; $q(G) \in$ $\{5, 6, 7\}$, see [11, 12, 19]. Eventually, a question arises about the existence of such a double star in a connected Q-integral graph for any value of q(G). Also, it is quite interesting to analyze, whether the condition of integral Q-spectrum can be relaxed. If so, then what conditions on its Q-spectrum are required for a graph to have S_r^2 as a subgraph. With the quest to answer the above questions, we study connected graphs with integral Q-spectral radius q(G) and e- $deg_G^{\max} = 2q(G) - 6$. We give a necessary and sufficient condition for such a connected graph G to contain $\mathcal{S}_r^2, \mathcal{S}_r^{2,1}$, where r = q(G) - 3, as a subgraph. Using this condition, we also characterize connected graphs having $q(G) \in \{8,9\}$ and $\lambda_{\min}(Q(G)) \notin (0,1)$ to contain only double star $\mathcal{S}_5^2, \mathcal{S}_6^2$ as a subgraph, respectively.

In 2008, Simić and Stanić [19] showed that the only connected edge-non-regular Qintegral graph with e- $deg_G^{\max} = 4$ is \mathcal{H}^* and $K_{1,2} \Box K_2$, see Figure 1. In this article, we extend this result by characterizing all such edge-non-regular connected graph G, when it is not Q-integral and instead have only integral q(G) and $\lambda_{\min}(Q(G)) \notin (0, 1)$.

2. Preliminaries

The principal submatrix $Q_p(H)$ of the signless Laplacian matrix Q(G), corresponding to a subset $H \subseteq V(G)$ is defined by

$$Q_p(H)_{xy} = \begin{cases} d_G(x) & x = y \\ 1 & xy \in E(G) \\ 0 & xy \notin E(G). \end{cases}$$

Let M be a complex matrix of order n described in the following block form

$$M = \begin{bmatrix} M_{11} & \dots & M_{1t} \\ \vdots & \ddots & \vdots \\ M_{t1} & \dots & M_{tt} \end{bmatrix}$$

where the blocks M_{ij} are $n_i \times n_j$ matrices for any $1 \le i, j \le t$ and $n = n_1 + \cdots + n_t$. For $1 \le i, j \le t$, let r_{ij} denote the average row sum of M_{ij} , i.e., r_{ij} is the sum of all entries in M_{ij} divided by the number of rows. Then $\mathcal{E}_M = (r_{ij})$ is called the *quotient* matrix of M. If, in addition, for each pair i, j, M_{ij} has a constant row sum, then \mathcal{E}_M is called the *quotient matrix* of M.

We use $B_{m \times n}$ to denote a matrix B of order $m \times n$ and B_n to denote a square matrix B of order n. The spectral radius of a square matrix B is denoted by $\rho(B)$ and the spectrum $\sigma(B)$ is the set of all eigenvalues of B. For any two non-negative matrices $B_m = (b_{ij})$ and $C_m = (c_{ij})$, we say B_m dominates C_m if $B_m \ge C_m$ (i.e., $b_{ij} \ge c_{ij}$ for all $i, j = 1, \ldots, m$). Note that, if B_m dominates C_m , then $\rho(B_m) \ge \rho(C_m)$.

We use J to mean a matrix with all entries equal to 1 and I to denote identity matrix. $K_{1,n}$ is a complete bipartite graph with 1 (resp. n) vertex in the first (resp. second) partite set. C_n is a cycle of order n and P_n denotes a path on n vertices.

We will use the well known theorems, namely Perron-Frobenius Theorem [[8], Theorem 8.4.4] and Interlacing Theorem [[8], Theorem 4.3.17] on eigenvalues to prove several results in this article. Now we state some important results that we require for our proofs.

Theorem 1. ([22], Theorem 2.3). Let \mathcal{E}_M be the equitable quotient matrix of a complex square matrix M. Then $\sigma(\mathcal{E}_M) \subseteq \sigma(M)$.

Theorem 2. ([22], Theorem 2.5). Let \mathcal{E}_M be the equitable quotient matrix of a nonnegative square matrix M. Then $\rho(\mathcal{E}_M) = \rho(M)$.

Theorem 3. ([3], Proposition 1.3.9). The number of connected bipartite components of G is equal to the multiplicity of the Q-eigenvalue 0 in G.

Theorem 4. ([11], Proposition 2.7). A connected graph G has $d_G(v) \leq \lceil q(G) - 1 \rceil$ for any $v \in V(G)$, where q(G) is the Q-spectral radius of G. If G has a vertex v having $d_G(v) = q(G) - 1$ and $q(G) \in \mathbb{Z}^+$, then $G = K_{1,q(G)-1}$.

Figure 1. Edge-non-regular connected graphs G having $q(G), \lambda_{\min}(Q(G)) \in \mathbb{Z}$ and $e - deg_G^{\max} = 4$

Theorem 5. ([19], Theorem 3.2). If G is a connected edge-non-regular Q-integral graph with maximum edge-degree 4, then G is one of the two graphs: \mathcal{H}^* and $K_{1,2} \square K_2$ (of Figure 1).

The following results give the bounds for the maximum edge-degree of a graph.

Theorem 6. ([12], Remark 3.2). For a connected edge-regular graph G, e-deg_G = q(G) - 2.

Theorem 7. ([12], Lemma 3.3, Remark 3.6). Let G be a connected edge-non-regular graph with $q(G) \in \mathbb{Z}$, then $q(G) - 1 \leq e \cdot deg_G^{\max} \leq 2q(G) - 6$.

Theorem 8. ([12], Remark 3.4, Remark 3.6). There does not exist any connected edge-non-regular graph with integral $q(G) \leq 4$. Moreover, if q(G) = 5, then $e - deg_G^{\max} = 4$.

3. Main Result

In this section, we study the structure of the graphs G with integral Q-spectral radius q(G) and maximum edge-degree 2q(G) - 6. Thus from now, we consider connected graph G having $q(G) \in \mathbb{Z}$.

For $q(G) \geq 5$, it can be observed from Theorem 4, Theorem 6 and Theorem 7 that $e - deg_G^{\max} = 2q(G) - 6$ if and only if G contains at least two adjacent vertices x and y with vertex degree $d_G(x) = d_G(y) = q(G) - 2$. For any two distinct vertices i, j of G, we use a_{ij} to denote the (i, j)-th entry of the adjacency matrix A(G). We use $a_{..}$ and $d_G(\cdot)$ to mean a_{xy} and $d_G(z)$ for suitable vertices x, y, and z.

Lemma 1. Let G be a connected graph with integral Q-spectral radius $q(G) \ge 5$. If $e \cdot deg_G^{\max} = 2q(G) - 6$, then the incident vertices on any edge with edge-degree 2q(G) - 6 can have at most one common neighbor.

Proof. Let $xy \in E(G)$ be any arbitrary edge with e-deg(xy) = 2q - 6, where q = q(G). Thus $d_G(x) = d_G(y) = q - 2$. Let $N(x) = \{y, 1', 2', \ldots, r'\}$ and $N(y) = \{x, 1'', 2'', \ldots, r''\}$, where r = q - 3, be the neighborhood sets of x and y, respectively.

Figure 2. x and y with m common neighbors, r = q - 3

Suppose x and y have exactly m common neighbors say, $1' = 1'', \ldots, m' = m''$, where $2 \le m \le r$. The principal submatrix $Q_p(H)$ of the signless Laplacian matrix Q(G) corresponding to the vertex set $H = N(x) \cup N(y) = \{x, y, 1', 2', \ldots, m', m + 1', \ldots, r', m + 1'', \ldots, r''\}$ is given by

$$Q_p(H) = \begin{bmatrix} q-2 & 1 & 1 & \dots & 1 & 1 & \dots & 1 & 0 & \dots & 0 \\ 1 & q-2 & 1 & \dots & 1 & 0 & \dots & 0 & 1 & \dots & 1 \\ 1 & 1 & d_G(1') & \dots & a_{1'm'} & a_{1'm+1'} & \dots & a_{1'r'} & a_{1'm+1''} & \dots & a_{1'r''} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & a_{1'm'} & \dots & d_G(m') & a_{m'm+1'} & \dots & a_{m'r'} & a_{m'm+1''} & \dots & a_{m'r''} \\ 1 & 0 & a_{1'm+1'} & \dots & a_{m'm+1'} & d_G(m+1') & \dots & a_{m+1'r'} & a_{m+1'm+1''} & \dots & a_{m'r''} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & a_{1'r'} & \dots & a_{m'r'} & a_{m+1'r'} & \dots & d_G(r') & a_{r'm+1''} & \dots & a_{r'r''} \\ 0 & 1 & a_{1'm+1''} & \dots & a_{m'm+1''} & a_{m+1'm+1''} & \dots & a_{r'm'+1''} & d_G(m+1'') & \dots & a_{m+1'r''} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & a_{1'r''} & \dots & a_{m'r''} & a_{m+1'r''} & \dots & a_{r'r''} & a_{m+1'r''} & \dots & d_G(r'') \end{bmatrix}$$

where $1 \leq d_G(\cdot) \leq r+1$, $d_G(i') \geq 2$ for $i = 1, \ldots, m$, and $a_{..} \in \{0, 1\}$. By Interlacing Theorem [[8], Theorem 4.3.17] and Perron-Frobinius Theorem [[8], Theorem 8.4.4], $\rho(Q_p(H)) \leq \rho(Q(G)) = q$. Then for any possible choices of $d_G(\cdot)$ and $a_{..}$, the matrix $Q_p(H)$ dominates the following matrix

$$M = \begin{bmatrix} q-2 & 1 & 1 & \dots & 1 & 1 & \dots & 1 & 0 & \dots & 0 \\ 1 & q-2 & 1 & \dots & 1 & 0 & \dots & 0 & 1 & \dots & 1 \\ 1 & 1 & 2 & \dots & 0 & 0 & \dots & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 0 & 0 & \dots & 2 & 0 & \dots & 0 & 0 & \dots \\ 1 & 0 & 0 & \dots & 0 & 1 & \dots & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \dots & 0 & 0 & \dots & 1 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 & \dots & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & 0 & \dots & 0 & 0 & \dots & 0 & 0 & \dots & 1 \end{bmatrix}.$$

The equitable quotient matrix of M is

$$\mathcal{E}_M = \begin{bmatrix} q - 1 & m & q - m - 3 \\ 2 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}.$$

The characteristics polynomial of \mathcal{E}_M is

$$\mathcal{P}_{\mathcal{E}_M}(x) = x^3 - (q+2)x^2 + (2q-m+2)x - 4.$$

Note that when x = q, we get

$$\mathcal{P}_{\mathcal{E}_M}(q) = -(m-2)q - 4 < 0, \quad \text{since } m \ge 2.$$

Also when x = q + 1, we have for $2 \le m \le q - 3$,

$$\mathcal{P}_{\mathcal{E}_M}(q+1) = (q^2 + 2q - 3) - m(q+1) \ge 4q > 0.$$

Thus we observe that $\mathcal{P}_{\mathcal{E}_M}(x)$ has a root in (q, q+1) and hence $\rho(\mathcal{E}_M) > q$. Since M is a non-negative matrix, by Theorem 2, we have $\rho(M) = \rho(\mathcal{E}_M) > q$. Further, $\rho(Q_p(H)) \ge \rho(M) > q$, which is a contradiction to $\rho(Q_p(H)) \le \rho(Q(G)) = q(G) = q$. Therefore, x and y can not have $m(2 \le m \le q-3)$ common neighbors in G. Thus, x and y can have at most 1 common neighbor in G. Hence the lemma holds.

Let S_r^2 be the double star, as shown in Figure 3(a), with $V(S_r^2) = \{x, y, 1', \dots, r', 1'', \dots, r''\}$ and $E(S_r^2) = \{xy, x1', \dots, xr', y1'', \dots, yr''\}$. Also, consider $S_r^{2,1}$, as shown in Figure 3(b), with $V(S_r^{2,1}) = \{x, y, 1', 2', \dots, r', 2'', \dots, r''\}$ and $E(S_r^{2,1}) = \{xy, x1', x2', \dots, xr', y1', y2'', \dots, yr''\}$.

Figure 3. Possible subgraphs of connected graphs G having $q(G) \in \mathbb{Z}$ and $e - deg_G^{\max} = 2r$, where r = q(G) - 3

Remark 1. Now consider the connected graph G with maximum edge-degree e- deg_G^{\max} equal to 2q(G) - 6. It can be verified from Theorem 4, Theorem 6 and Theorem 8 that there is no such graphs having q(G) = 1, 2, 3. Also, q(G) = 4 if and only if $G = K_{1,3}$ or $G = C_n$, $n \ge 3$.

Theorem 9. Let $G(\neq K_{1,3})$ be a connected graph with integral Q-spectral radius $q(G) \ge 4$. Then e-deg_G^{max} = 2r if and only if G contains S_r^2 or $S_r^{2,1}$ as a subgraph, where r = q(G) - 3.

Proof. By Remark 1, the theorem holds when q(G) = 4. Let $q(G) \ge 5$ and $xy \in E(G)$ be an edge with edge-degree 2r, where r = q(G) - 3. Let the neighborhood sets of x and y in G be $N(x) = \{y, 1', 2', \ldots, r'\}$ and $N(y) = \{x, 1'', 2'', \ldots, r''\}$, respectively. By Lemma 1, we have $i' \ne j''; i, j = 2, 3, \ldots, r$. Therefore, G contains at least one of $\mathcal{S}_r^2, \mathcal{S}_r^{2,1}$ as a subgraph.

Conversely, if G contains either S_r^2 or $S_r^{2,1}$, where r = q(G) - 3, as a subgraph, then e- $deg_G^{\max} \ge 2r$. From Theorem 6 and Theorem 7 for $q(G) \ge 4$, we have e- $deg_G^{\max} \le 2q(G) - 6 = 2r$. Hence the theorem holds.

Here with the help of Theorem 9, we give a necessary and sufficient conditions for connected graphs having $q(G) \in \{5, 6, 7, 8, 9\}$ and $\lambda_{\min}(Q(G)) \notin (0, 1)$ to contain $S^2_{q(G)-3}$ as a subgraph but not $S^{2,1}_{q(G)-3}$.

Lemma 2. Let G be a connected graph having q(G) = 5 and $\lambda_{\min}(Q(G)) \notin (0,1)$. Then e-deg^{max}_G = 4 if and only if G is $\mathcal{S}_2^{2,1}$ -free and contains \mathcal{S}_2^2 as a subgraph.

Proof. Let $e - deg_G^{\max} = 4$. On the contrary, suppose G has either $\mathcal{S}_2^{2,1}$ as a subgraph or is \mathcal{S}_2^2 -free. By Theorem 9, in both the cases $\mathcal{S}_2^{2,1}$ is a subgraph of G. Let $V(\mathcal{S}_2^{2,1}) = \{x, y, 1', 2', 2''\}$, with $d_G(x) = d_G(y) = 3$, $N(x) = \{y, 1', 2'\}$ and $N(y) = \{x, 1', 2''\}$. Clearly, G is non-bipartite as it contains a triangle and hence by Theorem 3, we have $\lambda_{\min}(Q(G)) \geq 1$. Now the principal submatrix $Q_p(V(\mathcal{S}_2^{2,1}))$ of Q(G) is given by

$$Q_p(V(\mathcal{S}_2^{2,1})) = \begin{bmatrix} 3 & 1 & 1 & 1 & 0 \\ 1 & 3 & 1 & 0 & 1 \\ 1 & 1 & d_G(1') & a_{1'2'} & a_{1'2''} \\ 1 & 0 & a_{1'2'} & d_G(2') & a_{2'2''} \\ 0 & 1 & a_{1'2''} & a_{2'2''} & d_G(2'') \end{bmatrix},$$
(3.1)

where $1 \leq d_G(\cdot) \leq 3$, $d_G(1') \geq 2$ and $a_{..} \in \{0, 1\}$. Using MATLAB computation, we find that the only possible values in (3.1) are $d_G(1') = d_G(2') = d_G(2'') = 2$, $a_{1'2'} = a_{1'2''} = a_{2'2''} = 0$, to have $\rho(Q_p(V(\mathcal{S}_2^{2,1}))) \leq 5$ and $\lambda_{\min}(Q_p(V(\mathcal{S}_2^{2,1}))) \geq 1$. Further, in this case, the spectral radius of $Q_p(V(\mathcal{S}_2^{2,1}))$ is equal to 5 and hence by Perron-Frobenius Theorem, we have $Q_p(V(\mathcal{S}_2^{2,1})) = Q(G)$, which is not true since $Q_p(V(\mathcal{S}_2^{2,1}))$ is not a signless Laplacian matrix. Therefore G is $\mathcal{S}_2^{2,1}$ -free and thus by Theorem 9, \mathcal{S}_2^2 is a subgraph of G.

Theorem 9, S_2^2 is a subgraph of G. Conversely, if G is $S_2^{2,1}$ -free containing S_2^2 as a subgraph, then e- $deg_G^{\max} \ge 4$. Also, e- $deg_G^{\max} \le 4$ when q(G) = 5. Thus, e- $deg_G^{\max} = 4$. Hence, the lemma holds.

Remark 2. For q(G) = 6 and 7, the above theorem was proved for *Q*-integral graphs in [11] and [12], respectively. But if we relax the condition on the graph to be *Q*-integral and instead having only the maximum *Q*-eigenvalue to be an integer and $\lambda_{\min}(Q(G)) \notin (0, 1)$, we get an analogous version of the above theorem. That is, for a connected graph *G* having q(G) = 6 and $\lambda_{\min}(Q(G)) \notin (0, 1)$, the same proof given in ([11], Lemma 3.13) can be used to show that if $e \cdot deg_G^{\max} = 6$, then S_3^2 is a subgraph of *G*. The converse can be easily verified by using Theorem 6 and Theorem 7.

Similarly, when q(G) = 7, the same proof given in ([12], Lemma 4.3, Lemma 4.4), will work to show that e- $deg_G^{\max} = 8$ if and only if S_4^2 is a subgraph of G.

Figure 4. Graph I^* having $e - deg_{I^*}^{\max} = 10$ and $\lambda_{\min}(Q(I^*)) = 0.2192$, where $q(I^*) = 8$

Remark 3. Note that in the above lemma and Remark 2, the condition $\lambda_{\min}(Q(G)) \notin (0,1)$ can not be relaxed. For example, let I^* be as given in Figure 4. Here, we have $e - deg_{I^*}^{\max} = 10$, $q(I^*) = 8$ and $\lambda_{\min}(Q(I^*)) = 0.2192$ while S_5^2 is not its subgraph but $S_5^{2,1}$ is a subgraph. Similarly, one can construct graphs for q(G) = 5, 6 and 7.

With the above remark, we next prove that $\mathcal{S}_5^{2,1}$ cannot be a subgraph of G for which q(G) = 8 and $\lambda_{\min}(Q(G)) \notin (0, 1)$.

Lemma 3. Let G be a connected graph having q(G) = 8 and $\lambda_{\min}(Q(G)) \notin (0,1)$. Then e-deg_G^{max} = 10 if and only if G is $S_5^{2,1}$ -free and contains S_5^2 as a subgraph.

Proof. Let $e - deg_G^{\max} = 10$. On the contrary, assume that either G is \mathcal{S}_5^2 -free or contains $\mathcal{S}_5^{2,1}$ as a subgraph. In both cases, $\mathcal{S}_5^{2,1}$ is a subgraph of G by Theorem 9.

Let $V(\mathcal{S}_5^{2,1}) = \{x, y, 1', 2', 3', 4', 5', 2'', 3'', 4'', 5''\}$, with $N(x) = \{y, 1', 2', 3', 4', 5'\}$ and $N(y) = \{x, 1', 2'', 3'', 4'', 5''\}$. The principal submatrix $Q_p(V(\mathcal{S}_5^{2,1}))$ of Q(G) is given by

where $1 \leq d_G(\cdot) \leq 6, d_G(1') \geq 2, a_{..} \in \{0, 1\}$. Note that $d_G(1') \in \{2, 3\}$, otherwise $\rho(Q_p(V(S_5^{2,1}))) > 8$. Suppose $d_G(1') = 3$, then we find by computation, the following holds:

- (i) $a_{1'i'} = a_{1'i''} = 0; \forall i = 2, 3, 4, 5;$
- (ii) $a_{i'j'} = a_{i'j'} = a_{i'l''} = 0; \forall i, j, l = 2, 3, 4, 5; i \neq j;$
- (iii) $d_G(i'), d_G(i'') \le 2; \forall i = 2, 3, 4, 5.$

For each of the possible choices of $d_G(\cdot)$, we have either $\lambda_{\min}(Q_p(V(S_5^{2,1}))) < 1$ or $\rho(Q_p(V(S_5^{2,1}))) > 8$, which is a contradiction to the fact that G is non-bipartite, q(G) = 8, and $\lambda_{\min}(Q(G)) \notin (0, 1)$. Thus $d_G(1') = 2$.

Now, the edge set of the induced subgraph $G[N(x) \setminus \{y\}]$ is either empty or contains exactly one edge, namely $\{2'3'\}$ (up to isomorphism), otherwise $\rho(Q_p(V(S_5^{2,1}))) > 8$. Suppose $E(G[N(x) \setminus \{y\}]) = \{2'3'\}$, then $E(G[V(S_5^{2,1}) \setminus \{x,y\}]) = \{2'3'\}$. Now for each possible choices of $d_G(\cdot)$, either $\lambda_{\min}(Q_p(V(S_5^{2,1}))) < 1$ or $\rho(Q_p(V(S_5^{2,1}))) > 8$, which is a contradiction to the fact that G is a non-bipartite graph with q(G) = $8, \lambda_{\min}(Q(G)) \notin (0, 1)$. Due to the symmetric structure of $S_5^{2,1}$, we have $E(G[N(x) \setminus \{y\}]) = E(G[N(y) \setminus \{x\}]) = \{\phi\}$.

Computationally, one can find that $|E(G[\{N(x) \cup N(y)\} \setminus \{x, y\}])| \leq 1$ otherwise the spectral radius of the corresponding principal submatrix in (3.2) is greater than 8. Suppose without loss of generality, $E(G[\{N(x) \cup N(y)\} \setminus \{x, y\}]) = \{5'5''\}$. Observe that, for the spectral radius of the corresponding $Q_p(V(S_5^{2,1}))$ in (3.2) to be 8, the admissible values of $d_G(\cdot)$ are $d_G(5') \leq 3, d_G(5'') = 2$, and $d_G(i'), d_G(i'') \leq 2$ for i = 2, 3, 4. However, for these choices of values of $d_G(\cdot)$, the least eigenvalue of $Q_p(V(S_5^{2,1}))$ is less than 1, which is a contradiction. Thus we have $E(G[\{N(x) \cup N(y)\} \setminus \{x, y\}]) = \{\phi\}$. Therefore, $Q_p(V(S_5^{2,1}))$ in (3.2) becomes

where $1 \leq d_G(\cdot) \leq 6$. The only possible choice of $d_G(\cdot)$ for which $\lambda_{\min}(Q_p(V(\mathcal{S}_5^{2,1}))) \geq 1$ and $\rho(Q_p(V(\mathcal{S}_5^{2,1}))) \leq 8$ for the matrix in (3.3) is $d_G(i') = d_G(i'') = 2$ (i = 2, 3, 4, 5). However, in this case, the spectral radius of this matrix equals 8. By Perron-Frobenius Theorem, $Q(G) = Q_p(V(\mathcal{S}_5^{2,1}))$, which is a contradiction since the matrix in (3.3) is not a signless Laplacian matrix.

Thus G is $\mathcal{S}_5^{2,1}$ -free and hence G contains \mathcal{S}_5^2 as a subgraph.

Conversely, if G is $\mathcal{S}_5^{2,1}$ -free containing \mathcal{S}_5^2 as a subgraph, then e- $deg_G^{\max} \ge 10$. Since q(G) = 8, we have e- $deg_G^{\max} \le 10$. Hence the lemma holds.

Lemma 4. Let G be a connected graph with q(G) = 9 and $\lambda_{\min}(Q(G)) \notin (0,1)$. Then e-deg_G^{max} = 12 if and only if G is $\mathcal{S}_6^{2,1}$ -free and contains \mathcal{S}_6^2 as a subgraph of G.

Proof. Suppose e- $deg_G^{\max} = 12$. Assume that G is either \mathcal{S}_6^2 -free or contains $\mathcal{S}_6^{2,1}$ as a subgraph. By Theorem 9, $\mathcal{S}_6^{2,1}$ is a subgraph of G in both the cases. Suppose $V(\mathcal{S}_6^{2,1}) = \{x, y, 1', 2', 3', 4', 5', 6', 2'', 3'', 4'', 5'', 6''\}$, with $N(x) = \{y, 1', 2', 3', 4', 5', 6'\}$ and $N(y) = \{x, 1', 2'', 3'', 4'', 5'', 6''\}$.

Let $H = V(\mathcal{S}_6^{2,1}) = N(x) \cup N(y)$ and $\Gamma = H \setminus \{x, y\}$. Suppose $Q_p(H)$ is a principal submatrix of Q(G) corresponding to $H = \{x, y, 1', 2', 3', 4', 5', 6', 2'', 3'', 4'', 5'', 6''\}$. Since G contains a triangle, G is non-bipartite and thus least eigenvalue of $Q_p(H)$ is at least 1 by Theorem 3. Then 1' is not adjacent to any vertices of Γ and $d_G(1') \in \{2, 3\}$ otherwise $\rho(Q_p(H)) > 9$. If $d_G(1') = 3$, then $a_{i'j''} = 0; i, j = 2, \ldots, 6$, for $\rho(Q_p(H))$ to be at most 9. Computationally, we observed that for every admissible choices of $1 \leq d_G(\cdot) \leq 7$ in $Q_p(H)$, either $\rho(Q_p(H)) > 9$ or $\lambda_{\min}(Q_p(H)) < 1$, which is a contradiction to the fact that G is a non-bipartite graph having q(G) = 9. Therefore, $d_G(1') = 2$.

Now we have the following claims.

Claim (i). All the edges in $G[\Gamma]$ are disjoint.

If the above claim is not true, then $G[\Gamma]$ must contain P_3 as a subgraph. Due to the symmetric structure of $\mathcal{S}_6^{2,1}$, we have the following choices for P_3 as a subset of $E(G[\Gamma])$: (i) $\{2'3', 3'4'\}$, (ii) $\{2'2'', 2'3'\}$, (iii) $\{2'2'', 2'3''\}$. In each of these 3 cases, we have $\rho(Q_p(H)) > 9$, a contradiction to our assumption that q(G) = 9. Thus all the edges of $G[\Gamma]$ are disjoint.

Claim (ii). $|E(G[\Gamma])| = \phi$.

We have following choices for the subset of $E(G[\Gamma])$ (up to symmetry):

(i) $\{2'2'', 3'3'', 4'4''\}$, (ii) $\{2'2'', 3'3'', 4'5'\}$, (iii) $\{2'2'', 3'4', 3''4''\}$, (iv) $\{2'3', 4'5', 6'6''\}$, (v) $\{2'3', 4'5', 2''3''\}$,(vi) $\{2'3', 4'5'\}$, (vii) $\{2'3', 2''3''\}$, (viii) $\{2'3', 6'6''\}$, (ix) $\{2'2'', 3'3''\}$, (x) $\{2'3'\}$, (xi) $\{2'2''\}$. For all the admissible choices of $1 \le d_G(\cdot) \le 7$, either the spectral radius of the corresponding $Q_p(H)$ is greater than 9 or the least eigenvalue is less than 1, which is a contradiction. Hence $|E(G[\Gamma])| = \phi$.

The matrix $Q_p(H)$ becomes

where $1 \leq d_G(\cdot) \leq 7$. Now the only admissible choices for which $\rho(Q_p(H)) \leq 9$ and $\lambda_{\min}(Q_p(H)) \geq 1$ of the corresponding $Q_p(H)$ in (3.4) is $d_G(i') = d_G(i'') =$ $2, i = 2, \ldots, 6$. Moreover, here we have $\rho(Q_p(H)) = 9$ and thus by Perron-Frobenius Theorem, we have $Q_p(H) = Q(G)$ which is a contradiction since the matrix in (3.4) does not represent a signless Laplacian matrix. Therefore G is $\mathcal{S}_6^{2,1}$ -free and hence \mathcal{S}_6^2 is a subgraph of G by Theorem 9.

Conversely, suppose G is $\mathcal{S}_6^{2,1}$ -free containing \mathcal{S}_6^2 as a subgraph. Then e- $deg_G^{\max} \geq 12$. From Theorem 7, we have e- $deg_G^{\max} \leq 12$. Hence the lemma holds.

Now we combine the above results from Lemma 2 to Lemma 4 in the following theorem.

Theorem 10. Let $G \neq K_{1,3}, C_3$ be a connected graph with $q(G) \in \{4, 5, 6, 7, 8, 9\}$ and $\lambda_{\min}(Q(G)) \notin (0, 1)$. Then $e \operatorname{-deg}_G^{\max} = 2q(G) - 6$ if and only if G is $\mathcal{S}^{2,1}_{q(G)-3}$ -free and contains $\mathcal{S}^2_{q(G)-3}$ as a subgraph.

Figure 5. S^*

From now, for simplicity, we use Γ to denote the set of vertices $N(x) \cup N(y) \setminus \{x, y\}$ in $\mathcal{S}_r^2, \mathcal{S}_r^{2,1}$ (given in Figure 3). Now, we will study the structure of the graphs under the condition when either $\mathcal{S}_{q(G)-3}^2$ or, $\mathcal{S}_{q(G)-3}^{2,1}$ is a subgraph of G. **Theorem 11.** Let G be a connected graph with integral Q-spectral radius $q = q(G) \ge 6$. If S_{q-3}^2 is a subgraph of G, then the following hold. (1) G[N(x)], G[N(y)] are C_{q-t} -free, $q \ge t+3, 3 \le t \le 5$. (2) Either $G = S^*$ (in Figure 5) or $d_{G[S_{q-3}^2]}(v) \le q-5$, $\forall v \in \Gamma$.

Proof. For r = q - 3, the principal submatrix $Q_p(V(\mathcal{S}_r^2))$ corresponding to the vertices $V(\mathcal{S}_r^2) = \{x, y, 1', \dots, r', 1'', \dots, r''\}$ of Q(G), is

$$Q_p(V(\mathcal{S}_r^2)) = \begin{bmatrix} q^{-2} & 1 & 1 & \dots & 1 & 0 & \dots & 0 \\ 1 & q^{-2} & 0 & \dots & 0 & 1 & \dots & 1 \\ 1 & 0 & d_G(1') & \dots & a_{1'r'} & a_{1'1''} & \dots & a_{1'r''} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & a_{1'r'} & \dots & d_G(r') & a_{r'1''} & \dots & a_{r'r''} \\ 0 & 1 & a_{1'1''} & \dots & a_{r'1''} & d_G(1'') & \dots & a_{1'r''} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & a_{1'r''} & \dots & a_{r'r''} & a_{1''r''} & \dots & d_G(r'') \end{bmatrix}$$
(3.5)

where $1 \le d_G(\cdot) \le q - 2, a_{..} \in \{0, 1\}.$

(1) We first prove that G[N(x)] is C_{q-t} -free for $q \ge t+3, 3 \le t \le 5$. Analogously, G[N(y)] is C_{q-t} -free follows.

Suppose G[N(x)] is not C_{q-t} -free, for $q \ge t+3$; $t \in \{3, 4, 5\}$. The matrix $Q_p(V(\mathcal{S}^2_{q-3}))$ in (3.5) dominates the following matrix

$$M = \begin{bmatrix} q-2 & 1 & J & J & O \\ 1 & q-2 & O & O & J \\ J & O & Q(C_{q-t}) + I_{q-t} & O & O \\ J & O & O & I_{t-3} & O \\ O & J & O & O & I_{q-3} \end{bmatrix}.$$
 (3.6)

Note that when t = 3, I_{t-3} becomes I_0 i.e., the rows and columns corresponding to I_0 does not exist in M. Therefore, the equitable quotient matrix of M in (3.6) is given by

$$\mathcal{E}_M = \begin{bmatrix} q-2 & 1 & q-3 & 0\\ 1 & q-2 & 0 & q-3\\ 1 & 0 & 5 & 0\\ 0 & 1 & 0 & 1 \end{bmatrix}.$$

The characteristics polynomial of \mathcal{E}_M is

$$\mathcal{P}_{\mathcal{E}_M}(x) = x^4 - (2q+2)x^3 + (q^2 + 6q - 10)x^2 + (-4q^2 + 10q - 4)x + 4q - 12.$$

Note that when x = q, we have

$$\mathcal{P}_{\mathcal{E}_M}(q) = -12 < 0.$$

Also when x = q + 1, we get

$$\mathcal{P}_{\mathcal{E}_M}(q+1) = 3q^2 - 8q - 27 > 0, \quad \text{for } q \ge 6.$$

Thus $\mathcal{P}_{\mathcal{E}_M}(x)$ has a root in (q, q+1) and therefore by interlacing theorem, the spectral radius $q(G) \ge \rho(Q_p(V(\mathcal{S}^2_{q-3}))) \ge \rho(M) = \rho(\mathcal{E}_M) > q$, which leads to a contradiction. For t = 4, 5, using similar techniques, we get q(G) > q, a contradiction to our assumption.

Therefore we conclude that G[N(x)] is C_{q-t} -free where $q(G) \ge t+3; t \in \{3,4,5\}$. Hence (1) holds.

(2) Suppose there exist a vertex, say $1' \in \Gamma$ such that $d_{G[\mathcal{S}^2_{q-3}]}(1') \geq q-4$. Assume that 1' is adjacent to at least m $(0 \leq m \leq q-4)$ vertices of $N(y) \cap \Gamma$, say $1'', 2'', \ldots, m''$ and at least q-m-4 vertices of $N(x) \cap \Gamma$, say $2', \ldots, l'$, where l = q-m-3. For any admissible choices of $d_G(\cdot), a_{\ldots}$, the following matrix M is dominated by the principal submatrix $Q_p(V(\mathcal{S}^2_{q-3}))$

$$M = \begin{bmatrix} q-2 & 1 & 1 & J & J & 0 & 0 \\ 1 & q-2 & 0 & 0 & 0 & J & J \\ 1 & 0 & q-3 & J & 0 & J & 0 \\ J & 0 & J & 2I_{q-m-4} & 0 & 0 & 0 \\ J & 0 & 0 & 0 & I_m & 0 & 0 \\ 0 & J & J & 0 & 0 & 0 & 2I_m & 0 \\ 0 & J & 0 & 0 & 0 & 0 & 0 & I_{q-m-3} \end{bmatrix}.$$
(3.7)

Now we have the following cases according to the values of m.

Case 2.1. m = 0.

Using similar techniques as in (1), we get that the equitable quotient matrix \mathcal{E}_M of M in (3.7) has an eigenvalue greater than q. Thus $\rho(Q_p(V(\mathcal{S}^2_{q-3}))) \ge \rho(M) = \mathcal{E}_M > q$, which is a contradiction to $\rho(Q(G)) = q$. Hence this case is not possible.

Case 2.2. $1 \le m \le q - 5$.

The equitable quotient matrix of M given in (3.7) is

$$\mathcal{E}_{M} = \begin{bmatrix} q-2 & 1 & 1 & q-m-4 & m & 0 & 0 \\ 1 & q-2 & 0 & 0 & 0 & m & q-m-3 \\ 1 & 0 & q-3 & q-m-4 & 0 & m & 0 \\ 1 & 0 & 1 & 2 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 2 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

The characteristics polynomial of \mathcal{E}_M is

$$\begin{aligned} \mathcal{P}_{\mathcal{E}_M}(x) &= x^7 + (1-3q)x^6 + (3q^2+q-4)x^5 + (-q^3-5q^2+6q+2m+14)x^4 \\ &+ (3q^3-8q-2m^2-14m-36)x^3 + (-2q^3-2mq^2-10q^2+2m^2q \\ &+ 12mq+56q+2m^2+16m-8)x^2 + (2mq^2+12q^2-2m^2q-4mq \\ &- 44q-8m^2-44m)x - 8mq - 8q + 8m^2 + 40m + 32. \end{aligned}$$

When x = q,

$$\mathcal{P}_{\mathcal{E}_M}(q) \le -4q^4 + 44q^3 - 104q^2 - 108q + 32 < 0, \quad \text{for} \quad q \ge 6.$$

At x = q + 1,

$$\mathcal{P}_{\mathcal{E}_M}(q+1) \ge q^4 + 2mq^3 + 55q^3 + 6mq^2 + 19q^2 + 4mq - 75q > 0, \quad \text{for} \quad q \ge 6.$$

Thus \mathcal{E}_M has an eigenvalue in (q, q + 1). Therefore we have $\rho(Q_p(V(\mathcal{S}^2_{q-3}))) > q$, a contradiction to our assumption that $\rho(Q(G)) = q$. Hence Case 2.2 is not a possible choice.

Case 2.3. m = q - 4.

Similar to Case 2.2, for $q \geq 7$, we arrive at a contradiction to our assumption that $\rho(Q(G)) = q$. When q = 6, M represents the matrix $Q(\mathcal{S}^*)$ and here $\rho(M) = \rho(\mathcal{E}_M) = 6$. Since $Q(G), Q_p(V(\mathcal{S}_{q-3}^2)), M$ are non-negative real symmetric matrices and $Q_p(V(\mathcal{S}_{q-3}^2)) \geq M$, by Perron-Frobenius Theorem, we have $6 = \rho(Q(G)) \geq \rho(Q_p(V(\mathcal{S}_{q-3}^2))) \geq \rho(M) = \rho(\mathcal{E}_M) = 6$. So, this implies $Q(G) = Q_p(V(\mathcal{S}_{q-3}^2)) = M = Q(\mathcal{S}^*)$.

From Cases 2.1-2.3, we conclude that either $d_{G[\Gamma]}(1') \leq q-5$ or $G = S^*$. Hence (2) holds.

Theorem 12. Let G be a connected graph with integral $q = q(G) \ge 10$. If $\mathcal{S}_{q-3}^{2,1}$ is a subgraph of G, then the following hold.

- (1) $G[N(x) \setminus \{1'\}], G[N(y) \setminus \{1'\}]$ are C_{q-4} -free.
- (2) $d_{G[S_{\alpha}^{2,1}]}(v) \leq q-4, \forall v \in \Gamma.$

Proof. For r = q - 3, the principal submatrix $Q_p(\mathcal{S}_r^{2,1})$ of Q(G) corresponding to the vertex set $V(\mathcal{S}_r^{2,1}) = \{x, y, 1', 2', \dots, r', 2'', \dots, r''\}$ is

$$Q_{p}(V(\mathcal{S}_{r}^{2,1})) = \begin{bmatrix} q^{-2} & 1 & 1 & 1 & \dots & 1 & 0 & \dots & 0 \\ 1 & q^{-2} & 1 & 0 & \dots & 0 & 1 & \dots & 1 \\ 1 & 1 & d_{G}(1') & a_{1'2'} & \dots & a_{1'r'} & a_{1'2'} & \dots & a_{1'r''} \\ 1 & 0 & a_{1'2'} & d_{G}(2') & \dots & a_{2'r'} & a_{2'2''} & \dots & a_{2'r''} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & a_{1'r'} & a_{2'r'} & \dots & d_{G}(r') & a_{r'2''} & \dots & a_{r'r''} \\ 0 & 1 & a_{1'2''} & a_{2'2''} & \dots & a_{r'r''} & d_{G}(2'') & \dots & a_{2'r''} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & a_{1'r''} & a_{2'r''} & \dots & a_{r'r''} & a_{2''r''} & \dots & d_{G}(r'') \end{bmatrix},$$
(3.8)

where $1 \le d_G(\cdot) \le q - 2, d_G(1') \ge 2, a_{..} \in \{0, 1\}.$

(1) Suppose $G[N(x) \cap (\Gamma \setminus \{1'\})]$ is not C_{q-4} -free. The principal submatrix $Q_p(V(\mathcal{S}_{q-3}^{2,1}))$ in (3.8) of Q(G) dominates the following matrix M.

$$M = \begin{bmatrix} q-2 & 1 & 1 & J & O \\ 1 & q-2 & 1 & O & J \\ 1 & 1 & 2 & O & 0 \\ J & O & O & Q(C_{q-4}) + I_{q-4} & O \\ O & J & O & O & I_{q-4} \end{bmatrix}.$$

The equivalent quotient matrix of M is

$$\mathcal{E}_M = \begin{bmatrix} q-2 & 1 & 1 & q-4 & 0\\ 1 & q-2 & 1 & 0 & q-4\\ 1 & 1 & 2 & 0 & 0\\ 1 & 0 & 0 & 5 & 0\\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}.$$

The characteristics polynomial of \mathcal{E}_M is

$$\mathcal{P}_{\mathcal{E}_M}(x) = x^5 - (2q+4)x^4 + (q^2+10q-6)x^3 + (-6q^2-2q+16)x^2 + (8q^2-18q+13)x - 12q+28.$$

For $q \geq 10$, we have $\mathcal{P}_{\mathcal{E}_M}(q) < 0$ and $\mathcal{P}_{\mathcal{E}_M}(q+1) > 0$. Therefore \mathcal{E}_M has an eigenvalue in (q, q+1). Thus $\rho(Q_p(V(\mathcal{S}_{q-3}^{2,1}))) \geq \rho(M) = \rho(\mathcal{E}_M) > q$, which is a contradiction to our assumption that $\rho(Q(G)) = q$. Hence $G[N(x) \cap (\Gamma \setminus \{1'\})]$ is C_{q-4} -free.

Analogously, it can be shown that $G[N(y) \cap (\Gamma \setminus \{1'\})]$ is also C_{q-4} -free, and hence (1) holds.

(2) We first prove the statement for the vertex 1' and then prove for any vertex v in $\Gamma \setminus \{1'\}$.

Case 2.1. $d_{G[\Gamma]}(1') \leq q-6$. Suppose $d_{G[\Gamma]}(1') \geq q-5$, that is, 1' is adjacent to at least m-1 $(1 \leq m \leq q-5)$ vertices of $N(y) \cap \Gamma$, say $2'', \ldots, m''$, and at least q-m-4 vertices of $N(x) \cap \Gamma$, say $2', \ldots, q-m-3'$.

For any admissible choices of $d_G(\cdot), a_{..}$, the principal submatrix $Q_p(V(\mathcal{S}_{q-3}^{2,1}))$ in (3.8) corresponding to the vertex set $V(\mathcal{S}_{q-3}^{2,1}) = N(x) \cup N(y) = \{x, y, 1', 2', \ldots, q - m - 3', q - m - 2', \ldots, q - 3', 2'', \ldots, m'', m + 1'', \ldots, q - 3''\}$ dominates the following matrix

$$M = \begin{bmatrix} q-2 & 1 & 1 & J & J & O & O \\ 1 & q-2 & 1 & 0 & O & J & J \\ 1 & 1 & q-3 & J & O & J & O \\ J & O & J & 2I_{q-m-4} & O & O & O \\ J & O & O & I_m & O & O \\ O & J & J & O & O & 2I_{m-1} & O \\ O & J & O & O & O & O & I_{q-m-3} \end{bmatrix}.$$
(3.9)

Now we have the following cases according to the values of m.

Case 2.1.1. m = 1.

The equitable quotient matrix of M in (3.9) is given by

$$\mathcal{E}_{M} = \begin{bmatrix} q-2 & 1 & 1 & q-5 & 1 & 0 \\ 1 & q-2 & 1 & 0 & 0 & q-4 \\ 1 & 1 & q-3 & q-5 & 0 & 0 \\ 1 & 0 & 1 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix},$$

which has an eigenvalue in (q, q+2). Therefore $\rho(Q_p(V(\mathcal{S}_{q-3}^{2,1}))) > q$, a contradiction to q(G) = q.

Case 2.1.2. $2 \le m \le q - 5$.

The equitable quotient matrix of M in (3.9) is

$$\mathcal{E}_M = \begin{bmatrix} q-2 & 1 & 1 & q-m-4 & m & 0 & 0 \\ 1 & q-2 & 1 & 0 & 0 & m-1 & q-m-3 \\ 1 & 1 & q-3 & q-m-4 & 0 & m-1 & 0 \\ 1 & 0 & 1 & 2 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

The characteristics polynomial of \mathcal{E}_M is

$$\begin{aligned} \mathcal{P}_{\mathcal{E}_M}(x) &= x^7 + (1-3q)x^6 + (3q^2+q-3)x^5 + (-q^3-5q^2+3q+19)x^4 + (3q^3+2q^2+2mq-14q-2m^2-6m-26)x^3 + (-2q^3-2mq^2-14q^2+2m^2q+4mq+80q+2m^2+6m-60)x^2 + (2mq^2+14q^2-2m^2q+5mq-63q-11m^2-3m+52)x - 12mq-4q+12m^2+36m+16. \end{aligned}$$

We have

$$\mathcal{P}_{\mathcal{E}_M}(q) \le -9q^4 + 79q^3 - 166q^2 - 170q + 136 < 0, \quad \text{for} \quad q \ge 10.$$

and

$$\mathcal{P}_{\mathcal{E}_M}(q+2) \ge 9q^4 + 241q^3 + 688q^2 + 280q - 108 > 0.$$

Thus $\mathcal{P}_{\mathcal{E}_M}(x)$ has a root in (q, q+2). Therefore $\rho(Q_p(V(\mathcal{S}_{q-3}^{2,1}))) > q)$, which is a contradiction to q(G) = q.

From Cases 2.1.1-2.1.2, we conclude that $d_{G[\Gamma]}(1') \leq q - 6$ and that 1' is adjacent to both x and y implies that $d_{G[S_{q-3}^{2,1}]} \leq q - 4$ and thus the Case 2.1 holds.

 $\textbf{Case 2.2. } d_{G[\mathcal{S}^{2,1}_{q-3}]}(v) \leq q-4, \, \forall v \in \Gamma \setminus \{1'\}.$

In fact, we will show that $d_{G[\Gamma \setminus \{1'\}]}(v) \leq q - 6$, $\forall v \in \Gamma \setminus \{1'\}$. Assume that there exists a vertex, say $2' \in \Gamma \setminus \{1'\}$ such that $d_{G[\Gamma \setminus \{1'\}]}(2') \geq q - 5$, that is, 2' is adjacent to at least m - 1 vertices of $N(y) \cap (\Gamma \setminus \{1'\})$ say, $2'', \ldots, m''$ $(1 \leq m \leq q - 4)$ and at least q - m - 4 vertices of $N(x) \cap (\Gamma \setminus \{1'\})$ say, $3', \ldots, q - m - 2'$.

For any admissible choices of $d_G(\cdot), a_{..}$, the following matrix M is dominated by the principal submatrix $Q_p(H)$ in (3.8)

$$M = \begin{bmatrix} q-2 & 1 & 1 & 1 & J & J & O & O \\ 1 & q-2 & 1 & 0 & O & O & J & J \\ 1 & 1 & 2 & 0 & O & O & O & O \\ 1 & 0 & 0 & q-4 & J & O & J & O \\ J & O & O & J & 2I_{q-m-4} & O & O & O \\ J & O & O & O & O & I_{m-1} & O & O \\ O & J & O & J & O & O & 2I_{m-1} & O \\ O & J & O & O & O & O & O & I_{q-m-3} \end{bmatrix}.$$
 (3.10)

Similar to Case 2.1, for $1 \leq m \leq q-4$, the equitable quotient matrix of M has an eigenvalue greater than q. Therefore $\rho(Q_p(V(\mathcal{S}_{q-3}^{2,1}))) > q$, a contradiction to q(G) = q. Thus we conclude that $d_{G[\Gamma \setminus \{1'\}]}(2') \leq q-6$. Also, since 2' is adjacent to x and may be adjacent to 1', we have that $d_{G[\mathcal{S}_{q-3}^{2,1}]}(2') \leq q-4$. Since $2' \in \Gamma \setminus \{1'\}$ is an arbitrary vertex, we have $d_{G[\mathcal{S}_{q-3}^{2,1}]}(v) \leq q-4$, $\forall v \in \Gamma \setminus \{1'\}$.

Hence, from Cases 2.1- 2.2, we have that
$$d_{G[\mathcal{S}_{q-3}^{2,1}]}(v) \leq q-4, \forall v \in \Gamma.$$

Finally, we end this section with a result which is an improvement to Theorem 2.5, where we identify all possible graphs when we relax the condition of Q-integrability and restrict that $\lambda_{\min}(Q(G)) \notin (0,1)$ and q(G) to be an integer.

Theorem 13. If G is a connected edge-non-regular graph with maximum edge-degree equal to 4 and $\lambda_{\min}(Q(G)) \notin (0,1), q(G) \in \mathbb{Z}$, then G is one of the following graphs.

- (a) $G = \mathcal{H}^*$, shown in Figure 1(a), is the only non-bipartite graph.
- (b) $G = K_{1,2} \Box K_2$.
- (c) G is a bipartite graph having S_2^2 or γ_1 (given in Figure 6(a)) as an induced subgraph.

Proof. From Theorem 3 and e- $deg_G^{\max} = 4$, we have q(G) = 5 and thus by Lemma 2, S_2^2 is a subgraph of G. Let $V(S_2^2) = \{x, y, 1', 2', 1'', 2''\}$, with $d_G(x) = d_G(y) = 3$. Let $N(x) = \{y, 1', 2'\}$ and $N(y) = \{x, 1'', 2''\}$. The principal submatrix $Q_p(V(S_2^2))$ of Q(G) is

$$Q_p(V(\mathcal{S}_2^2)) = \begin{bmatrix} 3 & 1 & 1 & 1 & 0 & 0 \\ 1 & 3 & 0 & 0 & 1 & 1 \\ 1 & 0 & d_G(1') & a_{1'2'} & a_{1'1''} & a_{1'2''} \\ 1 & 0 & a_{1'2'} & d_G(2') & a_{2'1''} & a_{2'2''} \\ 0 & 1 & a_{1'1''} & a_{2'1''} & d_G(1'') & a_{1''2''} \\ 0 & 1 & a_{1'2''} & a_{2'2''} & a_{1''2''} & d_G(2'') \end{bmatrix},$$
(3.11)

where $a_{..} \in \{0,1\}, 1 \leq d_G(\cdot) \leq 3$. If $G[\Gamma]$ contains P_3 as a subgraph, then we have the following two choices for $|E(G[\Gamma])|$ (up to the symmetry \mathcal{S}_2^2): (i) $\{1'2', 1'1''\}$; (ii) $\{1'1'', 1'2''\}$. In both of these cases, we have $\rho(Q_p(V(\mathcal{S}_2^2))) > 5$, a contradiction to q(G) = 5. Therefore all the edges in $G[\Gamma]$ are disjoint.

The possible choices for $E(G[\Gamma])$ are (up to the symmetry S_2^2): (i) $\{1'2', 1''2''\}$, (ii) $\{1'1'', 2'2''\}$, (iv) $\{1'1''\}$, (iv) $\{\phi\}$.

Case (i). $E(G[\Gamma]) = \{1'2', 1''2''\}.$

Computationally, one can observe that $d_G(i') = d_G(i'') = 2, i = 1, 2$ otherwise the spectral radius of the corresponding $Q_p(V(\mathcal{S}_2^2))$ in (3.11) becomes greater than 5. For this choice of $d_G(\cdot)$, we get $\rho(Q_p(V(\mathcal{S}_2^2))) = 5$. Therefore $Q(G) = Q_p(V(\mathcal{S}_2^2))$ implying $G = \mathcal{H}^*$.

Case (ii). $E(G[\Gamma]) = \{1'2'\}.$

The only possible choice of $d_G(\cdot)$ for which the spectral radius of the corresponding $Q_p(V(\mathcal{S}_2^2))$ in (3.11) is at most 5 and $\lambda_{\min}(Q_p(V(\mathcal{S}_2^2))) \ge 1$ is $d_G(i') = 2, d_G(i'') = 3, i = 1, 2$. Consider a neighbor of 1", other than y, in G, say w. Computationally, it can be observed that the spectral radius of the corresponding $Q_p(V(\mathcal{S}_2^2) \cup \{w\})$ is greater than 5, a contradiction to q(G) = 5. Thus Case (ii) is not possible.

Case (iii). $E(G[\Gamma]) = \{1'1'', 2'2''\}.$

The principal submatrix $Q_p(V(\mathcal{S}_2^2))$ in (3.11) becomes

$$Q_p(V(\mathcal{S}_2^2)) = \begin{bmatrix} 3 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & d_G(1') & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & d_G(2') & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & d_G(1'') & 0 \\ 0 & 1 & 0 & 1 & 0 & d_G(2'') \end{bmatrix},$$

where $d_G(\cdot) \in \{2,3\}$. Computationally, one can observe that $d_G(\cdot) = 2$ for $\rho(Q_p(V(\mathcal{S}_2^2)))$ to be at most 5. Moreover, in this case $\rho(Q_p(V(\mathcal{S}_2^2))) = 5$, and thus by Perron-Frobenious Theorem we have $Q(G) = Q_p(V(\mathcal{S}_2^2))$ implying $G = K_{1,2} \Box K_2$.

Case (iv). $E(G[\Gamma]) = \{1'1''\}.$

Computationally, one can observe that for each of possible choices of $d_G(\cdot)$, the spectral radius of the corresponding $Q_p(V(\mathcal{S}_2^2))$ in (3.11) becomes less than 1. Thus, G is bipartite containing γ_1 as an induced subgraph.

Case (v). $E(G[\Gamma]) = \{\phi\}.$

If $d_G(i') = d_G(i'') = 3, i = 1, 2$, then the spectral radius of the corresponding $Q_p(V(\mathcal{S}_2^2))$ in (3.11) is 5, and thus $Q(G) = Q_p(V(\mathcal{S}_2^2))$, which is a contradiction. Therefore at least one $d_G(\cdot) \leq 2$. However, here the least eigenvalue of the corresponding $Q_p(V(\mathcal{S}_2^2))$ in (3.11) becomes less than 1 implying G is bipartite. Also, \mathcal{S}_2^2 is an induced subgraph in this case.

From Cases (i)-(v), we conclude that the theorem holds.

Figure 6. The graphs γ_1 and J^* .

Remark 4. There exists at least one bipartite graph as mentioned in Theorem 13(c). We have constructed one such graph J^* , as shown in Figure 6(b), which has maximum edge-degree = 4, $q(J^*) = 5$ and whose minimum Q-eigenvalue is 0. Note that this graph in fact contains both S_2^2 and γ_1 as induced subgraphs.

4. Conclusion

In this article, we have studied the structure of simple connected graphs having integral Q-spectral radius. We have shown that the necessary and sufficient condition for such graphs to contain either a double star $S^2_{q(G)-3}$ or its variation $S^{2,1}_{q(G)-3}$ as a subgraph is that the maximum edge-degree is 2q(G) - 6.

However, based on our observations and proofs, we propose the following conjectures:

Conjecture 1. Every connected *Q*-integral graph having $q(G) \ge 4$ and maximum edgedegree equal to 2q(G) - 6 is $S^{2,1}_{q(G)-3}$ -free and contains $S^2_{q(G)-3}$ as a subgraph.

Conjecture 2. Every connected graph with integral Q-spectral radius $q(G) \ge 4$, $\lambda_{\min} \notin (0, 1)$ and maximum edge-degree 2q(G) - 6 is $\mathcal{S}^{2,1}_{q(G)-3}$ -free and contains $\mathcal{S}^{2}_{q(G)-3}$ as a subgraph.

Observe that Conjecture 2 implies Conjecture 1, that is, if Conjecture 2 is true then Conjecture 1 will also be true. In this context, we have thus shown here that the above conjectures are true when $4 \le q(G) \le 9$. The above conjectures remain open for $q(G) \ge 10$.

In addition, we have also characterized all the connected edge-non-regular graphs having maximum edge-degree equal to 4 whose Q-spectral radius is an integer and the minimum Q-eigenvalue does not belong to (0, 1).

Acknowledgements: Jesmina Pervin is supported by Grant No. 09/1217(0044)/2018-EMR-I from the Council of Scientific and Industrial Research (CSIR), New Delhi, India. We authors thank the anonymous reviewers for the suggestions to improve the manuscript.

Conflict of Interest: The authors declare that they have no conflict of interest.

Data Availability: Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

- C. Adiga, K. Das, and B.R. Rakshith, Some graphs determined by their signless Laplacian (distance) spectra, Electron. J. Linear Algebra 36 (2020), 461–472. https://doi.org/10.13001/ela.2020.4951.
- [2] K. Balińska, D. Cvetković, Z. Radosavljević, S. Simić, and D. Stevanović, A survey on integral graphs, Univ. Beograd. Publ. Elektrotehn. Fak. 13 (2002), 42–65.
- [3] A.E. Brouwer and W.H. Haemers, Spectra of Graphs, Springer New York, 2011.
- [4] D. Cvetković and S.K. Simić, Towards a spectral theory of graphs based on the signless Laplacian, II, Linear Algebra Appl. 432 (2010), no. 9, 2257–2272. https://doi.org/10.1016/j.laa.2009.05.020.
- [5] D.M. Cvetković, *Cubic integral graphs*, Univ. Beograd. Publ. Elektrotehn. Fak. (1975), no. 498/541, 107–113.
- [6] A.H. Ghodrati and M.A. Hosseinzadeh, Signless Laplacian spectrum of a graph, Linear Algebra Appl. 682 (2024), 257–267. https://doi.org/10.1016/j.laa.2023.11.007.
- [7] F. Harary and A.J. Schwenk, Which graphs have integral spectra?, Graphs and Combinatorics (Berlin, Heidelberg) (R.A. Bari and F. Harary, eds.), Springer Berlin Heidelberg, 1974, pp. 45–51. https://doi.org/10.1007/BFb0066434.
- [8] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, 2013.
- [9] I. Milovanović, E. Milovanović, M. Matejić, and S.B. Bozkurt Altındağ, Some

remarks on the sum of the inverse values of the normalized signless Laplacian eigenvalues of graphs, Commun. Comb. Optim. 6 (2021), no. 2, 259–271. https://doi.org/10.22049/cco.2021.26987.1173.

- [10] S. Oh, J.R. Park, J. Park, and Y. Sano, On Q-integral graphs with Q-spectral radius 6, Linear Algebra Appl. 654 (2022), 267–288. https://doi.org/10.1016/j.laa.2022.08.031.
- [11] J. Park and Y. Sano, On Q-integral graphs with edge-degrees at most six, Linear Algebra Appl. 577 (2019), 384–411. https://doi.org/10.1016/j.laa.2019.04.015.
- [12] J. Pervin and L. Selvaganesh, Connected Q-integral graphs with maximum edgedegree less than or equal to 8, Discrete Math. 346 (2023), no. 3, Article ID: 113265.

https://doi.org/10.1016/j.disc.2022.113265.

- [13] _____, On connected bipartite Q-integral graphs, Commun. Comb. Optim. (2024), In press. https://doi.org/10.22049/cco.2024.29215.1895.
- [14] S. Pirzada, On the conjecture for the sum of the largest signless Laplacian eigenvalues of a graph-a survey, J. Disc. Math. Appl. 8 (2023), no. 4, 235–245. https://doi.org/10.22061/jdma.2023.10290.1061.
- [15] S. Pirzada and S. Khan, On Zagreb index, signless Laplacian eigenvalues and signless Laplacian energy of a graph, Comput. Appl. Math. 42 (2023), no. 4, Article ID: 152.

https://doi.org/10.1007/s40314-023-02290-1.

- [16] S. Pirzada, B. Rather, R.U. Shaban, and T. Chishti, Signless Laplacian eigenvalues of the zero divisor graph associated to finite commutative ring Z_{p^{M1}q^{M2}}, Commun. Comb. Optim. 8 (2023), no. 3, 561–574. https://doi.org/10.22049/cco.2022.27783.1353.
- [17] S. Pirzada, B. Rather, R.U. Shaban, and S. Merajuddin, On signless Laplacian spectrum of the zero divisor graphs of the ring \mathbb{Z}_n , Korean J. Math. **29** (2021), no. 1, 13–24.

https://doi.org/10.11568/kjm.2021.29.1.13.

[18] S. Pirzada, R.U. Shaban, H.A. Ganie, and L. de Lima, On the Ky Fan norm of the signless Laplacian matrix of a graph, Comput. Appl. Math. 43 (2024), no. 1, Article ID: 26.

https://doi.org/10.1007/s40314-023-02561-x.

- [19] S.K. Simić and Z. Stanić, *Q-integral graphs with edge-degrees at most five*, Discrete Math. **308** (2008), no. 20, 4625–4634. https://doi.org/10.1016/j.disc.2007.08.055.
- [20] Z. Stanić, There are exactly 172 connected Q-integral graphs up to 10 vertices., Novi Sad J. Math. 37 (2007), no. 2, 193–205.
- [21] L. Xu and B. Zhou, Distribution of signless Laplacian eigenvalues and graph invariants, Linear Algebra Appl. 698 (2024), 589–602. https://doi.org/10.1016/j.laa.2024.06.019.
- [22] L. You, M. Yang, W. So, and W. Xi, On the spectrum of an equitable quotient

matrix and its application, Linear Algebra Appl. **577** (2019), 21–40. https://doi.org/10.1016/j.laa.2019.04.013.