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Abstract: The Q-eigenvalues are the eigenvalues of the signless Laplacian matrix
Q(G) of a graph G, and the largest Q-eigenvalue is known as the Q-spectral radius
q(G) of G. The edge-degree of an edge is defined as the number of edges adjacent to it.
In this article, we characterize the structure of simple connected graphs having integral
Q@-spectral radius. We show that the necessary and sufficient condition for such graphs
to contain either a double star S? or its variation s21 (having exactly one common
neighbor between the central vertices) as a subgraph is that the maximum edge-degree
is 2r, where r = ¢(G) — 3. In particular, we characterize all graphs that contain only
double star as a subgraph when ¢(G) equals 8 and 9. Further, we characterize all
the connected edge-non-regular graphs with a maximum edge-degree equal to 4 whose
minimum @Q-eigenvalue does not belong to the open interval (0,1) and has an integral
Q-spectral radius.

Keywords: edge-degree, integral graph, signless Laplacian matrix, Q-integral graph,
Q@-spectral radius.
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1. Introduction

All the graphs considered in this article are simple. Let G be a graph with vertex set
V(G) and edge set E(G). We call a graph G as H-free if H is not a subgraph of G.
For a vertex « € V(G), the degree, dg(x), is the number of vertices adjacent to x in
G, and dE®> is used to denote the mazimum degree of G. We use N(x) to denote
the neighborhood of x. An edge in G with incident vertices z,y is denoted by zy.
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2 On connected graphs with integer-valued @-spectral radius

The cartesian product G10G2 of two graphs G; and G» is defined by V(G:0G3) =
V(G1) x V(Ge) and (z1,y1)(x2,y2) € E(G10G2) if and only if 1 = x4 and y1y2 €
E(G3) or, y1 = y2 and 122 € E(G). We define a double star S? obtained by taking
two disjoint copies of star graph K, and adding an edge between the vertices of
degree 7. Consider S>! as a wvariation of S?, where the vertices of degree 7 + 1 in
S? have exactly one common neighbor, see Figure 3. We call the vertices of degree
r+1in Sf and Sf’l as the central vertices. We use Apin(B) to denote the minimum
etgenvalue of a real symmetric square matrix B.

Let the adjacency matrix of G be A(G). G is called an integral graph if the spectrum
of A(G) consists entirely of integers. The question about which graphs are integral
dates back to Harary and Schwenk (1974) [7], who remarked that the general problem
appeared intractable. For some results on integral graphs, see [2, 5].

Let D(G) be the diagonal matrix with D(G)., = dg(z), for any = € V(G). The
matrix D(G) + A(G) is called the signless Laplacian matriz of G and is denoted by
Q(G). The matrix Q(G) is positive semidefinite and irreducible. The eigenvalues of
Q(G) are known as the Q-eigenvalues of the graph G. The Q-spectral radius q(G) of
G is the largest @Q-eigenvalue. A graph is called Q-integral if the spectrum of Q(G)
consists entirely of integers. Several studies on signless Laplacian matrix of graphs
and Q-integral graphs can be found in [1, 4, 6, 9, 13-18, 20, 21]. The edge-degree
e-degi(e’) of an edge ¢ = zy € E(G) is |[N(x)|+ |N(y)| — 2. We denote the mazimum
edge-degree of a graph G by e-deg&x™*. A graph G is called edge-regular if for all
e’ € E(G), e-degg(e’) are equal and is denoted by e-degg, the edge-degree of G. If a
graph is not edge-regular, we call it as edge-non-reqular graph.

In 2008, Simié¢ and Stanié¢ [19] studied the connected @Q-integral graphs with e-
deggy®™ < 5. In 2019, the connected @Q-integral graphs with e-degt®* < 6 was stud-
ied by Park and Sano [11]. They gave a structural classification for such graphs
G when ¢(G) = 6. It is interesting that any connected @Q-integral graph with e-
deg®®* = q(G) = 6 always contains a double star S7 as a subgraph. Though, it was
proved in [10] that there is no connected Q-integral bipartite graph having S as an

induced subgraph.

Recently, in 2023 [12], the authors studied connected @-integral graphs with e-
degg® < 8 and gave a structural classification under the restriction ¢(G) = 7. They
showed that S? is a subgraph of the connected Q-integral graph with e-deg™ = 8.
Besides, they also gave an upper bound and a lower bound for e-deg@®™ in terms
of ¢(G) for Q-integral graphs and proved that there does not exist any connected
edge-non-regular Q-integral graph with ¢(G) < 4.

Moreover, it is quite surprising to observe that the double star S? is always a subgraph
of connected Q-integral graph with e-deg®* = 2r, where r = ¢(G) — 3; ¢(G) €
{5,6,7}, see [11, 12, 19]. Eventually, a question arises about the existence of such a
double star in a connected Q-integral graph for any value of ¢(G). Also, it is quite
interesting to analyze, whether the condition of integral @-spectrum can be relaxed.
If so, then what conditions on its Q-spectrum are required for a graph to have S? as

a subgraph.
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With the quest to answer the above questions, we study connected graphs with integral
@Q-spectral radius ¢(G) and e-degg®™ = 2¢(G) — 6. We give a necessary and sufficient
condition for such a connected graph G to contain S?, 5%, where r = ¢(G) — 3, as a
subgraph. Using this condition, we also characterize connected graphs having ¢(G) €
{8,9} and Amin(Q(G)) ¢ (0,1) to contain only double star S2,S2 as a subgraph,

respectively.

In 2008, Simi¢ and Stanié¢ [19] showed that the only connected edge-non-regular Q-
integral graph with e-degi®™ = 4 is H* and K 2l1K>, see Figure 1. In this article,
we extend this result by characterizing all such edge-non-regular connected graph G,
when it is not Q-integral and instead have only integral ¢(G) and Ayin (Q(G)) ¢ (0,1).

2. Preliminaries

The principal submatrix ), (H) of the signless Laplacian matrix Q(G), corresponding
to a subset H C V(G) is defined by

dg(x) =y
QP(H)wy =41 Ty € E(G)
0 xzy ¢ E(G).

Let M be a complex matrix of order n described in the following block form

M11 Ce Mlt
M=\ : oo

Mtl ‘e Mtt
where the blocks M;; are n; x n; matrices for any 1 <4,j <tand n=mn; +--- +n,.
For 1 < 4,5 <'t, let r;; denote the average row sum of M;;, i.e., ;; is the sum of all
entries in M;; divided by the number of rows. Then £y = (rij) is called the quotient

matriz of M. If, in addition, for each pair ¢, j, M;; has a constant row sum, then &y
is called the equitable quotient matriz of M.

We use B, xn» to denote a matrix B of order m x n and B,, to denote a square matrix
B of order n. The spectral radius of a square matrix B is denoted by p(B) and the
spectrum o (B) is the set of all eigenvalues of B. For any two non-negative matrices
By, = (bij) and Cy, = (¢45), we say By, dominates Cy, if By, > C, (i.e., b;j > ¢;; for
all4,j =1,...,m). Note that, if B,, dominates C,, then p(By,) > p(Cp,).

We use J to mean a matrix with all entries equal to 1 and I to denote identity matrix.
K1, is a complete bipartite graph with 1 (resp. n) vertex in the first (resp. second)
partite set. C,, is a cycle of order n and P,, denotes a path on n vertices.

We will use the well known theorems, namely Perron-Frobenius Theorem [[8], The-
orem 8.4.4] and Interlacing Theorem [[8], Theorem 4.3.17] on eigenvalues to prove
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several results in this article. Now we state some important results that we require
for our proofs.

Theorem 1. ([22], Theorem 2.3). Let Enr be the equitable quotient matriz of a complex
square matric M. Then o(Ep) C o(M).

Theorem 2. (/22], Theorem 2.5). Let En be the equitable quotient matriz of a non-
negative square matriz M. Then p(En) = p(M).

Theorem 3. (/3], Proposition 1.5.9). The number of connected bipartite components of
G is equal to the multiplicity of the Q-eigenvalue 0 in G.

Theorem 4.  ([11], Proposition 2.7). A connected graph G has da(v) < [q(G) — 1]
for any v € V(G), where q(G) is the Q-spectral radius of G. If G has a vertex v having
de(v) = ¢(G) — 1 and q(G) € Zt, then G = K1 4G)-1-

e 2

(a)yH™ (b)K1,20K,
Figure 1. Edge-non-regular connected graphs G having ¢(G), Amin (Q(G)) € Z and e-degs™* = 4

Theorem 5. ([19], Theorem 3.2). If G is a connected edge-non-regular Q-integral graph
with mazimum edge-degree 4, then G is one of the two graphs: H* and K1,20K> (of Figure

1).
The following results give the bounds for the maximum edge-degree of a graph.

Theorem 6. ([12], Remark 3.2). For a connected edge-regular graph G, e-degc =
q(G) — 2.

Theorem 7. ([12], Lemma 3.3, Remark 3.6). Let G be a connected edge-non-regular
graph with q(G) € Z, then q(G) — 1 < e-deg&™ < 2¢(G) — 6.

Theorem 8.  ([12], Remark 3.4, Remark 3.6). There does not exist any connected
edge-non-regular graph with integral q(G) < 4. Moreover, if ¢(G) = 5, then e-degd™ = 4.
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3. Main Result

In this section, we study the structure of the graphs G with integral Q-spectral radius
¢(G) and maximum edge-degree 2¢(G) — 6. Thus from now, we consider connected
graph G having ¢(G) € Z.

For ¢(G) > 5, it can be observed from Theorem 4, Theorem 6 and Theorem 7 that
e-deg™ = 2¢(G) — 6 if and only if G contains at least two adjacent vertices = and y
with vertex degree dg(z) = dg(y) = ¢(G) — 2. For any two distinct vertices ¢, j of G,
we use a;; to denote the (i, j)-th entry of the adjacency matrix A(G). We use a.. and

dg(+) to mean a,, and dg(z) for suitable vertices x,y, and z.

Lemma 1. Let G be a connected graph with integral Q-spectral radius q¢(G) > 5. If
e-degis®™ = 2q(QG) — 6, then the incident vertices on any edge with edge-degree 2q(G) — 6 can
have at most one common neighbor.

Proof. Let zy € E(G) be any arbitrary edge with e-deg(zy) = 2¢ — 6, where ¢ =
¢(G). Thus dg(z) = dg(y) = ¢ — 2. Let N(z) = {y,1,2/,...,7'} and N(y) =
{z,1”,2",...,r"}, where r = ¢ — 3, be the neighborhood sets of x and y, respectively.

Figure 2. 2z and y with m common neighbors, r = ¢ — 3

Suppose z and y have exactly m common neighbors say, 1’ = 17,...,m' = m”,
where 2 < m < r. The principal submatrix QP(H ) of the signless Laplacian matrix
Q(G) corresponding to the vertex set H = N(xz) U N(y) = {z,y,1',2',...,m',m +

V,...,r',m+1",...,7"} is given by

rq—2 1 1 1 1 1 0 0 T
1 g2 1 1 0 0 1 1
1 1 dc;'(ll) Q17! alszrl/ Qq7 .t a1/7n+1// Qqrp.11
1 1 Ayt dG(m') [ R Al g1 e oyttt
H o 1 0 Ay/mt1! o0 Amlmp1! dc(m-{-ll) oo Qo 1/t Qg 1 mp1?! e Qpp1/ !
Qp(H) =
1 0 Aurpt e oty iy e da(P) Qg e G
"
1 a1/m+1// am/erlu am+1/m+1// arzm+1// dG(erl ) am+1//7‘//
L 0 1 Qq/ 7 Ay ot a7n+1/7.// Qpt ot a7n+1//7_// dc;(’l“”) _
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where 1 <dg(:) <r+1,dg(i’) >2fori=1,...,m, and a_ € {0,1}. By Interlacing
Theorem [[8], Theorem 4.3.17] and Perron-Frobinius Theorem [[8], Theorem 8.4.4],
p(Qp(H)) < p(Q(G)) = g. Then for any possible choices of de(-) and a.., the matrix
Qp,(H) dominates the following matrix

rg—2 1 1 .11 ..10 ..0n°
1 ¢g-21..10...01 .1
1 1 2..00..00..0
i 10..20..00..0
M=|1 00Z01Z00:0
i 00..00..10..0
0 1 0..00..01..0
Lo i 0..00..00..1
The equitable quotient matrix of M is
g—1 m qg—m-—3
Ev = 2 2 0
1 0 1

The characteristics polynomial of £y, is
Pey (z) = 2° — (¢ +2)2% + (2¢ — m + 2)z — 4.
Note that when x = ¢, we get
Peyl@) =—(m—2)g—4<0, since m > 2.
Also when x = ¢+ 1, we have for 2 < m < ¢ — 3,
Pev(a+1) = (¢* +2¢—3) —m(qg+1) > 4q > 0.

Thus we observe that Pg,, (x) has a root in (¢,¢ + 1) and hence p(€p) > ¢. Since
M is a non-negative matrix, by Theorem 2, we have p(M) = p(Epr) > q. Further,
p(Qp(H)) > p(M) > ¢, which is a contradiction to p(Q,(H)) < p(Q(GQ)) = ¢(G) =q.
Therefore, z and y can not have m(2 < m < ¢ — 3) common neighbors in G. Thus, =
and y can have at most 1 common neighbor in G. Hence the lemma holds. O

Let S? be the double star, as shown in Figure 3(a), with V(S?) = {z, y,1/,
o' 17 "y and B(S?) = {ay,al!,.. oz’ yl”, ... yr”}. Also, consider
821 as shown in Figure 3(b), with V(S82') = {z,y,1/,2/,...,7, 2" ...,7"} and

E(82Y) = {zy, a1, 22", ... o'yl y2" ... yr"}.
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(2)s7 (b)s2?

Figure 3. Possible subgraphs of connected graphs G having ¢(G) € Z and e-deg®®* = 2r, where r =
a(G) -3

max

Remark 1. Now consider the connected graph G with maximum edge-degree e-degs
equal to 2¢(G) — 6. It can be verified from Theorem 4, Theorem 6 and Theorem 8 that there
is no such graphs having ¢(G) = 1,2,3. Also, ¢(G) =4 if and only if G = K13 or G = Cy,
n > 3.

Theorem 9. Let G(# Ki,3) be a connected graph with integral Q-spectral radius q¢(G) > 4.
Then e-deg®™™ = 2r if and only if G contains S? or S as a subgraph, where r = q(G) — 3.

Proof. By Remark 1, the theorem holds when ¢(G) = 4. Let ¢(G) > 5 and zy €
E(G) be an edge with edge-degree 2r, where r = ¢(G) — 3. Let the neighborhood
sets of z and y in G be N(z) = {y,1",2/,...,7'} and N(y) = {«,17,2",...,7"},
respectively. By Lemma 1, we have i’ # j"”;4,5 = 2,3,...,r. Therefore, G contains
at least one of 82, S?! as a subgraph.

Conversely, if G contains either S? or S%!, where r = ¢(G) — 3, as a subgraph,
then e-deg&m® > 2r. From Theorem 6 and Theorem 7 for ¢(G) > 4, we have e-
dega®™ < 2¢(G) — 6 = 2r. Hence the theorem holds. O

Here with the help of Theorem 9, we give a necessary and sufficient conditions for
connected graphs having ¢(G) € {5,6,7,8,9} and A\nin(Q(G)) ¢ (0,1) to contain
SS(G)_?’ as a subgraph but not 83(’2;)_3.

Lemma 2. Let G be a connected graph having ¢(G) = 5 and Anin(Q(G)) ¢ (0,1). Then

max

e-dege:®™ =4 if and only if G is Sg'l—free and contains S5 as a subgraph.

Proof.  Let e-deg® = 4. On the contrary, suppose G has either 822 Lasa subgraph
or is S2-free. By Theorem 9, in both the cases 822’1 is a subgraph of G. Let V(Sg’l) =
{z,y,1,2/,2"}, with dg(z) = da(y) = 3,N(z) = {y,1',2'} and N(y) = {z,1',2"}.
Clearly, G is non-bipartite as it contains a triangle and hence by Theorem 3, we have
Amin(Q(G)) > 1. Now the principal submatrix Q,(V(S5")) of Q(G) is given by

1 1 1 0
1

3
91 13 , 0 1
Qp(v(‘SQ, )) — 1 1dg(1) [11/2// aqrg , (31)
10 aqro/ dG(2 ) Qorort
01 Qo1 Qololt dG'(QH)
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where 1 < dg(:) < 3,dg(l’) > 2 and a_ € {0,1}. Using MATLAB computation, we
find that the only possible values in (3.1) are dg(1') = dg(2') = dg(2") = 2,a1/92 =
apgn = aggr = 0, to have p(Q,(V(S2"))) < 5 and Amin(Qp(V(S3"))) > 1. Fur-
ther, in this case, the spectral radius of Q,(V(S3")) is equal to 5 and hence by
Perron-Frobenius Theorem, we have Q,(V(S2'')) = Q(G), which is not true since
Q,(V(S2")) is not a signless Laplacian matrix. Therefore G is S5''~free and thus by
Theorem 9, S7 is a subgraph of G.

Conversely, if G is 822 1 free containing 83 as a subgraph, then e-deg%®* > 4. Also,
e-degy® < 4 when ¢(G) = 5. Thus, e-deg® = 4. Hence, the lemma holds. O]

Remark 2. For ¢(G) = 6 and 7, the above theorem was proved for Q-integral graphs in
[11] and [12], respectively. But if we relax the condition on the graph to be Q-integral and
instead having only the maximum Q-eigenvalue to be an integer and Amin(Q(G)) ¢ (0,1),
we get an analogous version of the above theorem. That is, for a connected graph G having
q(G) = 6 and Amin(Q(G)) ¢ (0,1), the same proof given in ([11], Lemma 3.13) can be used
to show that if e-deg@®* = 6, then S? is a subgraph of G. The converse can be easily verified
by using Theorem 6 and Theorem 7.

Similarly, when ¢(G) = 7, the same proof given in ([12], Lemma 4.3, Lemma 4.4), will work

max

to show that e-deg®®* = 8 if and only if S is a subgraph of G.

Figure 4. Graph I* having e — deg?™ = 10 and Amin(Q(I*)) = 0.2192, where ¢(I*) = 8

Remark 3. Note that in the above lemma and Remark 2, the condition Amin(Q(G)) ¢
(0,1) can not be relaxed. For example, let I* be as given in Figure 4. Here, we have e-
deg™ =10, q(I") = 8 and Amin(Q(I*)) = 0.2192 while S is not its subgraph but Sz is a
subgraph. Similarly, one can construct graphs for ¢(G) = 5,6 and 7.

With the above remark, we next prove that S§ 'L cannot be a subgraph of G for which
q(G) = 8 and Amin(Q(G)) ¢ (0,1).

Lemma 3. Let G be a connected graph having ¢(G) = 8 and Amin(Q(G)) ¢ (0,1). Then

max

e-dega™ = 10 if and only if G is Sg’l—free and contains SZ as a subgraph.

Proof. Let e-deg®® = 10. On the contrary, assume that either G is S2-free or
contains 852’1 as a subgraph. In both cases, 852’1 is a subgraph of G by Theorem 9.
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Let V(82" = {a,y,1',2,3,4',5,2",3",4" 5"}, with N(z) = {y,1,2/,3,4',5'} and
N(y) = {x,1,2",3",4” 5"}. The principal submatrix Q,(V(S2"")) of Q(G) is given
by

1 1 1 1 1 0 0 0 0 .y

6 1
16 0 0 0 0 1 1 1 1
11 dc(l/) aqro/ Qaqr3/ Qqryt aqrs/ Qq/ror1 Qqr311 Qqrytt Qqrgtt
1 0 ayy da (2" Qorzr Qoryr  Qoigr  Qorgrr  Qorarr Qorgrr Qorglt
10 aqrg/ Qgrg/l da (3’) Qgryt agrs/ Qsgrorr Qsgrarr Qsgrytt Qsgrgrt
Q (V(8271)) — 1 0 ayryr agry  agrys dg(4") Qursr Qurgr  Qgrgrr Qurgrr Qurgn
- Y
p 5 10 Qaqr5/ Qgr 5/ asgr5/ Ayl 5/ dG (5/) Qgrorr Qgrarr Qgrytt Qg
01 Qqrorr  Qolorr  Qglroll Qyrotr  Qglror dG(2”) Qqrr311 Qorrgrr Qotrgrt
01 Qqrg1r Qorgrr Qgral Qyrgtr Qgrgrr Qolrgl dG (3“) Qgrrgrr Qgrrgrt
01 Qqrgrr Qolrgrr Qgrygrt Qurgtt Qgryrr Qotrygrr Qglrylt dG(4”) Qyrr50t
LO 1 Qqrg1 Qolglt Qglglt Qurslt Qi Qotlgtr Qglisll Qullgl dg(f)”) .

(3.2)

where 1 S da(r) < 6,dg(1') > 2,a.. € {0,1}. Note that dg(1’) € {2,3}, otherwise

p(Q,(V(S2))) > 8. Suppose di(1') = 3, then we find by computation, the following
holds:

(1) Qyrqyr = Qqrir = 07VZ = 2, 3,47 5;
(11) Qgrjr = Qgrrjrr = Qgrpr = O,Vl,j,l =2,3,4,5;1 # 7;
(iii) de ('), da(i") < 2;Vi = 2,3,4, 5.

For each of the possible choices of de(-), we have either Apin(Q,(V(S2"))) < 1 or
p(Q,(V(S:"))) > 8, which is a contradiction to the fact that G is non-bipartite,
q(G) =38, and Amin(Q(G)) ¢ (0,1). Thus dg(1') = 2.

Now, the edge set of the induced subgraph G[N(z) \ {y}] is either empty or contains

exactly one edge, namely {23’} (up to isomorphism), otherwise p(Q,(V (S2'))) > 8.

Suppose E(G[N(x)\ {y}]) = {2'3'}, then E(G[V(S2")\ {z,y}]) = {23'}. Now for

each possible choices of dg(-), either Amin(Qp(V(S2))) < 1 or p(Q,(V(S21))) > 8,

which is a contradiction to the fact that G is a non-bipartite graph with ¢(G) =

8, Amin(Q(G)) ¢ (0,1). Due to the symmetric structure of S2'*, we have E(G[N(x) \

{y}]) = E(GIN(y) \ {z}]) = {¢}.

Computationally, one can find that |[E(G[{N(z) UN(y)}\ {z,y}])| <1 otherwise the

spectral radius of the corresponding principal submatrix in (3.2) is greater than 8.

Suppose without loss of generality, E(G[{N(x) UN(y)} \ {z,y}]) = {5'5”}. Observe

that, for the spectral radius of the corresponding Q,(V(S2")) in (3.2) to be 8, the

admissible values of dg(-) are dg(5') < 3,dg(5") = 2, and dg(i'),de(i") < 2 for

i = 2,3,4. However, for these choices of values of dg(-), the least eigenvalue of

Qp(V(S2")) is less than 1, which is a contradiction. Thus we have E(G[{N(z) U

N)}\ {z,y}]) = {¢}. Therefore, Q,(V(S2")) in (3.2) becomes
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-6 1 1 1 1 1 1 0 0 0 0 A
1 6 1 0 0 0 0 1 1 1 1
11 2 0 0 0 0 0 0 0 0
1 0 0dg(2) O 0 0 0 0 0 0
10 0 0 dg@®3) o0 0 0 0 0 0
21\y _ |1 0 0 0 0 de(4) 0 0 0 0 0
QP(V(S5 ))_ 10 0 O 0 0 dg(5) o0 0 0 0 ’ (3'3)
01 0 0 0 0 0 de(2’) 0 0 0
01 0 0 0 0 0 0 dg(3’) o 0
01 0 0 0 0 0 0 0 dg(4”) o
Lo 1. 0 0 0 0 0 0 0 0 dg(5"”)A

where 1 < dg(-) < 6. The only possible choice of d¢(-) for which Apin (Q,(V(S2h))) >
1 and p(Q,(V(S2"))) < 8 for the matrix in (3.3) is dg (i) = dg (i) = 2 (i = 2,3,4,5).
However, in this case, the spectral radius of this matrix equals 8. By Perron-Frobenius
Theorem, Q(G) = Q,(V(S2")), which is a contradiction since the matrix in (3.3) is
not a signless Laplacian matrix.

Thus G is Sg !_free and hence G contains 82 as a subgraph.

Conversely, if G is Sg’l—free containing S? as a subgraph, then e-deg®®* > 10. Since
¢(G@) = 8, we have e-deg@®* < 10. Hence the lemma holds. O

Lemma 4. Let G be a connected graph with ¢(G) = 9 and Amin(Q(G)) ¢ (0,1). Then

e-degz™ = 12 if and only if G is Sﬁz’l-free and contains S& as a subgraph of G.

Proof. Suppose e-deg®™ = 12. Assume that G is either S2-free or contains
S?)’l as a subgraph. By Theorem 9, Sg’l is a subgraph of G in both the
cases. Suppose V(S3') = {x,y,1/,2,3,4',5,6,2",3" 4",5" 6"}, with N(z) =
{y,1,2/,3', 45 ,6'} and N(y) = {x,1’,2",3",4" 5" 6"}.

Let H=V(S') = N(z) UN(y) and T = H \ {z,y}. Suppose Qp(H) is a principal
submatrix of Q(G) corresponding to H = {x,y,1’,2,3',4',5',6",2" 3" 4" 5" 6"}.
Since G contains a triangle, G is non-bipartite and thus least eigenvalue of Q,(H) is at
least 1 by Theorem 3. Then 1’ is not adjacent to any vertices of I and dg(1') € {2, 3}
otherwise p(Qp(H)) > 9. If dg(1’) = 3, then ay;» = 0;4,5 = 2,...,6, for p(Q,(H))
to be at most 9. Computationally, we observed that for every admissible choices
of 1 < dg(:) < 7in Qu(H), either p(Qu,(H)) > 9 or Apin(Qp(H)) < 1, which is a
contradiction to the fact that G is a non-bipartite graph having ¢(G) = 9. Therefore,
de(1) =2.

Now we have the following claims.

Claim (i). All the edges in G[I'] are disjoint.

If the above claim is not true, then G[I'] must contain P; as a subgraph. Due to
the symmetric structure of 862 ! we have the following choices for P; as a subset of
E(G[I)): (1) {2/9,3'4'}, (ii) {227,238}, (iil) {2/2”,2'3"}. In each of these 3 cases,
we have p(Q,(H)) > 9, a contradiction to our assumption that ¢(G) = 9. Thus all
the edges of G[I'] are disjoint.

Claim (ii). |E(G[T])| = ¢.

We have following choices for the subset of E(G[I']) (up to symmetry):
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(1) {2/2//’ 3/3//74/4//}, (li) {2/2//,3/3//74:/5/}7 (111) {2/2//7 3/4/’ 3//4//}’ (iv) {2/3/74/5/’ 6/6//}7
(v) {2'3,4'5",2"3"},(vi) {2/3/,4'5'}, (vii) {2'3',2"3"}, (vii) {2'3,6'6"}, (ix)
{2'2",3'3"}, (x) {2'3'}, (xi) {22"}. For all the admissible choices of 1 < dg(-) < 7,
either the spectral radius of the corresponding Q,(H) is greater than 9 or the least
eigenvalue is less than 1, which is a contradiction. Hence |E(G[I])| = ¢.

The matrix Q,(H) becomes

F7111 1 1 1 1 0 0 0 0 0 -
171 0 0 0 0 0 1 1 1 1 1
112 0 0 0 0 0 0 0 0 0 0
100da(2) 0 0 0 0 0 0 0 0 0
100 0 dag(3) O 0 0 0 0 0 0 0
100 0 0 de(d) 0 0 0 0 0 0 0
Q,(H) = 100 0 0 0 da(5) 0 0 0 0 0 0
P 100 0 0 0 0 de(6) 0 0 0 0 0
010 0 0 0 0 0 de(@”’) 0 0 0 0
010 0 0 0 0 0 0 dg(3) 0 0 0
010 0 0 0 0 0 0 0 de(d’) 0 0
010 0 0 0 0 0 0 0 0 de(5") 0
Lo1o o 0 0 0 0 0 0 0 0 dg(6")

(3.4)
where 1 < dg(-) < 7. Now the only admissible choices for which p(Q,(H)) < 9
and Apin(Qp(H)) > 1 of the corresponding Q,(H) in (3.4) is dg(i') = da(i”) =
2,i=2,...,6. Moreover, here we have p(Q,(H)) =9 and thus by Perron-Frobenius
Theorem, we have Q,(H) = Q(G) which is a contradiction since the matrix in (3.4)
does not represent a signless Laplacian matrix. Therefore G is Sg !_free and hence Sz
is a subgraph of G by Theorem 9.
Conversely, suppose G is Sg free containing 87 as a subgraph. Then e-deg™* > 12.
From Theorem 7, we have e-deg;™ < 12. Hence the lemma holds. O

Now we combine the above results from Lemma 2 to Lemma 4 in the following theo-
rem.

Theorem 10. Let G(# Ki,3,C3) be a connected graph with q(G) € {4,5,6,7,8,9} and
Amin(Q(G)) ¢ (0,1). Then e-degax™ = 2¢(G)—6 if and only if G is Sjég)_s—free and contains
SE(G),3 as a subgraph. O

Figure 5. s*

From now, for simplicity, we use I" to denote the set of vertices N(z) UN(y) \ {z,y}
in 82,821 (given in Figure 3). Now, we will study the structure of the graphs under
the condition when either 33(@73 or, Sj{é)% is a subgraph of G.
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Theorem 11. Let G be a connected graph with integral Q-spectral radius ¢ = q(G) > 6.
If Sg,g is a subgraph of G, then the following hold.
(1) G[N(z)], G[N(y)] are Cq—¢-free, g >t + 3,3 <t < 5.
(2) Either G = S (in Figure 5) or dgs2 5l (v) <qg—5,Vverl.
2

Proof. For r = q — 3, the principal submatrix Q,(V(S?)) corresponding to the
vertices V(S2) = {z,y,1,...,r",1",...,7"} of Q(G), is

rg—2 1 1 1 0 0 -
1 qg—2 0 0 1 1
1 0 dc(l/) cee Qi QI e Gl
oy | oor o T o
QP(V(ST)) - 1 0 ays .. dG(’r/) Qprq1r e ottt (35)
0 1 Qqrqr oo Qoprqrt dc;(lll) cee Q1
L 0 L ayrprr oo Qurprr Qqirpr dG(T‘”)—

where 1 < dg(-) < q—2,a. € {0,1}.

(1) We first prove that G[N(z)] is Cy_;-free for ¢ > t + 3,3 < t < 5. Analogously,
G[N(y)] is Cy—s-free follows.

Suppose G[N(z)] is not Cy_¢-free, for ¢ > t+3;t € {3,4,5}. The matrix Qp(V(Sg_?)))
in (3.5) dominates the following matrix

-2 1 J J O
1 g2 o o J
M=|J O QCqt)+Iq—¢ O O |, (3.6)
J o0 o Ii_s O
o @) O I43

Note that when ¢t = 3, I;_3 becomes I i.e., the rows and columns corresponding to Iy
does not exist in M. Therefore, the equitable quotient matrix of M in (3.6) is given
by
The characteristics polynomial of £ is

Pey () = 2t — (29 + 2)2° + (¢* + 6¢ — 10)2? + (—4¢* + 10q — 4)z + 4q — 12.
Note that when x = ¢, we have

Pe, (@) =—12 < 0.

Also when x = ¢+ 1, we get

PEM(Q‘*‘1)=3(12—8(]—27>0, for ¢ >6.
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Thus Pg,, (z) has a root in (g, ¢+ 1) and therefore by interlacing theorem, the spectral
radius ¢(G) > p(Q,(V(82_3))) = p(M) = p(Enr) > ¢, which leads to a contradiction.
For t = 4,5, using similar techniques, we get ¢(G) > ¢, a contradiction to our as-
sumption.

Therefore we conclude that G[N(z)] is Cy—s-free where ¢(G) > t + 3;t € {3,4,5}.
Hence (1) holds.

(2) Suppose there exist a vertex, say 1’ € T such that dG[33_3](1’) > g — 4. Assume
that 1’ is adjacent to at least m (0 < m < g—4) vertices of N(y)NT, say 17,2” ..., m”
and at least ¢ —m —4 vertices of N(x)NT, say 2/,...,l', where ] = ¢—m —3. For any
admissible choices of dg(+), a., the following matrix M is dominated by the principal
submatrix Q,(V(S2_3))

[

_
~“<OQo | »
[\v]
=}
QuO N | or
w
[V
,QN
QQQ! wOow
L
000w

[\
SEISEIINS
3 00000

w
)/

Q0w k|
QQs3

Now we have the following cases according to the values of m.

Case 2.1. m = 0.

Using similar techniques as in (1), we get that the equitable quotient matrix £y of M
in (3.7) has an eigenvalue greater than q. Thus p(Q,(V(S?_3))) > p(M) = Enr > ¢,
which is a contradiction to p(Q(G)) = ¢. Hence this case is not possible.

Case 2.2. 1< m<q-—5.
The equitable quotient matrix of M given in (3.7) is

q—2

Em =

OO = =
co~ooco3
—~ocooco3 o

The characteristics polynomial of £y, is

Per () = 27+ (1 —3¢)2® + (3¢* + ¢ — 4)2° + (—¢* — 5¢* + 6¢ + 2m + 14)2*
+ (3¢® — 8¢ — 2m? — 14m — 36)z> + (—2¢°> — 2mq* — 10¢* + 2m?q
+ 12mq + 56q + 2m? + 16m — 8)2” 4 (2mq* + 12¢* — 2m3q — 4mgq
— 44q — 8m?® — 44m)x — 8mq — 8q + 8m? + 40m + 32.

When z = ¢,
Pe,, (@) < —4¢* +44¢° —104¢> —108¢ +32 < 0, for ¢ > 6.
Atx=q+1,

Pey (@ +1) > ¢* + 2mg® + 55¢° + 6mg® + 19¢° + 4mq — 75¢ > 0,  for ¢ > 6.
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Thus £ has an eigenvalue in (¢, q + 1). Therefore we have p(Q,(V(S7_3))) > ¢, a
contradiction to our assumption that p(Q(G)) = ¢q. Hence Case 2.2 is not a possible
choice.

Case 2.3. m =q — 4.

Similar to Case 2.2, for ¢ > 7, we arrive at a contradiction to our assumption that
p(Q(G)) = q. When ¢ = 6, M represents the matrix Q(S*) and here p(M) =
p(Enr) = 6. Since Q(G), Q,(V(S7_3)), M are non-negative real symmetric matrices
and Q,(V(S?_3)) > M, by Perron-Frobenius Theorem, we have 6 = p(Q(G)) >

p(Qp(V(S7-3))) = p(M) = p(Err) = 6. So, this implies Q(G) = Qp(V(S]_3))= M=
Q(S8*). Therefore G = S*.

From Cases 2.1-2.3, we conclude that either dgr)(1’) < ¢ —5 or G = §*. Hence (2)
holds. O

Theorem 12. Let G be a connected graph with integral ¢ = q(G) > 10. If 83’_13 is a
subgraph of G, then the following hold.

(1) G[N(z) \ {1}, GIN(y) \ {1'}] are Cy_a-free.

(2) dG[szs] (’U) <qg—4,Vvel.

Proof. For r = g — 3, the principal submatrix Q,(S>!) of Q(G) corresponding to
the vertex set V(S21) = {x,y,1,2/,...,¢",2" ... r"}is

rq—2 1 1 1 1 0 0 7

1 qg—2 1 0 0 1 1

1 1 dc(l,) Aqrgr  wee Qqrpr Qqrgrt e Qqlprt
1 0 ayry dG(QI) v Qorpr Qorglr .. Qolprr

2,1\ _ :
Qp(V(S:7)) = T T (3-8)
1 0 Q7 ,.t Aol pt dG(T ) Qro11 Qpt ot
0 1 Qqrorr  Qololt e Qo dg(2”) wee Qott ot
L O 1 QAqrptt Qolptt eee @ttt Qoltl ot e dc(r”)_

where 1 < dg(-) < q—2,dg(1") > 2,a.. € {0,1}.

(1) Suppose G[N(z) N (I'\ {1I'})] is not Cy_s-free. The principal submatrix
Q,,(V(Ss’_lg)) in (3.8) of Q(G) dominates the following matrix M.

(@]
J
o
@]

QQrn~r~
QL Q00w

Q(Cq— +I<1—4

Iq,4
The equivalent quotient matrix of M is

g—2 1 1 g—4 0
1 g=2 1 0 g—4
Ev = 1 2 0 o0 |-
0
0

1
1 0
0 1
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The characteristics polynomial of £y is

Pey(2) = 2° — (2 + 4)z* + (¢° + 10g — 6)2° + (—6¢° — 2¢ + 16)2> + (8¢* — 18¢
+ 13)x — 12¢ + 28.

For ¢ > 10, we have Pg¢,, (¢) < 0 and Pg¢,,(¢+1) > 0. Therefore £y, has an eigenvalue
in (¢g,¢+1). Thus p(Qp(V(Sg’_lS))) > p(M) = p(Enr) > g, which is a contradiction to
our assumption that p(Q(G)) = q. Hence G[N(z) N (I'\ {1'})] is Cy_4-free.
Analogously, it can be shown that G[N(y) N (' \ {1'})] is also Cy_s-free, and hence
(1) holds.

(2) We first prove the statement for the vertex 1’ and then prove for any vertex v in
r\{1}.

Case 2.1. dgr(1') < g — 6.

Suppose dgrj(1') > ¢ — 5, that is, 1’ is adjacent to at least m — 1 (1 < m < ¢ —5)
vertices of N(y)NT, say 2”,...,m"”, and at least ¢ — m — 4 vertices of N(z) N T, say
2 ..., q—m-—3.

For any admissible choices of dg(-), a., the principal submatrix QP(V(qu’_lg)) in (3.8)
corresponding to the vertex set V(SQ’1 )= N(x)UN(y) = {z,y,1,2',...,qg — m —

q—3
3.qg—m—=2"...,¢=32" ...om'" m+1" ..., ¢—3"} dominates the following matrix
-2 1 1 J J 0 o
1 q-2 1 o o0 J J
1 1 ¢3 J O J o
M=1|J o0 J 2l_pma4s0 O o . (3.9)
J O o o I, O o
o J J O 02,1 O
O J O O O O I

Now we have the following cases according to the values of m.

Case 2.1.1. m = 1.
The equitable quotient matrix of M in (3.9) is given by

-2 1 1 ¢51 0

1 g2 1 0 0 g4

— 1 1 ¢g—3 ¢g—=5 0 0
Em 1 0 1 2 0 o0 |

1 0 0 0 1 0

0 1 0 0 0 1

which has an eigenvalue in (g, ¢ + 2). Therefore p(Qp(V(Sg’_l3))) > ¢, a contradiction
to ¢(G) = q.

Case 2.1.2. 2<m<q—5.

The equitable quotient matrix of M in (3.9) is

2

|
I

q

Q
HROO | —
[
Q
w
2 2
| |
|
'

OoOROR | R

Ev =

OORF K~ |
coconv3I ol
corocoo3
OMOO| | o
~ocooco3 o
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The characteristics polynomial of £y is

Pey (@) = 27 + (1= 3¢)2° + (3¢> + ¢ — 3)2° + (=¢° — 5¢° + 3¢+ 19)a™ + (3¢° + 2¢°
+ 2mq — 14q — 2m? — 6m — 26)2°® + (—2¢° — 2mq® — 14¢® + 2m?q + 4mgq
+ 80q + 2m? + 6m — 60)x? + (2mq* + 14¢* — 2m?q + 5mq — 63q — 11m?
— 33m 4 52)x — 12mq — 4q + 12m* + 36m + 16.

‘We have
Pey (@) < —9¢* +79¢° — 166¢> — 170¢ + 136 < 0,  for ¢ > 10,
and
Pey (q+2) > 9q" + 241¢° + 688¢° + 280¢ — 108 > 0.

Thus Pg,, (z) has a root in (¢,¢ + 2). Therefore p(Qp(V(Sj’_l?,))) > ¢, which is a
contradiction to ¢(G) = g.

From Cases 2.1.1-2.1.2, we conclude that dgrj(1’) < ¢ — 6 and that 1’ is adjacent to
both z and y implies that dG[szg} < ¢ — 4 and thus the Case 2.1 holds.

Case 2.2. dG[ngg](v) <g—4,Yvel\{l'}

In fact, we will show that dgir\1/3)(v) < ¢ — 6,V € T'\ {1'}. Assume that there
exists a vertex, say 2’ € I'\ {1’} such that dgr\1111(2) > ¢ — 5, that is, 2 is adjacent
to at least m — 1 vertices of N(y) N (T'\ {1'}) say, 2”,...,m” (1 <m < g—4) and at
least ¢ — m — 4 vertices of N(x) N (I'\ {1'}) say, 3/,...,¢g—m —2".

For any admissible choices of dg(-),a.., the following matrix M is dominated by the
principal submatrix Q,(H) in (3.8)
-2 1 1 1 J J o o
1 ¢-21 0 o) o) J J
Lo 64 9 6 9 0
q— .
M=|7 o0 o0 J 20y ma O O o (3.10)
J O O O o Inm-1 O [0
o J o0 J ) O 2,1 O
o J O O 10) O O Iyms

Similar to Case 2.1, for 1 < m < ¢q — 4, the equitable quotient matrix of M has
an eigenvalue greater than gq. Therefore p(Q,,(V(Sg’_lg))) > ¢, a contradiction to
q(G) = q. Thus we conclude that dgr\1111(2") < ¢ — 6. Also, since 2’ is adjacent to
x and may be adjacent to 1, we have that dG[S§f3](2/> <g—4. Since 2’ e "\ {1'} is
an arbitrary vertex, we have dG[ijg] (v)<qg—4,Yvel\{l'}.

Hence, from Cases 2.1- 2.2, we have that dG[SZ,l ](v) <qg—4,Vverl. O
q—3
Finally, we end this section with a result which is an improvement to Theorem 2.5,

where we identify all possible graphs when we relax the condition of Q-integrability
and restrict that Anin(Q(G)) € (0,1) and ¢(G) to be an integer.
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Theorem 13. If G is a connected edge-non-reqular graph with mazimum edge-degree
equal to 4 and Amin(Q(Q)) ¢ (0,1),¢(GQ) € Z, then G is one of the following graphs.

(a) G =H", shown in Figure 1(a), is the only non-bipartite graph.
(b) G = K 20K>.

(c) G is a bipartite graph having S3 or 1 (given in Figure 6(a)) as an induced subgraph.

Proof.  From Theorem 3 and e-degx®* = 4, we have ¢(G) = 5 and thus by Lemma
2, 82 is a subgraph of G. Let V(S83) = {x,y,1',2/,1”,2"}, with dg(z) = da(y) = 3.
Let N(z) = {y,1’,2'} and N(y) = {x,1”,2"}. The principal submatrix Q,(V(S3)) of
Q) is

1 1 1 0 0

3
13 , 0 1 1
10 dc(l ) Qaqro/ ayrqn Qqrot
2\) —
QP(V(S2)) =10 apy da(2) agyr ayor |, (3'11)
0 1 aym agryn da (1) aqrrgm
01 Qqro1r Qorgrr  Qqliglt dg(Q”)

where a € {0,1},1 < dg(-) < 3. If G[I'] contains P3 as a subgraph, then we have
the following two choices for |E(G[I])| (up to the symmetry S3): (i) {1'2/,1'1"}; (ii)
{1'1”,172"}. In both of these cases, we have p(Q,(V(83))) > 5, a contradiction to
q(G) = 5. Therefore all the edges in G[I'] are disjoint.

The possible choices for E(G[I]) are (up to the symmetry S3): (i) {1'2/,172"}, (ii)
{172}, (iii) {1'1”,2'2"}, (iv) {1'1"}, (iv) {¢}.

Case (i). E(G[]) = {1'2/,1"2"}.

Computationally, one can observe that dg(i') = dg(i”) = 2,i = 1,2 otherwise the
spectral radius of the corresponding Q,(V(S3)) in (3.11) becomes greater than 5.
For this choice of dg(-), we get p(Q,(V(S3))) = 5. Therefore Q(G) = Q,(V(S3))
implying G = H*.

Case (ii). E(G[I]) = {1'2'}.

The only possible choice of dg(+) for which the spectral radius of the corresponding
Qp(V(82)) in (3.11) is at most 5 and Amin(Qp(V(S3))) > 1 is dg(i') = 2,dg(i") =
3,45 = 1,2. Consider a neighbor of 1”, other than y, in G, say w. Computationally,
it can be observed that the spectral radius of the corresponding Q,(V (S3) U {w}) is
greater than 5, a contradiction to ¢(G) = 5. Thus Case (ii) is not possible.

Case (iii). E(G[I)) = {1'1",2'2"}.

The principal submatrix Q,(V(S%)) in (3.11) becomes

Qp(V(83)) =

OO+ KFEFW
== O O W
<9
Q

where dg(-) € {2,3}. Computationally, one can observe that dg(-) = 2 for
p(Q,(V(S3)) to be at most 5. Moreover, in this case p(Qp( (82))) = 5, and thus by
Perron-Frobenious Theorem we have Q(G) = Q,(V(83)) implying G = K1 s0K>.
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Case (iv). E(G[I) = {1'1"}.

Computationally, one can observe that for each of possible choices of dg(-), the spec-
tral radius of the corresponding Q,(V(S3)) in (3.11) becomes less than 1. Thus, G is
bipartite containing v; as an induced subgraph.

Case (v). E(G[T']) = {¢}.

If dg(i') = dg(i”) = 3,i = 1,2, then the spectral radius of the corresponding
Qp(V(S82)) in (3.11) is 5, and thus Q(G) = Q,(V(S2)), which is a contradiction.
Therefore at least one dg(-) < 2. However, here the least eigenvalue of the corre-
sponding @Q,(V(83)) in (3.11) becomes less than 1 implying G is bipartite. Also, S3
is an induced subgraph in this case.

From Cases (i)-(v), we conclude that the theorem holds. O

(a)m (b)J*

Figure 6. The graphs ~v; and J*.

Remark 4. There exists at least one bipartite graph as mentioned in Theorem 13(c). We
have constructed one such graph J*, as shown in Figure 6(b), which has maximum edge-
degree = 4, q(J*) = 5 and whose minimum Q-eigenvalue is 0. Note that this graph in fact
contains both S and +; as induced subgraphs.

4. Conclusion

In this article, we have studied the structure of simple connected graphs having in-
tegral Q-spectral radius. We have shown that the necessary and sufficient condition
for such graphs to contain either a double star SE(G%S or its variation Sj(’g)%,, as a
subgraph is that the maximum edge-degree is 2¢(G) — 6.

However, based on our observations and proofs, we propose the following conjectures:

Conjecture 1. Every connected Q-integral graph having ¢(G) > 4 and maximum edge-

degree equal to 2¢(G) — 6 is Sj(‘é)_3—free and contains SE(G)_?, as a subgraph.

Conjecture 2. Every connected graph with integral Q-spectral radius ¢(G) > 4, Amin ¢

(0,1) and maximum edge-degree 2¢(G)—6 is Sj(’é)fg—free and contains 33(0)73 as a subgraph.
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Observe that Conjecture 2 implies Conjecture 1, that is, if Conjecture 2 is true then
Conjecture 1 will also be true. In this context, we have thus shown here that the
above conjectures are true when 4 < ¢(G) < 9. The above conjectures remain open
for ¢(G) > 10.

In addition, we have also characterized all the connected edge-non-regular graphs
having maximum edge-degree equal to 4 whose @Q-spectral radius is an integer and
the minimum Q-eigenvalue does not belong to (0,1).
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