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Abstract: Consider a graph σ(V, E) with nodes V and edges E is a connected

graph with some pebbles scattered over its nodes V. By removal of two pebbles from
one node and placing one pebble to an adjacent node is a pebbling move. A monophonic

pebbling number, λM (σ, v), of a node v of a graph σ is the least number m such that

minimum of one pebble could be shifted to v by a sequence of pebbling shifts for
any distribution of λM (σ, v) pebbles on the nodes of σ using monophonic path. A link

between the nodes x and y is an x-y path which consists of no chords and is monophonic.
The monophonic pebbling number of a graph σ is the highest λM (σ, v) among all the

nodes notated as λM (σ). For the first time, we calculate the monophonic pebbling

number on families of neural networks such as probabilistic neural networks(PNNs),
convolutional neural networks(CVNNs), modular neural networks(MNNs), generalized

regression neural networks(GRNNs) and Hopfield neural networks(HNNs) and discuss

their applications. We give the generalized algorithm to find the monophonic pebbling
number of any graph σ.

Keywords: Monophonic pebbling number, (PNNs), (CVNNs), (MNNs), (GRNNs)
and (HNNs).
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1. Introduction

Pebbling is a recent development in graph theory and combinatorics. The pebbling

game was first established by Lagarias and Saks as a device to solve a specific prob-

lem in number theory. In 1989 Chung [3] established the concept of pebbling into the
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2 The monophonic pebbling number of neural networks

literature. Hurlbert [7] gave an overview of graph pebbling. The concept has grown

in two decades as a network optimization model for the transportation of consumable

resources. When two pebbles are deleted from one node, one of the pebbles will be

shifted to the adjacent node and the other pebble is lost, similar to a toll. The mono-

phonic length between two points x and y is the length of the largest x-y monophonic

path, denoted by dM (x, y) in σ. For any two nodes x and y, in a connected graph σ,

the x− y path is said to be a monophonic path if it does not contain any chords [20].

The line segment which joins two nodes x and y in a curve is said to have a chord.

In graph theory approach neurons are called nodes/vertices and edges are called con-

nections between them. The term neural network was coined by neurophysiologist

McCulloch in 1943. A neural network is a series of algorithms that behave the way

the human brain operates in a set of data through a process. A neural network refers

to either a neural circuit of biological neurons or a network of artificial neurons or

nodes in the case of an artificial neural network. A neural network works similarly

to the human brain’s neural networks. A neural network is applied in artificial in-

telligence, deep learning, machine learning, chemistry etc. We refer to topological

indices of probabilistic neural network by Nilanjan de et al. [21] showed the gen-

eralized multiplicative version of Zagreb indices and computed it for probabilistic

neural network. Kdenka kuncic et al. [12] introduced the topological properties of

Neuromorphic nanowires network using the concept of graph theory.

Among several types of neural networks, we consider probabilistic neural net-

works(PNNs), convolutional neural networks(CVNNs), modular neural net-

works(MNNs), generalized regression neural networks(GRNNs) and Hopfield neural

networks (HNNs). Firstly, Probabilistic neural networks (PNNs) were introduced

by Specht in 1990. PNNs is a feedforward neural network, which is widely used

in pattern recognition process problems and classification. Figure 1 shows the

graphical representation of 3-layered PNNs. There are several layers in PNNs such

Figure 1. Diagram of the 3-layered PNNs (l, m, k)
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as the Input layer, Pattern layer, summation layer, and output layer. In Fig.1, the

input layer is named l-nodes, the hidden layer has m-nodes and the output layer

has k-nodes. PNNs are used by machine learning engineers in classification and

pattern recognition tasks. PNNs are used in ship identification. PNNs are used in

the prediction of Leukemia and Embryonal tumours of the central nervous system.

PNNs are faster than multilayer perceptron networks. PNNs are more accurate than

multilayer perceptron.

Similarly, we have 4-layered PNNs which have 4 layers of neurons. The initial layer

is the input layer which has q-nodes, the second layer is the pattern layer which has

r-nodes, the third layer is the summation layer which has s-nodes, the fourth layer is

the output layer which has one node named as T. The first layer is adjacent to all

the nodes in the pattern layer. The particular class of pattern layer is adjacent to

the respective class of summation layer nodes. All the summation nodes are adjacent

to the output layer. Figure 2 shows the 4-layered PNNs which will be useful in the

future sections.

Figure 2. Diagram of the 4-layered PNNs (q, r, s, T)

Secondly, a Convolutional neural network(CVNNs) was introduced by LeCun in 1980.

Convolutional neural network(CVNNs) is a type of artificial neural network architec-

ture for any computer vision and image processing-related AI tasks. CVNNs are a

type of deep learning neural network architecture. CVNNs consist of an input, hidden

and output layer. Figure 3 shows the Convolutional neural network. The first layer

is the input layer which has a-nodes, the second layer is the hidden layer which has

b-nodes, third layer is the output layer which has c-nodes. Zhou et al. [22] showed

the embedding of topological features into convolutional neural networks.

Modular neural network(MNNs) was introduced by Widrow and Hoff in 1959. A

modular neural network is an artificial neural network characterized by some inde-
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Figure 3. Diagram of the CVNNs(a, b, c)

pendent neural network moderated by some intermediary. Modular neural network

is a trending topic for researchers in various domains like Biology, Computer science,

Mathematics, Chemistry etc. Figure 4 shows the modular neural network.

Figure 4. Diagram of the MNNs (n, m, k, u)

The architecture of a modular neural network consists of one or more input layers, one

or more intermediate layers and an output layer. The initial layer is the input layer

which has n-nodes, the second layer is the hidden layer which has k-nodes, and the

third layer is the output layer which has one node which is named as u. Audal et al.

[1] showed the different motivations for creating MNNs in biological, psychological,
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hardware and computational.

Generalized Regression neural network (GRNNs) was introduced by Specht in 1991.

A regression neural network is an artificial neural network used in machine learning

for solving regression problems. The architecture of a regression neural network con-

sists of an l-input layer, m-pattern layer, w-summation layer and r-output layer. The

input layer accepts input data features. Each neuron represents each input feature.

The input layer takes in input data. The pattern layer processes the data by learned

patterns. The output data generates predictions based on the learned patterns. The

applications of generalized regression neural networks are used for building mathe-

matical models of dynamic systems from measurements of systems inputs and output.

Figure 5 shows the generalized regression neural network.

Figure 5. Diagram of the GRNNs (q, r, s, T)

Hopfield neural network (HNNs) was introduced by Hopfield in 1982. The architec-

ture of the Hopfield neural network is a fully connected neural network. Hopfield

neural network is used for associative memory and pattern recognition. There are

v1, v2, · · · , vm nodes in hopfield neural network. In the hopfield neural network, each

node is connected to every other node. The structure of the Hopfield neural network is

similar to a complete graph. The applications of the Hopfield neural network are used

in combinatorial optimization and communications. Figure 6 shows the structure of

hopfield neural network. Fang et al. [10] computed the results on clique number, chro-

matic number, independence number, matching ratio and the domination number of 3

and 4-layered PNNs, Cellular neural networks and tickysym spiking neural networks.

Also, showed that the clique and chromatic number are equal for all NNs. Nelson et

al. [17] used graph theory for microscopic, functional networks of neurons recorded by

calcium imaging. For topological indices in neural networks, we refer to Kashif Shafiq

et al. [11] computed the topological properties on mth chain silicates. Defferrard

et al. [4] computed the convolutional neural networks from low-dimensional regular

grids where image, video and speech are represented to high-dimensional irregular

domains.
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Figure 6. Diagram of the HNNs (q, r, s, T)

Hurlbert et al. [6] gave the survey of graph pebbling. He has given the updated

development on graph pebbling. Isaak et al. [8] showed the game played on Powers of

Paths. Singh et al. [2] have simulated the fingerprint pattern analysis mathematically

using Graph isomorphism, graph dominance and graph pebbling. Santhakumaran

A. P et al. [20] introduced the concept of monophonic numbers and computed the

monophonic length in some graphs. Dhivviyanandam et al. [13] introduced the

concept of the monophonic pebbling number and monophonic t-pebbling number

of path graph, the square of even and odd paths, Jahangir graphs. Sadiquali et

al. [19] computed the monophonic domination number of special graph structures

like K-dimension cube, triangle-free graph, tree, middle graph and edge deleted

graphs. Lourdusamy et al. [15] computed the monophonic pebbling number of

families of cycles. Lourdusamy et al. [14] computed the monophonic pebbling

number of some standard graphs. Arul Sudhahar et al. [18] established the concept

of edge monophonic domination number of a graph. Kavitha et al. [9] computed

the monophonic rubbling number of some standard graphs. Lourdusamy et al. [16]

computed the monophonic pebbling number of some network related graphs like sun

graph, (Cn × P2) + K1 graph, the spherical graph, the anti-prism graphs, and an

n-crossed prism graph. Table 1 explains the nomenclatures used in the article.

Motivation

With the help of the related work survey, here we outline the restrictions which were

observed in the related work section.

(i) Computational and topological properties of neural networks using graph-theoretic

parameters do not explain the recent trends in graph theory.

(ii) Methodology used by Loeffler et al. [12] is restricted to neuromorphic neural

networks.

(iii) So far only theoretical analysis was restricted on graph pebbling numbers and
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Table 1. Methods with graph-theoretic tools

Method Description

λM Monophonic pebbling number

q Target node for neural networks

α Target node for silicate networks

p(P) Pebbles on the monophonic path P

p(P ‘) Pebbles on the nodes not on the monophonic path P

PNNs Probabilistic neural networks

CVNNs Convolutional neural networks

MNNs Modular neural networks

GRNNs Generalized regression neural networks

HNNs Hopfield neural networks

| (V (σ)) | Cardinality of the nodes of the graph σ

application on the neural networks was not discussed. (iv) A Game using the pebbling

concept on powers of Paths has been restricted from using the concept of monophonic

pebbling numbers.

In this paper, we made the following contributions using the monophonic pebbling

number:

• We compute some graph pebbling parameters such as the monophonic pebbling

number of PNNs, CVNNs, MNNs, GRNNs, and HNNs.

• These computation provides the general results of PNNs, CVNNs, MNNs,

RNNs, and HNNs.

• These results provide the number of pebbles required to transmit one pebble

to the destination using a monophonic path which relates to the cost of the

resources required to reach the destination.

• The monophonic distance of 3-layered PNNs, 4-layered PNNs and MNNs are

constant.

• The generalized result of a monophonic pebbling number of the Hopfield neu-

ral network is isomorphic to the generalized result of a monophonic pebbling

number of the complete graph.

2. Graph-Pebbling Preliminaries

We consider simple and connected graph σ(V,E).

Definition 1. [13] A monophonic pebbling number, λM (σ, v), of a node v of a graph σ
is the least integer λM (σ, v) in which minimum of one pebble could be shifted to v through
a monophonic path by an arrangement of pebbling shifts for any distribution of λM (σ, v)
pebbles on the nodes of σ. An x-y path which contains no chords between them is known
as a monophonic path. The highest λM (σ, v) among all the nodes of σ is known as the
monophonic pebbling number of a graph, notated as λM (σ).
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Definition 2. [5] A transmitting subgraph of a graph σ is a path v0, v1, v2, · · · ,
vm in which one pebble is shifted from v0 to vm with the splitting of minimum of two pebbles
in v0 and minimum of one pebble on each of the other nodes in the path, except possibly
vm. So we can transfer a pebble from v0 to vm using this orientation. With this orientation,
one can transfer a pebble from v0 to vm.

Theorem 1. [14] The monophonic pebbling number of complete graph Km is λM (Km) =
m.

3. Main results

3.1. The algorithm for finding the monophonic pebbling number for any
given graph σ(V,E)

Here the generalized algorithm for finding the monophonic pebbling number is intro-

duced.

Step 1.Firstly, the destination to be fixed.

Step 2. For a given graph σ(V,E), the monophonic distance dM needs to be calcu-

lated for all vertices.

Step 3. Compare the monophonic distances of all the nodes. Among which choose

the maximum monophonic length dM which is chordless.

Step 4. The monophonic path (P) needs to be fixed based on the longest monophonic

distance dM .

Step 5. Find the monophonic pebbling number for each node considering the peb-

bling move along the monophonic path which is chordless.

Step 6. The node which has the least upper bound number of pebbles will be the

monophonic pebbling number of the graph σ(v,E).

Step 7. Let us assume the monophonic path (P1) which has the maximum mono-

phonic distance dM .

Step 8. Placing some pebbles on the nodes which are not on the monophonic path

(P1) in such a way that no pebbles will reach the path (P1).

Step 9. Let us denote the nodes which are not on the monophonic path P1 as P ‘
1.

Now based on the monophonic distance dM we get 2dM .

Step 10. Now adding pebbles on the nodes of the monophonic path and pebbles on

the nodes which are not on the monophonic path.

Hence, λM (σ(v,E)) = 2dM + p(V (P ‘
1)).

Step 11. This is the least upper-bound monophonic pebbling number when we com-

pare it with the rest of the nodes. Thus, we arrive at a monophonic pebbling number

of any graph for all the distributions.

Theorem 2. For any 3-layered PNNs, the monophonic pebbling number is given by
λM (PNN) = 2n+1 + (k − 2)(m+ 1), where n is the 3 layers, ∀ l > 2, k ≥ 2.

Proof. Let the node set of the 3-layered PNNs be {x1, x2, · · · , xl, y11, y12, · · · ,
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y1m, y21, y22, · · · , y2m, y31, y32, · · · , y3m, · · · , yk1, yk2, · · · , ykm, z1, z2, · · · , zk}.
Let q = zk. The monophonic length from q to any other node is (n + 1). As-

sume the monophonic path P1 : z1 → y1m → xl → ykm → q. The remain-

ing nodes are not on the monophonic path P1. On placing (2n+1 − 1) pebbles

on P1 and placing one pebble each on the nodes of induced sub-graph <(PNN −
{x1, x2, · · · , xl}∪ {y11, y12, · · · , y1m, · · · yk1, yk2, · · · , ykm}∪ {z1, zk})> which sums to

(k - 2)(m + 1) pebbles, q is not reached. Therefore, the monophonic pebbling number

is λM (PNN) ≥ 2n+1 + (k-2)(m + 1).

Let D be any distribution of 2n+1 + (k − 2)(m+ 1) pebbles on the nodes of PNNs to

prove for sufficient condition. For our convenience, let X = xk where k ={1, . . . , l},
Y = yij where i = {1, . . . , k} j = {1, · · · ,m} and Z = zm where m = {1, · · · , k}.
Case 1. Let q = xk.

The monophonic length from q to any other node is (n− 1). Assume the monophonic

path P2 : x1 → y11 → q. By placing 2n−1 pebbles on any one of the nodes of the set

xk where k 6= l or zm, we can move a pebble to q. By placing (2n−1 − 1) pebbles on

any one of the nodes of set xk where k 6= l and placing one pebble on any one of the

nodes of the set yij , we can move a pebble to q. By placing 2n−2 pebbles on any one

of the nodes of the set yij , we can move a pebble to q. By placing 2n−2 pebbles on

any one of the nodes of the set xi where i 6= l and placing 2n−3 pebbles on any one

of the nodes of the set yij or placing 2n−2 pebbles on any one of the nodes of the set

zm, we can move a pebble to q. By placing 2n−2 pebbles on any one of the nodes of

the set xk and placing 2n−3 pebbles adjacent to the node where the pebble is placed

on the nodes of the set yij , we can move a pebble to q.

Case 2. Let q = yij .

The monophonic length from y11 to any other node is n. Assume the monophonic

path P3 : zk → ykm → xl → q. If the monophonic path p(P3) has 2n pebbles, we can

move a pebble to q. If the monophonic path p(P3) has (2n − 1) pebbles and placing

one pebble each on non-monophonic nodes P ‘
3 pebbles, we can move a pebble to q.

Let anyone of the nodes of the set xk has 2n−2 pebbles or yij has 2n−1 pebbles or zm
adjacent to the target node has 2n−2 pebbles, we can move a pebble to q. If anyone

of the nodes of the set xk has 2n−3 pebbles and any one of the nodes of the set zm
has 2n−1 pebbles, we can move a pebble to q.

Case 3: Let q = Z.

The monophonic length from q to any other node is (n+ 1). Assume the monophonic

path P4 : z1 → y1m → xl → ykm → q. On placing 2n+1 pebbles on the path P4, we

can move one pebble to q. On placing (2n+1 − 1) pebbles on zm where m 6= k and

placing one pebble on any one of the nodes of the set xk, we can move a pebble to q.

By placing 2n pebbles on any one of the nodes of the set zm where m 6= k and placing

one pebble on any one of the nodes of the set yij adjacent to the target node, we can

move a pebble to q. By placing 2n pebbles on any one of the nodes of the set yij ,

apart from the vertices adjacent to the target node, we can move a pebble to q. By

placing 2n−2 pebbles on the nodes adjacent to the target node, we can move a pebble

to q. By placing 2n−1 pebbles on the set xk, we can move a pebble to q. On placing
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(2n+1−2n−1) pebbles on any of the nodes of the set zm where m 6= k, and placing one

pebble on any one of the vertices of set xk, we can move a pebble to q. On placing

2n−1 pebbles on the set zm where m 6= k and placing 2n−2 + 1 pebbles on the set xk,

the destination is reached. Thus, for all the placement of pebbles used on the nodes

of 3-layered PNNs is ≤ 2n+1 + (k − 2)(m + 1). Therefore, the monophonic pebbling

number is λM (PNN) = 2n+1 + (k − 2)(m+ 1). This completes the proof.

Theorem 3. For any 4-Layered PNNs, the monophonic pebbling number is λM (PNN) =
2n + (s− 2)(r + 1) + T , where n is the 4 layers, ∀ q > 2, s ≥ 2.

Proof. Let the node set of the 4-layered PNNs be {x1, x2, . . . , xq, y11, y12, . . . , y1r,

y21, y22, . . . , y2r, . . . , yk1, yk2, . . . , ysr, z1, z2, . . . , zs, T}. Let q = z1. The monophonic

distance from q to any other node is n. Consider the monophonic path P1 : zs →
ysr → xq → y1r → q. The remaining nodes apart from the path P1 is given by

P
′

1. By placing 2n − 1 pebbles on the path P1 and placing one pebble each on the

adjacent nodes of zd where d = {2, 3, . . . , s − 1} and the node T which sums up

to (s − 2)(r + 1) + T , the destination is not reached. Therefore, the monophonic

pebbling number is λM (PNN) ≥ 2n +(s−2)(r+1)+T . Let D be any distribution of

2n + (s−2)(r+ 1) +T pebbles on the nodes of PNNs to prove for sufficient condition.

For our convenience, let X = {x1, x2, . . . , xq}, Y = {y11, y12, . . . , y1r, . . . , ys1, ys2, . . . ,
ysr} and Z ={z1, z2, . . . , zs} and T .

Case 1. Let q = X or T .

The monophonic length from q to any other node is (n− 1). Assume the monophonic

path P2 : x1 → y11 → z1 → T . Let P ‘
2 be the nodes not on the path P2. On placing

2n−1 pebbles on the path P2, we can move a pebble to q. On placing (2n−1 − 1)

pebbles on the path P2 and placing one pebble each on the non-monophonic nodes

P ‘
2, we can move a pebble to q. If anyone of the nodes of the set X has 2n−2 pebbles

and anyone of the nodes of the set Z has a pebble, the destination is reached. If any

of the nodes of the set Y has 2n−3 pebbles and anyone of the nodes of the set Z has

a pebble, the destination is reached. If anyone of the nodes of the set Z has 2n−3

pebbles, the destination is reached. If anyone of the nodes of the set X has 2n−3

pebbles and anyone of the nodes of the set Y has one pebble or any one of the nodes

of the set Z has 2n−3 pebbles or the node T has 2n−2 pebbles, we can move a pebble

to q. If anyone of the nodes of the set Y has 2n−3 pebble and if anyone of the nodes

of the set Z adjacent to the pebbles placed on the set Y has 2n−4 pebbles, we can

move a pebble to q.

Case 2. Let q = Y or Z. The monophonic length from q to any other node is n.

Assume the monophonic path P3 : z1 → y11 → xq → ysr → q. On placing 2n pebbles

on the path P3, we can move a pebble to q. On placing (2n − 1) pebbles on the

path P3 and placing one pebble each on the nodes adjacent to the nodes of the set zd
where d = {2, 3, · · · , s− 1}, placing a pebble on the vertex T and placing a pebble on

anyone of the node of the set X, the destination is reached. If anyone of the nodes

of the set X has 2n−3 pebble and anyone of the nodes of the set Y adjacent to the
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target node has 2n−4 pebbles, we can move a pebble to q. If anyone of the nodes of

the set X has 2n−2 pebbles, we can move a pebble to q. If anyone of the nodes of the

set Y or the node T has 2n−3 pebbles, we can move a pebble to q. Thus, for all the

placement of pebbles used on the nodes of 4-layered PNN is ≤| V (PNN) |. Therefore,

the monophonic pebbling number is λM (PNN) =| V (PNN) |. This completes the

proof.

Theorem 4. For any CVNNs, the monophonic pebbling number is λM (CV NN)
= 2m+1+(a - 1)+(c - 1), where m is the number of hidden layers.

Proof. Let the node set of the CVNN be V(CVNN) = {x1, x2, . . . , xa, y11, y12, . . . ,
y1b, y21, y22, . . . , y2b, . . . , ym1, ym2, . . . , ymb, z1, . . . zc}. Let q = x1. The monophonic

length from q to any other node is (m + 1). Consider the monophonic path P1 be

z1 → ym1 → · · · ,→ y21 → y11 → q. On placing (2m+1 − 1) pebbles on the path P1

and placing (a - 1) pebbles each on the input layer except the target node and (c− 1)

pebbles each on the output layer except the node on the path P1, we cannot reach

the destination. Therefore, λM (CV NN) ≥ 2m+1 + (a− 1) + (c− 1).

Let D be any destination of 2m+1 + (a− 1) + (c− 1) pebbles on the nodes of CVNNs

to prove for sufficient condition. For our convenience, let X = {x1, x2, . . . , xa}, H =

yij where i = {1, . . . ,m} and j = {1, . . . , b} and Z = {z1, . . . , zc}.
Case 1. Let q = X or Z.

The monophonic length from q to any other node is (m+1). Assume the monophonic

path P2 : x1 → y11 → y21 → y31 → q. On placing 2m+1 pebbles on the path P2, one

pebble is reached to q. If anyone of the nodes of the set X has 2m+1 pebbles, one

pebble is reached to q. By placing (m− l+ 1) pebbles from q to any one of the nodes

of hl where l = {1, . . . ,m}, we can reach q. If anyone of the nodes of the set X has

2m pebbles and anyone of the nodes of the set hm has one pebble, we can move one

pebble to q.

Case 2. Let q = hl be the target node, where l = {1, . . . ,m}.
The monophonic distance from hl to hi where l < i ≤ m is at most (m− l). By Case

1, if p(<PNN − {hl, hl+1, . . . , hm} >) consists of at least 2m−l pebbles, then we can

transfer a pebble to q. Otherwise, we can transfer a pebble to q if <h1, h2, · · · , hl>
contains at least 2l pebbles. We can use 2l pebbles to reach the target. Because

the monophonic length from hl to hj is at most l, where 1 ≤ j ≤ l. Thus, for all

the placement of pebbles used on the nodes of CVNNs is ≤ 2m+1+(a - 1)+(c - 1).

Therefore, the monophonic pebbling number is λM (CV NN) = 2m+1+(a−1)+(c−1).

This compeltes the proof.

Theorem 5. For any (MNNs), the monophonic pebbling number is λM (MNN) =
|V (MNN)|.

Proof. Let the node set of the MNNs be written as V(MNNs)= {a1, a2, . . . , an, b11,
. . . , b1m, b21, . . . , b2m, . . . , bk1, . . . , bkm, c1, c2, . . . , ck, u}. Let q = ck. The monophonic
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distance from ck to any other node is (l + 1) where l is the number of layers in

the MNNs. Consider the monophonic path P1 : c1 → b11 → an → bkm → q.

On placing (|V (MNN)| − 1) pebbles each on all the nodes, we can move a peb-

ble to q. Therefore, the monophonic pebbling number holds for λM (MNN) ≥
|V (MNN)|. Let D be any placement of |V (MNN) pebbles on the nodes of MNNs

to prove for sufficient condition. For our convenience, let X = {a1, a2, . . . , an},
Y = {b11, . . . b1m, b21, . . . b2m, . . . bk1, . . . , bkm}, Z = {c1, c2, . . . , ck} and u.

Case 1. Let q = X or u. The monophonic length from q to any other node is (l

- 1). Assume the monophonic path P2 : u → c1 → b11 → q. Let P
′

2 be the nodes

not on the path P2. On placing 2l−1 pebbles on the path P2, we can move a pebble

to q. On placing (2l−1 − 1) pebbles on the path P2 and placing one pebble each on

the non-monophonic vertices P
′

2, we can move a pebble to q. If anyone of the nodes

of the set X, has 2l−2 pebbles or anyone of the nodes of the set Y has 2l−3 pebbles

or anyone of the nodes of the set Z has 2l−2 pebbles, we can move a pebble to q. If

anyone of the nodes of the set X has 2l−3 pebbles and anyone of the nodes of the set

Y has one pebble, we can move a pebble to q. If anyone of the nodes of the set X

has 2l−3 pebbles and anyone of the nodes of the set Z has 2l−3 pebbles, we can move

a pebble to q. If anyone of the nodes of the set X has 2l−3 pebbles and the node u

has 2l−2 pebbles, we can move a pebble to q. If anyone of the nodes of the set Y has

2l−4 pebbles and if anyone of the nodes of the set Z adjacent to the pebbles placed

on the set Y has 2l−3 pebbles, we can move a pebble to q. If anyone of the nodes of

the set Y has 2l−4 pebbles and set u has 2l−2 pebbles, we can move a pebble to q.

Case 2. Let q = Y or Z. The monophonic length from q to any other node is

l. Assume the monophonic path P3 : c1 → b1m → an → bkm → q. On placing 2l

pebbles on the path P3, we can move a pebble to q. On placing (2l − 1) pebbles on

the path P3 and placing one pebble each on the non-monophonic nodes, we can move

a pebble to q. If anyone of the nodes of the set X has 2l−3 pebbles and anyone of

the nodes of the set Y adjacent to the target node has 2l−4 pebbles, we can move

a pebble to q. If anyone of the nodes of the set X has 2l−2 pebbles, we can move

a pebble to q. If anyone of the nodes of the set Y or the node u has 2l−3 pebbles,

we can move a pebble to q. Therefore, for all the placement of pebbles used on the

nodes of MNNs is ≤ |V (MNN)|. Therefore, the monophonic pebbling number is

λM (MNN) = |V (MNN)|. This completes the proof.

Theorem 6. For any (GRNNs), the monophonic pebbling number is λM (GRNN) =
2n−1 + l +m+ w + r − 4.

Proof. Let the node set of the generalized regression neural network (GRNNs) be

{x1, x2, . . . , xl, p1, p2, . . . , pm, s1, s2, . . . , sw, t1, t2, . . . , tr}. Let q = t1. The mono-

phonic length from q to any other node is (n − 1). Assume the monophonic path

P1 : x1 → p1 → s1 → q. The remaining nodes are not on the monophonic path P1.

On placing 2n+2−1 pebbles on P1 and placing one pebble each on the non-monophonic
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nodes (P
′

1) which sums up to l+m+w+r−4, q is not reached. Therefore, the mono-

phonic pebbling number is λM (GRNNs) ≥ 2n−1 + l +m+ w + r − 4.

Let D be any distribution of 2n−1 + l+m+w+ r−4 pebbles on the nodes of GRNNs

to prove for sufficient condition. For our convenience, let X = {x1, x2, . . . , xl}, Y =

{p1, p2, · · · , pm}, Z = {s1, s2, . . . , sq} and L = {t1, t2, . . . , tr}.
Case 1. Let q = X or L.

The monophonic length from q to any other node is (n− 1). Assume the monophonic

path P2 : x1 → p2 → s3 → q. By placing 2n−1 pebbles on the path P2, the destination

is reached. By placing 2n−2 pebbles on the path P2 and placing one pebble on any

one of the nodes, the destination is reached. On placing 2n−3 pebbles on any one of

the nodes of the set Z, the destination is reached. On placing 2n−2 pebbles on the

set Y , the destination is reached. On placing 2n−1 pebbles on any one of the nodes

of the set X, the destination is reached. On placing 2n−4 pebbles on any one of the

nodes of the set Z and placing 2n−3 pebbles on any one of the nodes of the set Y ,

the destination is reached. On placing 2n−4 pebbles on the set Z and placing 2n−2

pebbles on the set X, the destination is reached.

Case 2: Let q = Y or Z.

The monophonic length from q to any other node is (n - 2). The monophonic path P3:

p1 → s1 → q. On placing 2n−2 pebbles on the path P3, the destination is reached. On

placing 2n−3 pebbles on the path P3 and placing one pebble on any one of the nodes

of the set X or Z, the destination is reached. On placing 2n−3 pebbles on any one

of the nodes of the set X or Z, the destination is reached. On placing 2n−2 pebbles

on any one of the nodes of the set L, the destination is reached. On placing 2n−4

pebbles on any one of the nodes of the set Z and placing 2n−3 pebbles on any one of

the nodes of the set L, the destination is reached. Therefore, for all the placement of

pebbles on the graph λM (GRNN) is 2n−1 + l + m + w + r − 4. This completes the

proof.

Corollary 1. For any (HNNs), the monophonic pebbling number is λM (HNNs) = m
where m is the number of nodes.

Proof. Let the node set of λM be {v1, v2, v3, · · · , vm}. Let q = v1. The monophonic

distance from q to any other node is 1. Since the Hopfield neural network is isomorphic

to complete graph Km. The proof is followed by Theorem 1. Therefore, λM (HNN)

= m. Hence proved.

4. Conclusion

In this article, we computed the monophonic pebbling number of several neural net-

works. This approach has been made based on the limitations of the methodology

used in the literature. In Table 2, we have given the comparative analysis between
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Table 2. Comparative analysis table

Article Limitation Our Results

Meie Fang et al. Limited to computational and topological Our method includes

(2022)[10] properties of neural networks using recent trends in graph

graph-theoretic approach theory.

Loeffler et al. [12] Limited to neuromorphic neural networks Our method includes
PNNs,CVNNs, MNNs,

GRNNs, HNNs.

A. Lourdusamy Limited to theoretical analysis Our method studied

et al. [13][15][16] studied on graph pebbling numbers the applications on NNs
using λM (σ, v).

the limitation observed in the literature survey and how we have overcome those limi-

tation in our study The general result in this article conveys the minimum number of

pebbles required for the transition of one pebble to the destination using the mono-

phonic path. This minimum number of pebbles could also be seen in terms of the

minimum resources needed to transfer goods from one place to the destination. Also

the monophonic distance of 3-layered PNNs, 4-layered PNNs and MNNs are the same

whereas the monophonic distance of other considered networks varies based on their

structure.

The limitation of the study are as follows:

(i) There is no well-known algorithm to compute the monophonic pebbling number

for any graphs.

(ii) The study is limited only to PNNs, CVNNs, MNNs, GRNNs, HNNs and can be

explored to other neural networks.

(iii) The study focuses on theoretical aspects rather than real-world application prob-

lems.

The application of determining the monophonic pebbling number of the neural net-

work can be discussed as follows:

(i) For a given path P , which is the longest and chordless, we determine the cost fac-

tor, time duration, limited resources through the generalized monophonic pebbling

number obtained for the considered networks in the article.

(ii) When there is a blockage in the network and also if a given node has more than

one layer, we consider delivering the information to one of the neighbouring nodes

which reduces the cost/ less time duration / limited resources and also able to reach

the information faster.

(iii) So, we consider chordless whereas detour path information is shared with all

the nodes which is time-consuming whereas in the geodesic path, the information is

shared with particular nodes.

(iv) The concept of monophonic pebbling number helps in minimizing or optimizing

the flow of information through the network layers.

Our future scope will be to compute the monophonic pebbling number for novel

networks. Also the network considered in the article can be applied using the other

pebbling invariants. For future research monophonic t-pebbling number could be
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applied to the networks mentioned in this article.
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