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Abstract: Let Γ be a finite group with TΓ = {t ∈ Γ | t 6= t−1}. The inverse graph of

Γ, denoted by IG(Γ), is a graph whose vertex set is Γ and two distinct vertices, u and v,

are adjacent if u∗v ∈ TΓ or v ∗u ∈ TΓ. In this paper, we study the rainbow connection
number of the connected inverse graph of a finite group Γ, denoted by rc(IG(Γ)), and

its relationship to the structure of Γ. We improve the upper bound for rc(IG(Γ)), where

Γ is a group of even order. We also show that for a finite group Γ with a connected
IG(Γ), all self-invertible elements of Γ is a product of r non-self-invertible elements of

Γ for some r ≤ rc(IG(Γ)). In particular, for a finite group Γ, if rc(IG(Γ)) = 2, then all

self-invertible elements of Γ is a product of two non-self-invertible elements of Γ. The
rainbow connection numbers of some inverse graphs of direct products of finite groups

are also observed.
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1. Introduction

The rainbow connection number of a graph was introduced by Chartrand et al. in

2008 [3]. In an edge-colored graph G, where adjacent edges may have the same color,

a path is called a rainbow path if no two edges within the path share the same color.

∗ Corresponding Author



2 On the rainbow connection number of the connected inverse graph

The rainbow connection number of G, denoted by rc(G), is the minimum number of

colors that are needed to color the edges of G such that every two distinct vertices of

G are linked by a rainbow path. Chakraborty et al. [2] proved that determining the

rainbow connection number of a graph is an NP-hard problem.

Several studies have been conducted to study the rainbow connection number of some

graphs. For example, Chartrand et al. [3] studied the rainbow connection number of

complete graphs, trees, wheel graphs, bipartite graphs, and multipartite graphs. The

rainbow connection number of line graphs was studied by Li et al. [11]. The rainbow

connection number of amalgamation of some graphs was studied by Fitriani et al. [7].

Fitriani et al. [8] also studied the rainbow connection number of comb product of

graphs. The rainbow connection numbers of the other graphs classes have also been

studied, such as rainbow connection numbers of dense graphs and sparse graphs [12],

rainbow connection numbers of graphs with diameter 3 [10], and rainbow connection

numbers of Cayley graphs ([9], [13]).

The inverse graph of a finite group (Γ, ∗), a group with a binary operation ∗ on a set

Γ of finite cardinality, was introduced by Alfuraidan and Zakariya in [1]. For a finite

group (Γ, ∗) with SΓ = {s ∈ Γ|s = s−1} and TΓ = {t ∈ Γ|t 6= t−1}, the inverse graph

of the group, denoted by IG(Γ), is a graph whose set of vertices is Γ and two distinct

elements g1, g2 ∈ Γ are adjacent if g1 ∗ g2 ∈ TΓ or g2 ∗ g1 ∈ TΓ. In recent years,

the inverse graphs of finite groups have garnered significant interest. For example,

Ejima et al. [6] studied the energy of inverse graphs of dihedral and symmetric groups.

The L(h, k)-labeling index of inverse graphs associated with finite cyclic groups was

studied by Mageshwaran et al. in [14]. Murni et al. [15] determined the spectrum of

the anti-adjacency and Laplacian matrices of the inverse graph a group of integers

modulo n.

In [17], we studied the rainbow connection number of the inverse graph of some

finite abelian groups. In [16], we proved that for a finite group (Γ, ∗) of even order,

2 ≤ rc(IG(Γ)) ≤ |TΓ| + m + 2, where m is the number of s ∈ SΓ that satisfy

s ∗ t = t−1 ∗ s for all t ∈ TΓ. In this paper, we improve the upper bound of rc(IG(Γ))

for a finite group (Γ, ∗) of even order, so that the upper bound becomes 4 +m. This

is a better upper bound because 4 +m ≤ |TΓ|+m+ 2 since |TΓ| is always even when

TΓ is not empty. We also show in this paper that for a finite group (Γ, ∗) and k ≥ 2,

if rc(IG(Γ)) = k, then every self-invertible element of Γ is a product of r non-self-

invertible elements of Γ, where r ≤ k. In particular, we show that if rc(IG(Γ)) = 2,

then every self-invertible element of Γ is a product of two non-self-invertible elements

of Γ.

This paper is organized as follows. In Section 2, we write some definitions and pre-

liminary results from some previous studies. In Section 3, we discuss the rainbow

connection number of the connected inverse graph of a finite group. In Section 4, we

give some conclusions.
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2. Preliminaries

2.1. Graph and the rainbow connection number of a graph

We follow [4] for definitions and notations in Graph Theory that are not described in

this text. A graph is a pair of sets G = (V (G), E(G)), where the elements of E(G) are

2-elements subsets of V (G). The elements of V (G) are called the vertices of G and

the elements of E(G) are called the edges of G. If |V (G)| = 0 or 1, then G is called a

trivial graph. Any edge in E(G) is in the form of {x, y}, where x, y ∈ V (G). In this

situation, {x, y} is called an edge between x and y, and the vertices x and y are called

the endvertices of the edge {x, y}. For simplicity, the edge {x, y} will be written as

xy. The conventional method of representing a graph is to depict a point for each

vertex and connect two of these points with a line if the corresponding vertices form

an edge.

For a graph G, if u, v ∈ V (G) and uv ∈ E(G), then u and v are said to be adjacent in

G. If every two distinct vertices of a graph G are adjacent, then G is called a complete

graph. A path of size k, k ≥ 1, is a graph Pk = (V (Pk), E(Pk)), whose vertices can be

ordered into v0, v1, . . . , vk such that E(Pk) = {v0v1, v1v2, . . . , vk−1vk}. The vertices

v0 and vk are called the ends of Pk and the vertices v1, v2, . . . , vk−1 are called the

inner vertices of Pk. In this case, Pk is called a path between v0 and vk, and the

vertices v0 and vk are linked by Pk. The length of the path Pk is the number of edges

of Pk. The path between two vertices v0 and vk can also be written as v0v1...vk. The

distance between two vertices u and v is the length of the shortest path between u

and v. A graph G is said to be connected if every two distinct vertices of G are linked

by a path. The largest distance between any two distinct vertices of G is called the

diameter of G, denoted by diam(G).

In 2008, Chartrand et al. proposed the concept of the rainbow connection number of

a graph [3]. Let k be a natural number and c : E(G)→ {1, 2, . . . , k} be a coloring of

the edges of a non-trivial connected graph G that allows the adjacent edges of G to

have the same color. A path P is called a rainbow path if every two distinct edges of P

have different colors. A graph G is called rainbow-connected (under the coloring c) if

every two distinct vertices of G are linked by a rainbow path. In this case, c is called a

rainbow k-coloring of G, where k is the number of colors of c. The smallest value of k

for which a rainbow k-coloring of the edges of G exists is called the rainbow connection

number of G, denoted by rc(G). A rainbow coloring of a graph G that utilizes rc(G)

colors is referred to as the minimum rainbow coloring of G. It has been shown in [3]

that rc(G) = 1 if and only if G is a complete graph, and diam(G) ≤ rc(G) ≤ |E(G)|.

2.2. Group and the inverse graph of a finite group

We follow [5] for definitions and notations in Group Theory that are not described in

this paper. The definition of a group is as follows.

Definition 1. A group is an ordered pair (Γ, ∗), where Γ is a nonempty set Γ and
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∗ : Γ× Γ→ Γ is a binary operation, satisfying the following axioms:

1. a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, and c in Γ.

2. There is an element e ∈ Γ such that e ∗ a = a ∗ e = a for every a ∈ Γ. The element e
is called the identity element.

3. For each element a ∈ Γ, there is an element a−1 ∈ Γ such that a ∗ a−1 = a−1 ∗ a = e.
The element a−1 is called the inverse of a.

For simplicity, in the remaining parts of this paper, we use Γ as a notation for a group

(Γ, ∗) if the operation ∗ is clear from the context. The number of elements of a group

Γ is called the order of Γ, denoted by |Γ|. If |Γ| is finite, then Γ is called a finite group.

If |Γ| = 1, then Γ is called a trivial group. An element a ∈ Γ is called self-invertible if

a−1 = a. If a, b, and c are elements of a group Γ that satisfy a∗b = a∗c or b∗a = c∗a,

then b = c. This is called the cancellation law. For a group Γ, a subset X ⊆ Γ is

called a set of generators or a generating set of Γ if every element of Γ is a product

(under the binary operation of the group) of finitely many elements of X or their

inverses. If X is a set of generators of a group Γ and X does not contain any other

set of generators of Γ, then X is called a minimal set of generators of Γ. A group Γ

can be partitioned into two subsets, SΓ = {s ∈ Γ|s = s−1} and TΓ = {t ∈ Γ|t 6= t−1},
which are the set of all self-invertible elements and the set of all non-self-invertible

elements of Γ, respectively. It is obvious that SΓ ∩TΓ = ∅. For any group Γ, if t is an

element of TΓ, then t−1 is also in TΓ. Hence, |TΓ| is always even.

If (Γ1, ∗1), (Γ2, ∗2), . . . , (Γn, ∗n) are finite groups, where n ≥ 2, the direct product of

the groups is a group (Γ, ∗) with the set of elements Γ = Γ1×· · ·×Γn = {(g1, . . . , gn) :

gi ∈ Γi for every i ∈ {1, . . . , n}} whose binary operation ∗ is defined componentwise

as (g1, . . . , gn) ∗ (h1, . . . , hn) = (g1 ∗1 h1, . . . , gn ∗n hn). For simplicity, we will use

Γ = Γ1×· · ·×Γn as a notation for a direct product of n finite groups if the operation

is clear from the context.

In 2017, Alfuraidan and Zakariya proposed the inverse graph of a finite group [1].

The definition of the graph is as follows.

Definition 2. [1] Given a finite group Γ with TΓ = {t ∈ Γ|t 6= t−1}. The inverse graph of
Γ, denoted by IG(Γ), is a graph whose vertices are the elements of Γ such that two distinct
vertices u and v are adjacent if u ∗ v ∈ TΓ or v ∗ u ∈ TΓ.

Based on the definition, for any group Γ with TΓ 6= ∅, every element t ∈ TΓ is

adjacent to the identity element e and every element s ∈ SΓ is not adjacent to e, since

t ∗ e = e ∗ t = t ∈ TΓ and s ∗ e = e ∗ s = s ∈ SΓ. Some other properties of the inverse

graph of a finite group are written in the following theorems.

Theorem 1. [1] There is no inverse graph that is complete for any non-trivial finite
group.
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Theorem 2. [16] Let Γ be a group of finite order with TΓ 6= ∅. The inverse graph IG(Γ)
is connected if and only if TΓ is a set of generators of Γ.

The rainbow connection number of the inverse graph of a finite group Γ, or rc(IG(Γ)),

has been studied in [16]. The exact value of rc(IG(Γ)) for a finite group Γ of odd

order has been determined. The other properties of rc(IG(Γ)) for a finite group Γ of

even order have also been studied.

Theorem 3. [16] If Γ is a group of odd order with TΓ 6= ∅, then rc(IG(Γ)) = 2.

Theorem 4. [16] Let Γ be a group of even order and TΓ 6= ∅ be a set of generators of Γ.
Then

2 ≤ rc(IG(Γ)) ≤ |TΓ|+ m + 2

where m is the number of s ∈ SΓ that satisfy s ∗ t = t−1 ∗ s for all t ∈ TΓ. Furthermore, the
lower bound is tight.

Theorem 5. [16] Let Γ be a group of even order with TΓ 6= ∅. If s ∗ t = t ∗ s for every
s ∈ SΓ and every t ∈ TΓ, then rc(IG(Γ)) = 2.

3. Rainbow connection numbers of the connected inverse
graphs of finite groups

As mentioned in the previous section, for a group Γ, the sets SΓ and TΓ are partitions

of Γ. Hence, SΓ ∪ TΓ = Γ and SΓ ∩ TΓ = ∅. However, some elements of SΓ may be

adjacent to some elements of TΓ in IG(Γ). The adjacency between some elements of

SΓ and some elements of TΓ results in several properties of IG(Γ), as shown in the

following lemmas.

Lemma 1. Let Γ be a finite group with TΓ 6= ∅. An element t ∈ TΓ is adjacent to an
element s ∈ SΓ in IG(Γ) if and only if t−1 is adjacent to s in IG(Γ).

Proof. Let t ∈ TΓ and s ∈ SΓ be adjacent in IG(Γ). Then, there exists t1 or t2 in TΓ

such that t∗s = t1 or s∗t = t2. Because s = s−1, we get s∗t−1 = t−1
1 or t−1 ∗s = t−1

2 .

Since the inverse of an element of TΓ is also in TΓ, we get that t−1 is adjacent to s.

Conversely, let t−1 be adjacent to s in IG(Γ). Then, there exists t3 or t4 in TΓ such

that t−1 ∗ s = t3 or s ∗ t−1 = t4. Therefore, we get s ∗ t = t−1
3 or t ∗ s = t−1

4 . Since

the inverse of an element of TΓ is also in TΓ, we get that t is adjacent to s.

Lemma 2. Let Γ be a finite group with TΓ 6= ∅. An element s ∈ SΓ is adjacent to an
element t ∈ TΓ in IG(Γ) if and only if there exists t′ or t′′ in TΓ such that s = t ∗ t′ or
s = t′′ ∗ t.
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Proof. Let an element s ∈ SΓ be adjacent to an element t ∈ TΓ in IG(Γ). Then

there exists t1 or t2 in TΓ such that s ∗ t = t1 or t ∗ s = t2. Since s = s−1, we get

s = t ∗ t−1
1 or s = t−1

2 ∗ t. Write t−1
1 = t′ and t−1

2 = t′′. Since t1 or t2 is in TΓ, t′ or t′′

is also in TΓ. Thus, there exists t′ or t′′ in TΓ such that s = t ∗ t′ or s = t′′ ∗ t.
Conversely, let s = t ∗ t′ or s = t′′ ∗ t for an element s ∈ SΓ and an element t ∈ TΓ,

where t′ or t′′ is in TΓ. Hence, s ∗ t = (t′)−1 or t ∗ s = (t′′)−1. Since t′ or t′′ is in TΓ,

(t′)−1 or (t′′)−1 is also in TΓ. Thus, s and t are adjacent in IG(Γ).

Lemma 3. Let Γ be a finite group with TΓ 6= ∅. If s = t1 ∗ t2 for an element s ∈ SΓ and
for some t1 and t2 in TΓ, then s is adjacent to both t1 and t2 in IG(Γ).

Proof. Let s be an element of SΓ that satisfies s = t1 ∗ t2 for some t1 and t2 in TΓ.

Since s−1 = s, we get s ∗ t1 = t−1
2 and t2 ∗ s = t−1

1 . Because t−1
1 and t−1

2 are also

elements of TΓ, we conclude that s is adjacent to both t1 and t2.

Lemma 4. Let Γ be a finite group with |TΓ| ≥ 4. If s ∗ t = u ∈ TΓ for an element s ∈ SΓ

and element t ∈ TΓ, where t 6= u, then s is adjacent to t, t−1, u, and u−1.

Proof. Let Γ be a finite group with |TΓ| ≥ 4, s be an element of SΓ, t be an element

of TΓ, and s ∗ t = u, where u ∈ TΓ and u 6= t. Since s ∗ t = u ∈ TΓ, s is adjacent to

t and also s ∗ u = t. Hence, s is also adjacent to u. According to Lemma 1, s is also

adjacent to t−1 and u−1.

The properties related to the adjacency between some elements of SΓ and some ele-

ments of TΓ in the previous lemmas are then used to determine the rainbow connection

number of a connected IG(Γ). In [16], it has been shown that for a finite group Γ

of odd order, rc(IG(Γ)) = 2. Also in [16], the lower and upper bounds of rc(IG(Γ))

for a finite group Γ of even order have been determined, as mentioned in Theorem

4. However, the upper bound is too large because it depends on the cardinality of

TΓ. In Theorem 6, we improve the upper bound so that it no longer depends on the

cardinality of TΓ.

Theorem 6. Let Γ be a finite group of even order and TΓ 6= ∅ be a set of generators of
Γ. Then

2 ≤ rc(IG(Γ)) ≤ 4 + m,

where m is the number of s ∈ SΓ that satisfy s ∗ t = t−1 ∗ s for all t ∈ TΓ. Moreover, the
lower bound is tight.

Proof. Let Γ be a finite group of even order with TΓ be nonempty and be a set of

generators of Γ. According to Theorem 2, since TΓ is a set of generators of Γ, the

inverse graph IG(Γ) is connected. According to Theorem 4, rc(IG(Γ)) ≥ 2, and this

lower bound is tight. Because Γ = SΓ ∪ TΓ and |TΓ| is even, |SΓ| is also even, and

hence |SΓ| > 1. Recall that every element of TΓ is adjacent to the identity element
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e and every element of SΓ is not adjacent to e in IG(Γ). Given that IG(Γ) is a

connected graph, there are some s ∈ SΓ which are adjacent to some t ∈ TΓ. Hence,

there are some elements s ∈ SΓ such that s ∗ t 6= (s ∗ t)−1 for some elements t ∈ TΓ.

Note that (s ∗ t)−1 = t−1 ∗ s. According to Lemma 1, an element s ∈ SΓ is adjacent

to an element t ∈ TΓ if and only if s is adjacent to t−1.

Let S′Γ = {s ∈ SΓ|s ∗ t 6= t−1 ∗ s for some t ∈ TΓ} and S′′Γ = SΓ \ S′Γ = {s ∈ SΓ|s ∗ t =

t−1 ∗ s for all t ∈ TΓ}. Based on its definition, each element of S′Γ is adjacent to some

elements of TΓ in IG(Γ) and each element of S′′Γ is not adjacent to all elements of TΓ

in IG(Γ). Since IG(Γ) is connected, each element of S′Γ is linked by a path to e in

IG(Γ) and each element of S′′Γ is linked by a path to each element of S′Γ in IG(Γ).

Let TΓ be partitioned into two subsets T̄Γ = {t̄1, ..., t̄|T |/2} and ¯̄TΓ = {¯̄t1, ..., ¯̄t|T |/2}
such that ¯̄ti = t̄−1

i for every i ∈ {1, ..., |T |/2}. According to Lemma 1 and Lemma 4,

every element of S′Γ is adjacent to at least one element of T̄Γ and one element of ¯̄TΓ.

Next, we color the edges of IG(Γ) using 4 +m colors, where m = |S′′Γ|, as follows:

1. For each i ∈ {1, 2, . . . , |TΓ|/2}, the edge et̄i is colored with color 1 and the edge

e¯̄ti is colored with color 2.

2. For each s ∈ S′Γ and for i ∈ {1, 2, . . . , |TΓ|/2}, if s is adjacent to t̄i, we color the

edge st̄i with color 3 and the edge s¯̄ti with color 4.

3. For α ∈ {1, 2, . . . ,m}, in any path P between an sα ∈ S′′Γ and an s ∈ S′Γ, the

edge s̄sα in P is colored with color 4 + α, where s̄ can be either s or another

element of S′′Γ whose distance from s on P is dP (sα, s)–1.

4. The remaining edges in IG(Γ) are colored with color 1.

Using this edge coloring, the rainbow paths in IG(Γ) between any two elements of Γ

are as follows:

1. For any s ∈ S′Γ, a rainbow path between s and the identity e is the path ets,

where t is an element of TΓ which is adjacent to s.

2. If two elements t̄i and t̄j in T̄Γ are non-adjacent elements, a rainbow path

between the two elements is t̄ie¯̄tjst̄j , where s is a non-identity element of S′Γ
such that s = t̄i ∗ t̄j and ¯̄tj ∈ ¯̄TΓ is the inverse of t̄j .

3. If two elements t̄i ∈ T̄Γ and ¯̄tj ∈ ¯̄TΓ are non-adjacent elements, a rainbow path

between the two elements is t̄ie¯̄tj .

4. If two elements ¯̄ti and ¯̄tj in ¯̄TΓ are non-adjacent elements, a rainbow path

between the two elements is ¯̄tiet̄js¯̄tj , where s is a non-identity element of S′Γ
such that s = ¯̄ti ∗ ¯̄tj and t̄j ∈ T̄Γ is the inverse of ¯̄tj .

5. If two non-identity elements si and sj in S′Γ are non-adjacent elements, a rainbow

path between the two elements is sit̄ke¯̄tlsj , where t̄k is an element of T̄Γ which

is adjacent to si and ¯̄tl is an element of ¯̄TΓ which is adjacent to sj .
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6. If an element t̄i ∈ T̄Γ and a non-identity element sj ∈ S′Γ are non-adjacent

elements, a rainbow path between the two elements is t̄ie¯̄tksj , where ¯̄tk is an

element of ¯̄TΓ which is adjacent to sj .

7. If an element ¯̄ti ∈ ¯̄TΓ and a non-identity element sj ∈ S′Γ are non-adjacent

elements, a rainbow path between the two elements is ¯̄tiet̄ksj , where t̄k is an

element of T̄Γ which is adjacent to sj .

8. The rainbow path between s′′ ∈ S′′Γ and the identity e is in the form of s′′s1...skte

for some natural number k, where s1 is an element of S′Γ if k = 1, sk is an element

of S′Γ, t is an element of TΓ which is adjacent to sk, and si is an element of S′′Γ
for every i ∈ {1, ..., k − 1} if k ≥ 2.

9. If a non-identity element s′ ∈ S′Γ and an element s′′ ∈ S′′Γ are non-adjacent

elements and there is a path P between the two elements whose all internal

vertices are elements of S′′Γ, then P is a rainbow path between the two elements.

10. If a non-identity element s′ ∈ S′Γ and an element s′′ ∈ S′′Γ are non-adjacent

elements and there is no path between the two elements whose all internal

vertices are elements of S′′Γ, then a rainbow path between the two elements is

in the form of s′′s1...sk t̄e¯̄ts
′ for some natural number k, where s1 is an element

of S′Γ if k = 1, si is an element of S′′Γ for all i ∈ {1, ..., k − 1} if k ≥ 2, sk is an

element of S′Γ, t̄ is an element of T̄Γ which is adjacent to sk, and ¯̄t is an element

of ¯̄TΓ which is adjacent to s′.

11. A rainbow path between an element s′′ ∈ S′′Γ and an element t̄ ∈ T̄Γ is in the

form of s′′s1...sk ¯̄tet̄ for some natural number k, where s1 is an element of S′Γ if

k = 1, sk is an element of S′Γ, ¯̄t is an element of ¯̄TΓ which is adjacent to sk, and

si is an element of S′′Γ for every i ∈ {1, ..., k − 1} if k ≥ 2.

12. A rainbow path between an element s′′ ∈ S′′Γ and an element ¯̄t ∈ ¯̄TΓ is in the

form of s′′s1...sk t̄e¯̄t for some natural number k, where s1 is an element of S′Γ if

k = 1, sk is an element of S′Γ, t̄ is an element of T̄Γ which is adjacent to sk, and

si is an element of S′′Γ for every i ∈ {1, ..., k − 1} if k ≥ 2.

13. If two non-adjacent elements s′′1 and s′′2 in S′′Γ are linked by a path P , with at

most one of its internal vertices is in S′Γ, then P is a rainbow path between the

two elements.

14. If all paths connecting two non-adjacent elements s′′0 and s′′n in S′′Γ have at least

two elements of S′Γ as their internal vertices, a rainbow path between s′′0 and

s′′n is in the form of s′′0s1 . . . sk t̄e¯̄tsk+1 . . . sn−1s
′′
n, where k ≥ 1 and n ≥ 3 are

natural numbers, s1 ∈ S′Γ if k = 1, sn−1 ∈ S′Γ if n = k + 2, all elements

s1, . . . , sk−1, sk+2, . . . , sn−1 are in S′′Γ if k ≥ 2 and n ≥ k + 3, sk and sk+1 are

elements of S′Γ, t̄ is an element of T̄Γ which adjacent to sk, and ¯̄t is an element

of ¯̄TΓ which adjacent to sk+1.
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15. The rainbow path between any two adjacent vertices in IG(Γ) is the edge be-

tween the vertices.

By using the above edge coloring, every two distinct vertices of IG(Γ) are linked by

a rainbow path. Thus, rc(IG(Γ)) ≤ m+ 4.

The upper bound in Theorem 6 is an improvement to the upper bound in Theorem

4 because the value of 4 +m is always less than or equal to |TΓ|+m+ 2, since |TΓ| is
always even for any finite group Γ with TΓ 6= ∅. Theorem 6 guarantees that rc(IG(Γ))

does not exceed 4+m for a finite group Γ of even order with TΓ as its set of generators.

However, it is difficult for us to find a group Γ such that rc(IG(Γ)) = 4 +m. Hence,

the upper bound cannot yet be stated as a tight upper bound.

Now consider a direct product Γ = Γ1 × . . . × Γn of finite groups, where n ≥ 2. It is

obvious that SΓ = SΓ1
×· · ·×SΓn

and TΓ = Γ\SΓ. If TΓi
6= ∅ for some i ∈ {1, . . . , n},

then it is clear that TΓ 6= ∅. The following theorem gives the lower and upper bounds

for the rainbow connection number of IG(Γ), where Γ is a direct product of finite

groups, some of which have even orders.

Theorem 7. Let n ≥ 2, Γ = Γ1 × . . . × Γn be a direct product of finite groups, and |Γi|
be even for some i ∈ {1, . . . , n}. If for every i ∈ {1, . . . , n}, TΓi is nonempty and generates
Γi, then 2 ≤ rc(IG(Γ)) ≤ 4. Moreover, the lower bound is tight.

Proof. Let n ≥ 2, Γ = Γ1 × . . . × Γn be a direct product of finite groups, and |Γi|
be even for some i ∈ {1, . . . , n}. Hence, the order of Γ is even. Let TΓi be nonempty

and generates Γi for every i ∈ {1, . . . , n}. Therefore, IG(Γi) is connected for every

i ∈ {1, . . . , n}. Any element of TΓ is in the form of (a1, a2, . . . , an), where ai is an

element of TΓi
for at least one i in {1, . . . , n}. Since TΓi

is nonempty and generates Γi
for every i ∈ {1, . . . , n}, TΓ is nonempty and generates Γ. According to Theorem 6,

the lower bound of rc(IG(Γ)) is 2 and the upper bound of rc(IG(Γ)) is 4 +m, where

m is the number of s ∈ SΓ that satisfy s ∗ t = t−1 ∗ s for all t ∈ TΓ.

Consider a direct product Γ = Zn × · · · × Zn of cyclic groups of order n, where n

is even. The group Zn is generated by 1, which is an element of TZn
. Hence, Zn is

generated by TZn . Since Zn is abelian, Γ is also abelian. According to Theorem 5,

rc(IG(Γ)) = 2. Thus, the lower bound is tight.

Now let m 6= 0, ŝ = (ŝ1, ŝ2, . . . , ŝn) be an element of SΓ such that ŝ ∗ t = t−1 ∗ ŝ
for all t ∈ TΓ, and T̃Γ = {t̃ = (t̃1, t̃2, . . . , t̃n) ∈ TΓ|t̃i is an element of TΓi for one

and only one i ∈ {1, 2, ..., n}}. Since ŝ is an element of SΓ, ŝi must be an element

of SΓi for every i ∈ {1, . . . , n}. Because ŝ ∗ t = t−1 ∗ ŝ for all t ∈ TΓ, ŝ also satisfies

ŝ ∗ t̃ = t̃−1 ∗ ŝ for all t̃ ∈ T̃Γ. Thus, for every i ∈ {1, . . . , n}, ŝi ∗ ti = t−1
i ∗ ŝi

for every ti ∈ TΓi
and ŝi ∗ si = (si)

−1 ∗ ŝi = si ∗ ŝi for every si ∈ SΓi
. Since

(ŝi ∗ ti)−1 = t−1
i ∗ ŝi and (ŝi ∗si)−1 = si ∗ ŝi, for every i ∈ {1, . . . , n}, ŝi is not adjcaent

to every si ∈ SΓi
and every ti ∈ TΓi

in IG(Γi). Hence, ŝi is an isolated vertex in

IG(Γi) for every i ∈ {1, . . . , n}. This is a contradiction since IG(Γi) is connected for

every i ∈ {1, . . . , n}. Thus, m must be 0 and the upper bound for rc(IG(Γ)) is 4.
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As in Theorem 6, the upper bound in Theorem 7 cannot yet be stated as a tight

upper bound since finding a direct product of finite groups Γ = Γ1 × · · · × Γn such

that rc(IG(Γ)) = 4 is not an easy task. However, the theorem guarantees that the

rainbow connection number will not exceed 4.

Now consider a finite group Γ of even order whose every s ∈ SΓ is adjacent to every

t ∈ TΓ in IG(Γ). The following theorem shows that the rainbow connection number

of the inverse graph of such a group is exactly 2.

Theorem 8. Let Γ be a finite group of even order with TΓ 6= ∅. If s ∗ t 6= t−1 ∗ s for
every s ∈ SΓ and every t ∈ TΓ, then rc(IG(Γ)) = 2.

Proof. Let Γ be a finite group of even order with TΓ 6= ∅ and s∗ t 6= t−1 ∗ s for every

s ∈ SΓ and every t ∈ TΓ. Since s ∗ t 6= t−1 ∗ s = (s ∗ t)−1 for every s ∈ SΓ and every

t ∈ TΓ, we get that s ∗ t ∈ TΓ for every s ∈ SΓ and every t ∈ TΓ. Therefore, every

s ∈ SΓ is adjacent to every t ∈ TΓ. Since every t ∈ TΓ is adjacent to the identity e,

IG(Γ) is a connected graph. Recall that a connected IG(Γ) is not a complete graph.

Hence, rc(IG(Γ)) ≥ 2.

Since the order of Γ and |TΓ| are even, |SΓ| is also even. Therefore, |SΓ| > 1. If |SΓ|
is greater than |TΓ|, we can find two distinct elements, s1 and s2, in SΓ such that

s1 ∗ t = s2 ∗ t for some t ∈ TΓ. Applying the cancellation law, we deduce that s1 = s2,

leading to a contradiction. Therefore, |SΓ| cannot exceed |TΓ|.
According to Lemma 2, for every s ∈ SΓ and every t ∈ TΓ, there exists a unique

element τ ∈ TΓ such that t ∗ τ = s. The uniqueness is guaranteed by the cancellation

law. The element τ might be equal to t. From Lemma 3, we know that s is adjacent

to both t and τ . Based on these facts, for each s ∈ SΓ, we partition TΓ into TΓ,s =

{ts,1, ts,2, . . . , ts,|TΓ|/2} and T ′Γ,s = {t′s,1, t′s,2, . . . , t′s,|TΓ|/2} such that for every i ∈
{1, 2, . . . , |TΓ|/2}, one of the following conditions holds:

1. If ts,i ∗ ts,i 6= s, then t′s,i is an element of TΓ that satisfies ts,i ∗ t′s,i = s.

2. If ts,i ∗ ts,i = s, then t′s,i = t−1
s,i .

Now let the edges of IG(Γ) be colored by two different colors. Every edge between two

adjacent vertices in TΓ is colored with color 1 and every edge between two adjacent

vertices in SΓ is colored with color 2. For every i ∈ {1, 2, . . . , |SΓ|} and every j ∈
{1, 2, . . . , |TΓ|/2}, if the edge sitsi,j is assigned color 1, then the edge sit

′
si,j

must be

assigned color 2, or if the edge sitsi,j is assigned color 2, then the edge sit
′
si,j

must

be assigned color 1.

To show that the edge coloring is a rainbow coloring, assign a |TΓ|-tuple Csi =

(ci1, ci2, . . . , ci|TΓ|) for each si ∈ SΓ, where cij is the color of the edge sitj , with

tj ∈ TΓ. The edge coloring that is used causes the number of distinct such tuples to

be at most 2|TΓ|/2. Given that |SΓ| and |TΓ| are both even, since |SΓ| is less than

or equal to |TΓ|, we get |SΓ| is less than or equal to 2|TΓ|/2. Therefore, we can color

the edges of IG(Γ) such that Csi 6= Csj if i 6= j, for i, j ∈ {1, 2, . . . , |SΓ|}. With this
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edge coloring, the rainbow paths between two different vertices within IG(Γ) are as

follows:

1. The rainbow path between any s ∈ SΓ and any t ∈ TΓ is the edge st.

2. For two distinct elements ti and tj in TΓ which are not adjacent in IG(Γ), the

rainbow path between ti and tj is tistj , where s is an element of SΓ such that

ti ∗ tj equals s.

3. For any two distinct elements si and sk in SΓ which are not adjacent in IG(Γ),

the rainbow path between si and sk is sitjsk, where tj is an element of TΓ such

that cij is not equal to ckj .

4. For any two distinct elements ti and tj in TΓ which are adjacent in IG(Γ), the

rainbow path that connects ti and tj is the edge titj .

5. For any two distinct elements si and sj in SΓ which are adjacent in IG(Γ), the

rainbow path between si and sj is the edge sisj .

Therefore, we find that every pair of distinct vertices in IG(Γ) is linked by a rainbow

path, and hence rc(IG(Γ)) ≤ 2. Note that IG(Γ) is not a complete graph. Therefore,

rc(IG(Γ)) ≥ 2. Thus, we deduce that rc(IG(Γ)) = 2.

Theorem 8 is a generalization of Theorem 5. In theorem 5, for a finite group Γ of

even order, if s ∗ t = t ∗ s for every s ∈ SΓ and every t ∈ TΓ, then rc(IG(Γ)) = 2. If

s∗ t = t∗ s for every s ∈ SΓ and every t ∈ TΓ, then s∗ t 6= t−1 ∗ s for every s ∈ SΓ and

every t ∈ TΓ. However, the converse is not true. Therefore, the condition of Theorem

8 is more general than the condition of Theorem 5.

The alternating group A4 is an example of a group that satisfies Theorem 8.

This group is a group of all even permutations on four elements, with SA4
=

{(1), (14)(23), (13)(24), (12)(34)} and TA4 = {(123), (132), (124), (142), (134), (143),

(234), (243)}. The binary operation of this group is the composition of permutations.

For the elements of TA4 , the inverse of (123) is (132), the inverse of (124) is (142),

the inverse of (134) is (143), and the inverse of (234) is (243). It is easy to check that

the group satisfies s ∗ t 6= t−1 ∗ s for every s ∈ SA4 and every t ∈ TA4 . Therefore, ac-

cording to Theorem 8, rc(IG(A4)) = 2. Figure 1 shows a minimum rainbow coloring

of IG(A4) with two colors.

Corollary 1. Let n be a natural number and for every i ∈ {1, 2, . . . , n}, Γi be a finite
group of even order with TΓi 6= ∅ that satisfies si ∗ ti 6= t−1

i ∗ si for every si ∈ SΓi and every
ti ∈ TΓi . If Γ = Γ1 × Γ2 × · · · × Γn, then rc(IG(Γ)) = rc(IG(Γ1)) = · · · = rc(IG(Γn)) = 2.

Proof. According to Theorem 8, rc(IG(Γi)) = 2 for every i ∈ {1, 2, . . . , n}. Let

Γ = Γ1×Γ2× · · · ×Γn. Since for every i ∈ {1, 2, . . . , n}, TΓi 6= ∅ and si ∗ ti 6= t−1
i ∗ si

for every si ∈ SΓi
and every ti ∈ TΓi

, we have TΓ 6= ∅ and s ∗ t 6= t−1 ∗ s for every

s ∈ SΓ and every t ∈ TΓ. Therefore, rc(IG(Γ)) = 2 according to Theorem 8.
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Figure 1. A minimum rainbow coloring of IG(A4) with two colors

The rainbow connection number of the inverse graph of a finite group Γ can be used

to determine a specific property of Γ. Theorem 9 shows that if rc(IG(Γ)) is known,

then every self-invertible element of Γ is a product of r non-self-invertible elements of

Γ, where r ≤ rc(IG(Γ)).

Theorem 9. Let k ≥ 2 be a natural number, Γ be a finite group, and TΓ 6= ∅ be a set of
generators of Γ. If rc(IG(Γ)) = k, then every self-invertible element of Γ is a product of r
non-self-invertible elements of Γ for some r ≤ k.

Proof. Let Γ be a finite group and TΓ 6= ∅ be a set of generators of Γ. Then

the inverse graph IG(Γ) is connected. Let k ≥ 2 be a natural number such that

rc(IG(Γ)) = k. The identity e can be written as e = t ∗ t−1 for any t ∈ TΓ. Since

every non-identity element s ∈ SΓ is not adjacent to e and IG(Γ) is connected, for

every non-identity element s ∈ SΓ, there exists a shortest path between s and e in

IG(Γ) with length r ≥ 2. Let the path be sh1 . . . hr−1e. Since hr−1 is adjacent to

e, we get hr−1 ∗ e = e ∗ hr−1 = hr−1 ∈ TΓ. For every i ∈ {1, . . . , r − 2}, since hi
is adjacent to hi+1, we get hi ∗ hi+1 = ti+1 ∈ TΓ or hi+1 ∗ hi = t′i+1 ∈ TΓ. Hence,

hi = ti+1 ∗ h−1
i+1 or hi = h−1

i+1 ∗ t′i+1 for every i ∈ {1, . . . , r − 2}. Since s and h1

are adjacent, we get s ∗ h1 = t1 ∈ TΓ or h1 ∗ s = t′1 ∈ TΓ. Hence, s = t1 ∗ h−1
1 or

s = h−1
1 ∗ t′1. Recall that if t is in TΓ, then t−1 is also in TΓ. Thus, s is a product

of r elements of TΓ. Since the length of the shortest path of any pair of vertices in

IG(Γ) is less than or equal to diam(IG(Γ)) and diam(IG(Γ)) ≤ rc(IG(Γ)) = k, then

r ≤ k.

If the rainbow connection number of the inverse graph of a finite group is 2, then

every self-invertible element of the group can be expressed as a product of two non-

self-invertible elements of the group, as shown in the following corollary.

Corollary 2. For a finite group Γ with a connected IG(Γ), if rc(IG(Γ)) = 2, then every
self-invertible element of Γ is a product of two non-self-invertible elements of Γ.
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Proof. Let Γ be a finite group with a connected IG(Γ) and rc(IG(Γ)) = 2. Accord-

ing to Theorem 2, since IG(Γ) is connected, TΓ is a set of generators of Γ. Therefore,

every s ∈ SΓ is a product of at least two elements of TΓ. Since rc(IG(Γ)) = 2, accord-

ing to Theorem 9, every s ∈ SΓ is a product of at most two elements of TΓ. Thus, we

conclude that every s ∈ SΓ is a product of two elements of TΓ.

For an example of Corollary 2, consider the inverse graph of the alternating group A4.

We have observed that rc(IG(A4)) = 2. It is easy to check that (1) = (123) ∗ (132),

(14)(23) = (243) ∗ (124), (13)(24) = (234) ∗ (123), (12)(34) = (243) ∗ (132), where

’∗’ is composition of permutations. Therefore, every self-invertible element of A4 is a

product of two non-self-invertible elements of A4. This result is in accordance with

Corollary 2.

4. Conclusions and future work

In this paper, we obtain some conclusions. For a finite group Γ of even order, we

get 2 ≤ rc(IG(Γ)) ≤ 4 + m, with m = |S′′Γ|, where S′′Γ = {s ∈ SΓ|s ∗ t = t−1 ∗ s
for all t ∈ TΓ}. Moreover, the lower bound is tight. For a direct product of finite

groups Γ = Γ1× . . . ×Γn, where n ≥ 2, |Γi| is even for some i ∈ {1, . . . , n}, and TΓi is

nonempty and generates Γi for every i ∈ {1, . . . , n}, we get 2 ≤ rc(IG(Γ)) ≤ 4 and the

lower bound is tight. If Γ is a finite group of even order and s ∗ t is not self-invertible

for all s ∈ SΓ and all t ∈ TΓ, then rc(IG(Γ)) = 2. If rc(IG(Γ)) = k for a finite group

Γ, then every self-invertible element of Γ is a product of r non-self-invertible elements

of Γ for some r ≤ k. If rc(IG(Γ)) = 2 for a finite group Γ, then every self-invertible

element of Γ is a product of two non-self-invertible elements of Γ.

A finite group Γ of even order that satisfies rc(IG(Γ)) = 4 +m and a direct product

of finite groups Γ1 × · · · × Γn that satisfies rc(IG(Γ1 × · · · × Γn)) = 4 are still

unknown. Therefore, proving that these upper bounds are tight, or finding better

upper bounds, remains an unresolved issue.
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